
Message-Digest 5 (MD5) Hash Reversal System
Gareth Callanan†,Jean Swart‡and Matthew G Smith§

EEE4084F Class of 2016
University of Cape Town

South Africa
†CLLGAR010 ‡SWRJEA005 §SMTMAT015

Abstract—This paper describes the design and testing of a
device created to reverse the effects of the Message-Digest 5
(MD5) Hash Function in a massively parallel manner. The device
will be used to find the original data used to generate the
128-bit MD5 hash. The system is initially tested on a Nexys 4
FPGA platform with the understanding that the project can later
be implemented on an ASIC platform for massively improved
performance.

It was found that the prototype FPGA system resulted in
significantly faster hash reversal than the golden measure, a
parallel system running on a CPU. This result was obtained
using only one solving module and can be expanded in parallel.

I. INTRODUCTION

This report deals with the overview and design of
an application-specific integrated circuit (ASIC) based
Message-Digest 5 (MD5) hash reversal system. The MD5
algorithm is a hashing function which produces a 128-bit hash
value for an arbitrary length input through an extensive series
of bit-wise combinatorial operations.

As of 2012 [1] the MD5 algorithm is no longer
recommended for use in cryptographic applications but
remains widely used for other purposes such as data integrity
checking in the form of check-sums [2].

This topic requires a parallel hash reversal system to be
implemented on a platform of choice. In this context, this
means that the system should be able take in a MD5 hash of
unknown origin and output the word, phrase or characters that
generated that hash.

The MD5 hash-reversal device can be used for password
recovery. If the MD5 hash of a password is known, the device
will be able to quickly find the corresponding password using
a brute-force attack.

Due to the fact that the MD5 hash system is a one-way
function and not true encryption or encoding, it cannot be
decrypted. A MD5 hash can only be reversed through methods
such as brute-force or dictionary attacks where the reversal
system tests all possible character combinations or all words
in a given list to see if they generate a MD5 hash matching
the input hash. This makes for an extremely coarse-grained
problem which is ideal for parallelization, as numerous solver
modules can be implemented with no intercommunication.

A dictionary attack can be a highly useful tool for reversing
hashes which were generated with large words that could be
found in a standard word-list. However, a parallel brute-force
reversal system with a high enough clock speed will be fast

enough for all words with a length close to that of the average
password, 8 characters. [3]

It was chosen to design the reversal system using an Artix-7
field-programmable gate array (FPGA) and later transition to a
high-speed ASIC platform. These platforms were chosen over
other parallel platforms such as a multi-threaded CPU due to
their ability to handle many more parallel processing instances.
The coarse granularity of the problem lends to the idea that
the more parallel instances the system can handle, the faster
it can reverse a given hash.

This report is divided into an overview section detailing the
plan of implementation at a high level of abstraction, a detail
design section explaining the inner workings of the system,
a prototype design section explaining the simplifications and
compromises made in order to implement the system on an
FPGA and a conclusion section.

II. OVERVIEW

A. User Interaction

This device is not designed to be a stand alone device and
requires an interface with a PC running either Windows or
Linux. The PC will send commands and data to the ASIC,
including the MD5 hash to reverse and reversal parameters.
The ASIC will then perform the brute-force attack to find
the characters which generated the input hash and send the
data back to the PC. All communication will be performed
over an RS232 serial link. A faster link was not necessary
as data transfer is expected to be a very small portion of
the overall execution time. A block diagram showing the
high-level system structure is shown in Figure 1. A detailed
block diagram of the system is shown in Figure 2. This
diagram shows the internal structure of the system and how the
various modules interface with one another. The solver worker
modules are each given an index, i, where 0 < i < N, with
N being the number of parallel solver workers in the system.

The PC will use custom software with either a command
line or graphical user interface, allowing the user to issue
commands to the ASIC and providing feedback based on status
information send back by the ASIC.

Due to the fact that MD5 uses an arbitrary length input, the
ASIC could potentially take a long time to find the original
text data which generated the hash, causing the user to become
impatient. In order to alleviate this, the user will be provided
with periodic feedback about the number of combinations that
have been attempted.



Fig. 1. High level block diagram for the system

Fig. 2. Detailed block diagram of the system

B. High-Level System Structure and Operation

As stated earlier, the high-level block diagram for this
system is shown in Figure 1.

