
Motion Estimated Frame Interpolation
S Chetty† R MacArthur‡ S Wood§

EEE4084F Class of 2016
University of Cape Town

South Africa
†CHTSHA024 ‡MCRROS001 §WDXSEA003

Abstract—A concept design description for an implementation,
within the realm of high performance computing hardware,
of motion estimated frame interpolation. The resulting concept
design is embedded in a capable output screen and receives input
from a sub-par frame-rate HDMI video stream. A prototype
is developed that demonstrates a simplified proof of concept
involving frame averaging as a method of interpolation. The
prototype is employed on an FPGA with a VGA output.

I. INTRODUCTION

Frame interpolation involves generating intermediate video
frames between existing ones in order to make the animation
more fluid and to compensate for motion judder; ultimately
producing a higher frame rate. There are many different
methods that exist to do this. The simplest of them is frame
repetition, which simply copies the frame. Another basic
method is frame averaging, where an intermediate frame is
obtained by taking the average of two consecutive frames [1].

The algorithms that produce the most visually appealing
results involve estimating motion vectors in the image,
calculating intermediate frames based on these motion vectors
and then masking any artifacts which may have arisen in the
process.

Video frame interpolation is often used for high quality
video applications. High definition video processing can be
resource intensive which means the algorithms involved lend
themselves to an accelerated implementation. This paper
describes the proposed implementation of frame interpolation
algorithms on an ASIC target architecture. In addition, a
prototype FPGA implementation is developed.

II. OVERVIEW

The interpolation algorithm is pipelined in nature. Firstly,
areas of motion must be identified. This information is then
fed through an interpolation algorithm which must process
the generated motion vectors to result in a new frame. Finally,
artifact masking must be applied. Stages of the pipeline are
described further in the following subsections as well as in
Section III.

A. Motion estimation

Motion vectors describe the position changes from one
frame to another. Many methods exist to produce these motion
vectors, for example the phase correlation of two frames [2].
This is where each frame is divided into blocks of n × n
pixels each. The motion vectors are obtained for each block

by correlating that block with the following frame. The peak
value in the resulting correlation is used to calculate the motion
vector. An example of this can be seen in Figure 1.

B. Frame interpolation

Interpolated frames are calculated by drawing on the results
of the motion estimation by placing each block at the midpoint
of it’s corresponding motion vector. This method, however,
could potentially produce results with artifacts in the form of
“holes” (regions where there is no available image data).

C. Artifact masking

In order to produce visually appealing results the artifacts
produced in the interpolation algorithm process must be
removed. The artifacts considered will be image holes and
block boundary discontinuities. Image holes can be repaired
by filling in these pixel values from the corresponding pixel
values of either the previous or next frame (or both) in the
interpolation. However, this process itself may result in block
discontinuities. Block discontinuities can be dealt with by use
of a deblocking filter. This filter works by smoothing the edges
of a block with filter co-efficients suited to the block sizes.
Many other sophisticated methods of deblocking currently
exist, some of which are used in existing video codecs such
as H.264 and H.265.

III. DETAILED DESIGN

A full concept diagram for the product is shown in
Figure 2. The following sections outline the detailed design
and explanation of the arrival to this diagram. The final device
is be embedded in a 120 Hz 4K-capable output screen and
receive up to 4K video at 60 Hz. The pipeline described will
double the frame rate of the video stream.

A. Architecture

It was decided that the device should be embedded in the
screen because the latest HDMI standard (2.0b) cannot output
4K video at a frame rate greater than 60 fps [3]. Due to
the resource intensive nature of the interpolation algorithm,
the amount of graphics processing power needed and the
fact that the device is embedded in the screen the design
lends itself most heavily to an ASIC architecture. A CPU
architecture cannot match the parallel processing power of an
ASIC which is essential for this particular processing task.
A GPU architecture struggles to compete with the power and



Fig. 1. Result of phase correlating two frames

space efficiency of an ASIC and does not necessarily suit the
pipelined nature of the algorithm. An ASIC provides the best
flexibility in terms of both parallelism and pipeline architecture
styles both of which are important for motion estimated frame
interpolation. An ASIC has the strength of specificity and
although an it has a long design time, the algorithm is granular
enough for sections to be developed separately on FPGAs.

