

Digital Systems

EEE4084F

FINAL EXAM
14 July 2017

Out of 120 marks

SOLUTIONS!!!

Section 1: Short Answers [50 marks]

Q1. [16 marks]

(a) The OIC is a Harvard architecture as it have a separate memory bus to peripheral bus. [1]

(b) Implementation of the assembly code below: (ticks shows mark allocations)

#define ADC1 0x10

#define ADC2 0x11

#define TRIGGER 0x12

CLR A

ADD A, 10 // A = trigger_level = 10

loop:

IN X,ADC1 // X = IN(ADC1)

IN Y,ADC2 // Y = IN(ADC2)

CMP X,A // compare X to A

JMPgt writet

SWP X,Y

CMP X,B // compare X to B

JMPgt writet

OUT TRIGGER,0

JMP loop

writet:

OUT TRIGGER,1

JMP loop

[10 marks]

Q1 (c) The total number of instructions in the loop are 9 (for the worst case where it needs to check

both X and Y inputs). This implies the loop runs at 9 x 1/100x106 = 9 x 10-8 = 90ns [3]

Q1 (d) The circuit takes 50 + 10 ns = 60ns to complete. Speedup = Eu / Ep (Eu the uniprocessor, Ep

parallel version). Therefore Speedup = 90/60 = 1.5. [2]

Q1.2. [12 marks]

Q1.2(a)

For comments

i. The main difference between a FPGA and a PLA is the: the architecture (how the system is

configured and programmed), the number of logic elements available, and the programming speed.

The FPGA has a more complex architecture, supports more complex designs, usually many types of

logic elements. [2]

ii. There is usually a particular programing sequence needed for an FPGA. In particular, if a FPGA

board needs to start up without being programmed from a host (e.g. attached PC), there needs to be

some way to program the FPGA. This is where a configuration architecture, utilizing a statemachine

implemented using a PLA or CPLD, is used in order to read the FPGA program from non-volatile

memory (e.g. a EEPROM chip) and to program the FPGA. Furthermore, the PLD/CPLD may also

include logic to support programming from a host, i.e. to receive a program sent from the host into a

then exercise the necessary programming pins on the FPGA in order to program it. [3]

Q1.2 (b)

Difficulties associated with taking an FPGA design forward to an ASCI design include accounting for

differences in propagation delays and operational speeds, different layouts of components; possibly

different implementations of components or CLBs that are utilized. Changes in the interconnections

and electrical properties of the material used for the ASIC. Futhermore, the tool chains may be quite

different and require the designer to undergo a lengthy learning curve to learn how to use the tools

effectively. There would also need to be more reliance on simulation, due to the expense of running

of physical instances of ASICs; whereas for FPGAs it is just a matter of programming the FPGA and

testing it on hardware, using a development kit prototyped board. Risks for ASIC include the

potential for having a re-do designs and the expense of additional runs to compensate for design

faults. Further there may be the risk of hiring consultants to assist with ASIC design and that it is

difficult to predict how long it will take to achieve a final operational ASIC due to the complexity of

this practice. [4]

Q1.2 (c) Advantages of parallel code are: potential for increased performance (by doing multiple

operations in parallel as opposed to being limited to sequential operation), the potential for

redundancy and fault tolerance (e.g. running the same operation on multiple different processors

which could be used to work around interference or damage that could cause processors to fail

temporarily or permanently). Improved responsiveness / decreased latency, the ability to respond to

interrupts more quickly, without necessarily relying on one available processor to handle the

request. [3]

Q1.3

Q1.3 (a) SWAP = Size Weight And Power. Some measures:

 computational power efficiency : GOPS/W

 Size or volume efficiency of computation : GOPS/L (giga operations per litre)

 Weight efficiency of computation : GOPS/Kg (giga operations per kilogram) [3]

Q1.3 (b)

i. The granularity of a problem, in computing, indicates the extent that the problem can be

decomposed into big or small parts, moreover how interrelated the sub-tasks (or fragments of the

problem space) are. This can be expressed using the ratio instructions:communications. Where