After receiving the MD5 hash to be reversed, a brute-force
attack will begin. After every attempt in the brute-force
process the resulting hash will be compared to the input hash.
If they do not match, the user will be shown the number
of attempts and the next attempt will begin. When a match
is found the user will be shown the original message that
produced the hash and the total number of attempts that were
made at finding this data.

C. MD5 Algorithm

This section serves to explain the basics of how the MD5
algorithm operates and how it could be implemented in
sequential and parallel forms.

1) Message Padding:
The MD5 algorithm begins by padding the input message so
that its length is divisible by 512. A binary 1 is appended to
the end of the message, followed by zeroes until the length
of the message is 64 bits less than a multiple of 512. The
remaining 64 bits are given as the length of the original
message, modulo 264.

2) Message Partitioning:
The padded input message is split up into blocks of 512 bits
each, with each block being made up of sixteen 32-bit words.

3) State Modification:
The output of the MD5 algorithm is a 128-bit state which
can be divided into 4 words of 32 bits each. Let these words
be A, B, C and D. Initially, these words are set to fixed
constants, and these constants are modified using the sixteen
32-bit words of each 512-bit message block.

The modification for each message block occurs in 64
“rounds”, with a different combinatorial function, F, being
used every 16 rounds. The different combinatorial functions
in order of their use are:

F1 = (B ∧C) ∨ (B ∧D) (1)

F2 = (B ∧D) ∨ (C ∧D) (2)

F3 = (B⊕C⊕D) (3)

F4 = (C⊕ (B ∨D)) (4)

These functions are used to generate a value which is added
to a certain 32 bit word of the message block and rotated to
form a new value of B. The other words of the 128-bit state
are rotated such that A = D, C = B and D = C. These new
values are added onto the original values of A,B,C and D to



form the new 128-bit state. This process is repeated for each
512-bit chunk and the output is reconstructed in little-endian
from A,B,C and D.

D. Experimental Procedure

A simple parallel C++ program was created as a golden
measure. This was done for two reasons, the first of which
being to see which components of the of the solving algorithm
could be made parallel and the second being to obtain an
estimate of the time it should take to complete the solving
algorithm. The algorithm used to achieve this can be seen in
the form of a flow chart in Figure 3. The same algorithm
was implemented on all threads of the CPU. The found flag
referred to in the diagram is a global flag shared between all
threads that will be set high when any of the threads generates
a hash matching input hash. Each thread will generate a hash
for the current word in the brute force attempt and then check
the found flag to see if any of the other threads generated a
successful result before continuing.
The program was run on 16 threads on a an AMD FX 8350

and used an existing MD5 encryption library [4]. It was tested
on strings from “ ” to “∼∼∼” and only looked at characters
with ASCII values from 32 to 126 (i.e. “ ” and “∼”) as
this range represents all characters on the standard QWERTY
keyboard. The decryption time is expected to be in the bounds:
kΣM−1

n=1 94n < t < kΣM
n=194n where n is the position of

the character in the string starting at 0, k is a constant of
proportionality and M is the string length in characters.

The test of the prototype was conducted in a similar manner.
A hash would be fed to the prototype and the time taken
for the prototype to produce the corresponding password was
measured and plotted. It was tested on the same range of
strings as the golden measure.

Due to design of the prototype, it was very simple to
produce a mathematical equation for the time taken to find
the corresponding password from a hash. This equation is:

Runtime(s) =
T

N
n + c (5)

Where T is the clock period, N is the number of solver
modules and n is the number of hashes that need to be
generated to find the correct data. The transfer overhead should
remain constant and is equal to c.

E. Hardware and implementation

The FPGA used for initial implementation was an Artix-7
FPGA on a Nexys 4DDR development board.

The encryption process explained in subsection II-C was
implemented on a 64 stage pipeline on the FPGA for each
solver worker module. At each pipeline stage one of the 64
rounds are run. However, this causes the first 64 hashes of each
worker to be incorrect as the pipeline is still being filled. As
such, a valid/invalid flag will be included in the pipeline.
It is necessary to use a pipeline as the propagation delay
of the gates could cause errors due to the large size of the
combinatorial circuit required to calculate the hash in a single
clock cycle. Using a large combinatorial circuit in lieu of a

Fig. 3. Flow chart of solving algorithm

pipelined approach will also allow for fewer solver modules
to be implemented on a device with limited space such as the
Artix-7. Using a pipeline allows for the maximum amount of
hashes to be tested on the maximum number of parallel solver
workers without the propagation delay of gates affecting the
result.