B. Interpolation pipeline and buffering

The principle behind the utilisation of the buffers resides
in the advancement of frames from the buffers on the left
hand side of Figure 2 through to the right hand side. The
original frames stored in the buffers will follow the concerned
stage block in the pipeline. This means that the corresponding
original frames need to be at the position of the concerned
stage block before the stage block begins to operate on them.
This poses the issue of pipeline stall due to the inability of the
pipeline to make use of the buffers while the buffers are being
advanced (relocated and refilled). This issue was mitigated by
including a second row of buffers of this configuration (buffer
rows A and B). The two row buffer configuration means that, at
any given point, one row of buffers will be being advanced in
the pipeline while the other row is being used for interpolation
allowing processing of a pair of original frames to commence
immediately after that of the previous pair. Together with the
designed fact that row A will be one frame ahead of row B
(evident in the alternate connection of the input DEMUX to
the first two buffers), this arrangement also means that the
frames apparent to the input side of the output MUX will
be in an order convenient for the control of output frames.
It is important to note that advancement of buffers involves
copying any particular buffer’s contents into the buffer two
places down the pipeline since each individual row of buffers
is used every two pipeline cycles.

Figure 2 also shows the intermediate buffers between each
pipeline stage block. These are used to allow the concurrent
operation of each stage in the pipeline.

C. Motion estimation

The motion vectors between two frames will be obtained
by use of a two dimensional correlation algorithm. However, a
naive implementation of time domain correlation for an M×N
image has a computational complexity of O(M2N2). In order
to reduce the computational costs involved, the correlation will

be computed by use of the Fast Fourier Transform (FFT) which
has a computational complexity of O(MN log2(MN)) [4].

An estimate of the amount of floating point operations to
compute the 1D FFT is given by 5N log2(N) this estimate
factors in the complex multiplications and additions that need
to be performed [4]. Given this, the amount of floating point
operations per second that need to be performed in order to
find the motion vectors for 4K 60 fps video is estimated as:
5 · 5 · 3840 · 2160 · 60 · log2(3840 · 2160) ≈ 286 GFLOPS [4].
Due to this high computational cost, a custom ASIC will have
to be designed to perform the FFTs.

The algorithm to obtain the motion vectors involves taking
the FFT of the first image and multiplying it with the complex
conjugate of the FFT of the second image. The inverse FFT
of this result will then produce the global correlation of the
two images where the peaks in the image will be used to find
motion vectors.

The second image is divided using quad-tree partitioning
based on the correlation result. It is divided such that there
is only one strong peak corresponding to its partition. Each
partition with a strong peak is then correlated with the
first image to determine that block’s motion vector. This
correlation involves unequally sized images and will therefore
be performed by interpolative upsampling in the frequency
domain. Only the FFT of the current block would have to
be calculated as the FFT of the first frame has already been
calculated in the first global correlation step. As a result, the
FFT of each block would involve less computations than if
upsampling were done in the time domain [5]. Figure 3 shows
a function block diagram of this process. The vectors found
as a result of this process are stored in the correlation buffer
for access by the interpolator Block.

D. Frame interpolator

After the correlation stage of the pipeline, the resulting
motion vectors are read in by the interpolator block from the
correlation buffer. A diagram of this block has been omitted
due to the simplistic nature of its functioning. The interpolator
locates the midpoints of each vector between the position of
the block in the first frame and this destination point, computed
using a simple division by two of the difference between
the X and Y coordinates, and writes the block image data
into the interpolation buffer at this midpoint position. This is
executed for all subdivisions of the first frame, concurrently, in
an attempt to create a new frame which represents the midpoint
of all motion between the two original frames. At the same
time, a second buffer, the interpolation map, is written to with
ones at positions representing pixels of the intermediate frame
to formulate a map indicating the areas in the frame that have
been filled by the interpolator. This map will be used by the
artifact masker to fill in the gaps that are left out during the
interpolation process.

E. Artifact masker

As discussed, the result of the frame interpolator contains
artifacts that need to be removed. The most significant type



Fig. 2. High-level circuit diagram showing the entire concept design

Fig. 3. Block diagram showing phase correlation motion detection

of artifact to remove is the holes in the frame at which
the interpolator did not fill. The artifact masker block will
fill these holes by copying averaged pixels from the two
original frames into the intermediate frame at the coordinates
found in the interpolation map generated by the interpolator.
This is achieved by summing, element-wise, the intermediate
frame in its current state with the average of the two original
frames multiplied by the inverse of the interpolation map.
Being element-wise operations, the summation, averaging and
multiplication operations can all be implemented using parallel
arithmetic cores.