 1:N  fine grained problem (high interdependence, each result needs a lot of communication,

much of the data needed for each result generated)

 1:1  medium grained e.g. moving average filter (where each result depends on only a few items

of the source data)

 N:1 -> course grained (low interdependence, each computation needs little or no other data)

 e.g. X[1:10]=0 is very course grained, even embarrassingly parallel, since no data is needed for any

 result. [3]

ii. Embassasingly parallel means that there is no or very little communication needed to produce a

result of the computation. It is very course-grained. [2]

Q1.4 [10 marks]

Q1.4(a) The Bisection Bandwidth of a network determine as follows: the network is bisected into

two partitions, the bisection bandwidth of a network topology is the bandwidth available between

the two partitions. The bisection should be done in such a way that the bandwidth between the two

partitions is a minimum. The bisection bandwidth is a useful metric to determine potential

performance of a system as it indicates the worstcase network delay between any two nodes in the

system which could be a constraining factor in the overall performance of the system.

I motivate for the bisection bandwidth of the figure being above 1GBps because A1 and A2 can

simultaneous send and receive data from B5 and B6. [4]

Q1.4(b)

i. Obviously all the data from A1-A6 needs to pass over to B1-B6, and similarly all the data from B1-

B6 has to be sent over the other way. So that is 2 x 6 x 100 MB = 1.2GB [1]

ii. The schedule of transfers would be:

PARALLEL TX 1 {
 A1->B6
 A2->B5
 A6->B1
 A5->B2
 B6->A1
 B5->A2
 B2->A5
}
PARALLEL TX2 {
 A3->B4
 A4->B3
 B4->A3
 B3->A4
}

TX1: sends 100MBytes at 1Gbps takes 100*8/1000 s = 0.8s (7 transfers in parallel)

TX2: sends 100MBytes at 1Gbps, so that is 100*8/1000 s = 0.8s (4 transfers in parallel)

Total time = 0.8 x 2 s = 1.6s. [5]

SECTION 2 [each question worth 5 marks]

Q2.1 (e)

Q2.2 (b)

The PCR as per the definition is determined by calculating the arithmetic operations the processor

can do per clock cycle multiplied by the maximum clock rate of the processor.

Q2.3 (b)

Processor speed:

40MHz -> 1/(40 x 106) s per instruction

For 50 instructions  50 x 0.25 x 10-7 = 12.5 x 10-7 = 0.00000125

Propagation delay for PLD:

5 x 40 ns = 200 ns = 200 x 10-9 = 2 x 10-7 = 0.0000002

Speedup = Eu / Ep = 12.5 x 10-7/ (2 x 10-7) = 6.25

So, in conclusion there is quite a good speedup of 6.25, the answer is (b).

Q2.4 (b)

Q2.5 (d)

Q2.6 (a)

SECTION 3: Long Answers [42 marks]

Q3.1

`timescale 1ns / 1ps

//

// Company: UCT

// Engineer: S. Winberg

// Module Name: E2A

// Project Name: E2A Solution for Q3.1 in EEE5085F 2017 Exam

//

module E2A (

 // Inputs

 RESET,CLK,AWE,ASTROBE,EN_CONV,SQACK,DI,IRDY,

 // Outputs

 ADATA, ABUSY,AREADY,SQDATA,SQTB,DO,ORDY

);

 // Declare the directions of size of each input

 input RESET,CLK,AWE,ASTROBE,EN_CONV,SQACK, IRDY;

 input [7:0] DI;

 // Declare the directions of size of each input

 output reg ABUSY,AREADY,SQTB,ORDY;

 output reg [3:0] SQDATA;

 output reg [7:0] DO;

 // Declare the directions of size of each tristate (inout)

 inout [3:0] ADATA;

 // Internal registers for ESQM2ASCII state machine

 reg nibble2;

 reg [1:0]do_tx;

 reg msn;

 reg hold;

 reg [7:0] asciiout;

 // Start of the Code

 always @(posedge CLK)

 begin

 // ------------------ Handle reset -------------------

 if (RESET == 1)

 begin

 ABUSY <= 1'b0;

 SQTB <= 1'b0;