III. DETAILED DESIGN

A. Detailed System Operation and System Structure

The activity diagram showing the operation of the system
is shown in Figure 4. When the MD5 hash is retrieved
the brute-force computation will be run and the number of
brute-force attempts will be sent to the controller at the same
time. When the reversal is complete the original data will be
sent to the user.

The controller module is used as the communications and
data processing hub of the device. It receives, translates and
transmits data between the solver manager module and the
UART receive and transmit modules. If any messages have
special flags or commands to be handled, this module will
convert that information into appropriate commands to be send
to the solver manager.

The solver manager module is used to keep track of the
current brute-force string, the number of attempts and to
perform distribution of the strings to be hashed between solver
workers.

The actual solving/reversal process is performed on a set
of fixed-function solver workers. A block diagram of a single
solver worker module is shown in Figure 5.

Each worker obtains the next string to be hashed from the
solver manager, computes the MD5 hash of that string and



Fig. 4. Activity Diagram of the reversal system

compares the result to the input hash. The solver worker will
return the string that it was hashing and the hash of that string
to the solver manager. If the produced hash matches the input
hash, the solver worker will assert a high on the solved line
to indicate that it has successfully reversed the hash.

As mentioned earlier, each solver worker uses a 64-stage
pipeline. This pipeline is subdivided into four parts of 16
pipeline stages, with each of the four parts performing one
of the four combinatorial functions discussed in II-C

The number of workers depends on the capabilities of the
platform used.

B. Communication Interfaces and Message Formatting

As mentioned above, the ASIC interfaces with the PC
using RS232 serial communications [5]. The baud rate (i.e.
the number of bits sent per second) has to be synchronized
between the receiver and the sender. The chosen baud rate is
100 kBd. The clock speed on the ASIC is in the megahertz
range. The ASIC will need to wait 10 µs per bit and 80 µs
per byte.

In order to communicate with the ASIC, a python library,
Pyserial, is used [6]. The commands used are shown below:
import serial
fpga = serial.Serial(’COM5’,100000,bytesize=serial.EIGHTBITS); #Establish Connection
fpga.write(b"\x01"); #Send a byte of data
bytein = fpga.read() #receive a byte of data

Data is sent to the ASIC at a relatively slow rate. The UART
Receive module shown in Figure 2 acts as a buffer for this
incoming data. This module waits for the receive line to go
low, then checks the incoming signal every 10 µs and stores
this value in a buffer. Once all bits have been collected a flag
is set high to indicate to the ASIC controller that a byte is
ready for collection. The UART Transmit module sends data
from the ASIC controller to the PC in a similar manner.

A number of codes are established. These codes are 8-bit
long values that PC and ASIC transmit to each other. They are
used to issue commands to the ASIC and to inform the PC
of the progress of the ASIC. Table I indicates all the codes
that have been established.The ASIC controller module will
interpret these codes and the perform the corresponding action.

TABLE I
TABLE SHOWING THE CODES ESTABLISHED TO FACILITATE

COMMUNICATE BETWEEN THE ASIC AND THE PC

8-bit Code Function
0b00000001 Incoming Hash - this instructs the ASIC that the next 16

incoming bytes are going to be an MD5 hash that needs to be
stored.

0b00000010 Request Number of Combinations - this is a code that will
instruct the ASIC to transmit the number of combinations
currently attempted.

0b00000011 Transmitting Number of Combinations - this code sent by the
ASIC indicates that the next 16 transferred bytes will represent
the number of combinations attempted.

0b00000110 Confirm Solved - This indicates the hash has been found and
that the next 16 bytes to be transferred will be the found hash.

0b00000111 Not Solved - This indicates that the hash has not yet been
solved

0b00001000 Request solved status - This is a command sent by the
controller to check where the ASIC is in terms of its transfer
process.

0b00001010 Request Hash - ASIC sends the hash to the controller for error
checking purposes.

C. Input and Output Hash Comparison

Due to the nature of the MD5 algorithm it is possible for
multiple words/messages to map to the same hash. In the
current implementation the brute-force attack starts from the
lowest ASCII character combination and iterates to higher
combinations. Thus, the word that is returned to the user will
be the shortest possible word or the first ASCII character
combination which results in that hash.

For the purpose of password retrieval it is unlikely that the
word used to generate the hash would have been anything other
than the first possibility. The other messages which would
generate the same hash will likely be exceptionally long.

In the final system users will be able to reject the reversed
hash and the system can continue to brute-force the hash until
the next possibility is found.

IV. PROTOTYPE DESIGN

This section relates to the prototype FPGA implementation
of the MD5 hash reversal system. It details the simplifications
that had to be made to the conceptual design in order to
implement it on the Artix-7 platform.

A. Clock Speed

It is not possible to run the FPGA at as high a clock speed
as an ASIC, and as such the clock speed on the FPGA was
limited to 100MHz.

B. Solver Workers

Due to space restrictions on the Artix-7, it was only possible
to implement a single solver module. With a clock speed
of 100MHz this will still result in 100 million hashes being
generated every second.

The Verilog code written allows for the number of solver
modules to be changed simply by adjusting a parameter in
the solver manager module. This allows for the system to be
easily scaled using parallel solver workers on a higher capacity
FPGA.



Fig. 5. Block diagram of a single solver worker module

C. Word Length

In order to simplify implementation and save space on the
FPGA, the maximum word length of the brute-force attempt
was limited to 8 characters. The solver manager module
thus incremented the string to hash between “ ” (space) and
“∼∼∼∼∼∼∼∼”.

D. Communication Interfaces and Message Formatting

The prototype contained the full UART functionality as
described in the Detailed Design Section. The FPGA has a
clock speed of 100 MHz, as such the UART modules will
hold the output line constant for 1000 clock cycles to meet
the timing requirements of 10 µs.

V. RESULTS

A. Measured Results

The system was tested by choosing a number of different
sample words, calculating their corresponding MD5 hash
and then feeding this hash into the golden measure and the
prototype systems for reversal. The time taken to produce the
original sample word was then timed for each system. Table II
shows a comparison of some of these sample cases. The reason
that only some hashes were tested was that because of the fact
that the number of hashes required to be computed changes
significantly with the length of string to be found, the time
taken for the golden measure to reverse that hash became too
long to compute.

The results from the golden measure test for reversal of
the first 180 000 ASCII character combinations are plotted in
Figure 6. The same results for the prototype test are shown in
7.

The prototype results for this range of character
combinations do not show the same linear trend as the
golden measure results due to the fact that the UART transfer
overhead dominates the actual time taken to reverse the hash.

Tests on a much larger sample size of character
combinations were performed on the prototype and the results

0 5 10 15

Number of ASCII Combinations
×10

4

0

100

200

300

400

500

R
u
n
ti
m

e
(m

s
)

Time take to find string vs Number of ASCII combinations

Fig. 6. Time taken to find strings with different characters using the golden
measure.

0 2 4 6 8 10 12 14 16

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Prototype Performance for Small Sample Sizes

Number of ASCII Combinations

R
u
n
ti
m

e
(m

s
)

Fig. 7. Time taken to find strings with different characters using the prototype.



TABLE II
TABLE OF DIFFERENT TEST CASES AND RUN-TIMES

Phrase Number of
hashes to be
computed.

Golden
Measure
Run-time(s)

Prototype
Run-time(s)

so 7 975 0.0001 0.163
axe 591 611 0.946 0.156
wax 783 860 1.332 0.164
test 70 386 626 113.465 1.267
vader 6 847 950 842 11 734,2340 60.934
Newton 350 872 752 449 Too long to

compute
3340.630

are shown in Figure 8. The transfer overhead is much smaller
portion of the run-time for longer character combinations and
thus a similar linear trend to the golden measure emerges.