 ORDY <= 1'b0;

 AREADY <= 1'b1;

 SQDATA <= 0;

 DO <= 0;

 // ESQM2ASCII state machine registers

 hold <= 0;

 nibble2<= 1'b0;

 do_tx <= 2'd0;

 msn <= 1'b0;

 end // if

 else

 begin

 // ------------------ OPERATION ----------------------

 if (EN_CONV == 0)

 // -------------- CONVERSION OFF -------------------

 begin

 ORDY <= 0;

 DO <= 0;

 if (AWE == 1 && ASTROBE == 1)

 begin

 SQDATA <= ADATA;

 SQTB <= ASTROBE;

 end

 if (ASTROBE == 0)

 begin

 SQTB <= 0;

 end

 end

 else

 // ------------------ CONVERSION ON -----------------

 begin

 if (hold)

 // -------------- IN HOLD ----------------

 begin

 if (do_tx == 1)

 begin

 DO <= asciiout;

 ORDY <= 1;

 do_tx <= 2;

 end

 else

 if (do_tx == 2)

 begin

 DO <= 0;

 ORDY <= 0;

 do_tx <= 0;

 hold <= 0;

 AREADY <= 1;

 ABUSY <= 0;

 nibble2<= 0;

 end

 end else // hold

 // ----------- OUT OF HOLD ---------------

 begin

 if (ASTROBE && AWE)

 begin

 if (nibble2)

 begin

 asciiout<= {msn,ADATA};

 do_tx <= 1;

 hold <= 1;

 AREADY <= 0;

 ABUSY <= 0;

 end

 else

 begin

 msn <= ADATA;

 AREADY <= 1;

 nibble2<= 1;

 end

 end

 end // end not hold

 end // of convert on

 end // not in RESET

 end // always@ CLK

endmodule

See implementation and testbench at https://www.edaplayground.com/x/29Q7

[26 marks]

Q 4.2

#include <stdio.h>

#include <mpi.h>

/*

 Process for compiling and running:

 Compile using:

 mpicc -o q32 main.cpp

 Run using:

 mpirun -n 4 ./q32

 */

int fibonacci(int n)

{

 if (n == 0) return 0;

https://www.edaplayground.com/x/29Q7

 else if (n == 1) return 1;

 else return (fibonacci(n-1) + fibonacci(n-2));

}

int debugon = 0;

#define DB1 if (debugon>=1)

#define DB2 if (debugon>=2)

int main (int argc, char** argv)

{

 int N1, N2, D;

 int my_rank, num_procs;

 int todo; // number of items this process is to do

 int startn,endn; // start and end values to do

 // Assume these are hard coded:

 N1 = 0;

 N2 = 10;

 D = 2;

 // Perform calculation

 MPI_Init(&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

 MPI_Comm_size (MPI_COMM_WORLD, &num_procs);

 todo = (N2-N1+1)/num_procs;

 startn = my_rank * todo;

 endn = startn + todo -1;

 if (my_rank == 0) {

 printf("Welcome to the Fibonacci checker!\n");

 printf(" n1 = %d ",N1);

 printf("n2 = %d ",N2);

 printf("D = %d\n",D);

 }

 printf("p%d doing %d -> %d\n",my_rank,startn,endn);

 for (int i=startn; i<=endn; i++) {

 DB2 printf("p%d test: %d\n",my_rank,i);

 int fib = fibonacci(i);

 if (fib%D == 0) printf("F%d = %d\n",i,fib);

 }

 if (my_rank == 0) {

 // master to finish up

 DB1 printf("Master todo any remaining ones: \n");

 int left = (N2-N1+1)%num_procs;

 startn = N2-left+1;

 endn = N2;

 DB1 printf(" doing %d: %d->%d\n",left,startn,endn);

 for (int i=startn; i<=endn; i++) {

 DB2 printf("fill p%d test: %d\n",my_rank,i);

 int fib = fibonacci(i);

 if (fib%D == 0) printf("F%d = %d\n",i,fib);

 }

 DB2 printf("Finalize\n");

 }

 MPI_Finalize();

}

[16 marks]