B. Mathematical Analysis and Speedup

The equation for the time to reverse a hash for an ASCII
character combination for the golden measure system was
found from the graph in Figure 6. It is shown below, with
n representing the number of ASCII character combinations
before the string to be tested:

Runtime(s) = 1.7× 10−6n (6)

The equation for the time taken to reverse a hash on the
FPGA was shown in the overview section. The clock period
is 10 ns and the number of solver modules in the prototype was
1. n again represents the position of the string in all character
combinations. The expected run-time for a single hash is:

Runtime(s) = 1× 10−8 × n + 0.2 (7)

The transfer overhead does vary (data sometimes needs to
be resent to ensure reliability) so an average value for this
overhead was chosen for this equation.

From the previous results and equations the speedup of
the prototype system over the golden measure was calculated.
Figure 9 shows this calculated plot.

The point where the speedup is greater than one occurs
where the number of ASCII combinations is equal to 118344.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
11

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of ASCII Combinations

R
u
n
ti
m

e
(m

s
)

Plot of Number of ASCII Combinations vs Runtime

Fig. 8. Time taken to find strings with different characters using the prototype
for longer length strings.

0 2 4 6 8 10

x 10
8

0

20

40

60

80

100

120

140

160

180

Number of ASCII Combinations

S
p
e
e
d
u
p

Plot of Speedup vs Number of ASCII Combinations

Fig. 9. Speedup Plot of the FPGA implementation over the Golden Measure.

This is equivalent to finding the corresponding hash for the
three character string “,)d”.

As the sample size increases the speedup tends to a constant
value of approximately 170.

VI. CONCLUSION

The results of the experiment show that the prototype system
was a success, reversing hashes up to 170 times faster than the
golden measure. Because of the fact that the golden measure
was a parallel implementation on a CPU, the speed up of the
prototype over a purely sequential system will be even greater.

The prototype is able to be easily parallelized through
changing a parameter in the Verilog code of the system. This
will provide massive improvements to the speed up of the
system. Each additional solver module added in parallel would
increase the speed up of the system by an additional 170 for
larger problem sizes.

The next stage of development would be to expand the
system to remove the limitations imposed by the Artix-7
FPGA platform. This includes increasing the clock speed,
adding parallel solver worker modules and increasing the
number of characters that the system can solve for. Additional
features for the user can also be added, such as the ability to
set the starting point of the brute-force attack and the ability
to reject the result of the reversal and force the brute-force
attack to find the next possible string.

REFERENCES

[1] Kaspersky Lab, “What is Flame Malware?”
http://www.kaspersky.com/flame.

[2] Fast Sum, “What is the MD5 checksum?”
http://www.fastsum.com/support/md5-checksum-utility-faq/md5-checksum.php.

[3] Open Web Application Security Project, “Password Length &
Complexity,” ,https://www.owasp.org/index.php/Password length %26 complexity.

[4] B. Grdelbach, “MD5 library,” http://hashlib2plus.sourceforge.net/.
[5] Silicon Labs, “Serial Communications,” ,http://www.silabs.com/.
[6] Pyserial, “Python Serial Port Extension,”

,https://pypi.python.org/pypi/pyserial.

http://www.kaspersky.com/flame
http://www.kaspersky.com/flame
http://www.fastsum.com/support/md5-checksum-utility-faq/md5-checksum.php
http://www.fastsum.com/support/md5-checksum-utility-faq/md5-checksum.php
https://www.owasp.org/index.php/Password_length_%26_complexity
https://www.owasp.org/index.php/Password_length_%26_complexity
https://www.owasp.org/index.php/Password_length_%26_complexity
http://hashlib2plus.sourceforge.net/ 
http://www.silabs.com/abc
http://www.silabs.com/123
https://pypi.python.org/pypi/pyserial
https://pypi.python.org/pypi/pyserial

	I Introduction
	II Overview
	II-A User Interaction
	II-B High-Level System Structure and Operation
	II-C MD5 Algorithm
	II-C1 Message Padding
	II-C2 Message Partitioning
	II-C3 State Modification

	II-D Experimental Procedure
	II-E Hardware and implementation

	III Detailed Design
	III-A Detailed System Operation and System Structure
	III-B Communication Interfaces and Message Formatting
	III-C Input and Output Hash Comparison

	IV Prototype Design
	IV-A Clock Speed
	IV-B Solver Workers
	IV-C Word Length
	IV-D Communication Interfaces and Message Formatting

	V Results
	V-A Measured Results
	V-B Mathematical Analysis and Speedup

	VI Conclusion
	References