A significant set of block discontinuities in the frame
will have resulted after the interpolation and hole filling
procedures. To reduce the effect of this final set of artifacts,
the frame is subjected to a deblocking filter which operates
in a similar fashion to that which is part of the H.264
encoding standard [6]. The H.264 standard consists of blocks
that are predefined in size and position, thus the deblocking
effect is applied without knowledge of the position of the
discontinuities being required. The blocks in each of the
interpolated frames in our case are not consistently positioned,
thus the frame needs to undergo edge detection before it
is filtered. A candidate block edge detection algorithm is
proposed in [7] which leverages estimated relative quantisation
error calculated in the frequency domain. Once the edges have
been identified, the frame is filtered to smooth the edges of
the blocks.

Fig. 4. Block diagram of Artifact Masker Block

IV. METHODOLOGY

An implemented prototype was developed and demonstrated
on a Nexys 4 Artix-7 FPGA. Due to time, hardware and
manpower constraints, the prototype follows a simple design.

Two frames were stored in two 512×384 block ROMs on
the FPGA. These frames were then subjected to interpolation
consisting of real time frame averaging. A multiplexer was
used to cycle through both the stored original frames and the
averaged frame and to output that particular frame to the VGA
interface.

A. Block ROMs

As mentioned, the block ROM provided on the FPGA
was used to store the two original frames that were to be
interpolated. The Artix-7 100T has 4860 kbits of fast block
RAM. We aimed to store two 512×384 frames with 12 bits
of colour each and thus needed 2 · 512 · 384 · 12 ≈ 4719 kbits
of ROM. This meant we used 97% of the total available block
ROM on the device.

B. Frame averaging

The simplest method of frame interpolation which was
considered, as a proof of concept, was the process of frame
averaging. Observe, in Figure 6, how this differs from
motion estimated frame interpolation (shown in Figure 5).
Frame averaging involves adding two consecutive frames,
element-wise, and halving the resultant values. The results
produced from this method are not ideal for applications where



image quality is important. This is because frame averaging
often produces undesired artifacts in the interpolated frames.
However, it was sufficient for the prototype demonstration.

The prototype performed real time frame averaging of the
two original frames stored in the ROMs. Each corresponding
pixel from each frame needed to be averaged element-wise.
In a hardware implementation, this is done with a simple add
and a single bit-wise left shift which translates to a floored
division by 2. This was done in a combinatorial manner.

C. VGA interface

A single Video Graphics Array (VGA) control block was
employed to coordinate the frame output and the current
pixel on the screen. The VGA output consisted of 14 pins:
an HS and VS pin for screen synchronisation and 12 pins
for the 12 bit RGB colour. Video with a resolution of
1024×768 at a 60 Hz screen refresh rate has a 65.0 MHz
pixel clock (horizontal refresh rate) and a 48.36 kHz vertical
refresh rate [8]. Modern VGA monitors are “multi-sync” so
they can accommodate non-standard frequencies but use of a
standardised frequency is recommended. The hardware block
had two counters, one for the horizontal direction and one for
the vertical direction. The counters counted the addressable
pixel values and appended the required front porch, sync
and back porch times before repeating the cycle. This is
demonstrated in Figure 7. A clock management tile, with a
phase-locked loop (PLL) on the FPGA was used to generate
the 65.0 MHz clock from a 100 MHz input.

The ROM blocks in the FPGA were sized such that the
dimensions were powers of two and the initialised values were
be padded such that the horizontal and vertical pixel value
can simply be concatenated to form the address of the pixel
location. The frames stored in block memory were stretched
to fit the 1024×768 resolution by duplicating each pixel in
both the vertical and horizontal axes.

D. Frame rotation

The output cycled between original frame A, the
interpolated frame, original frame B and the interpolated frame
again at 4 Hz so the result could be seen by the human eye.
This is the equivalent of a 2 Hz frame rate upscaled to 4 Hz.

V. RESULTS

A. Expected results of concept design

The stages of our concept design pipeline are easily
parallelisable. For example, there are already many well
established divide and conquer methods of computing the
FFT in hardware [10]. The multiplications, block shifting
and artifact masking are also simple to parallelise. Because
of this, the conceptual design is expected to perform frame
interpolation in real time. The only time delays expected to
occur are those associated with the latency of the pipeline.
In this case, a 3 frame latency is expected which is roughly
50 ms at a refresh rate of 60 Hz.

Fig. 5. Diagram showing motion estimated frame interpolation

Fig. 6. Diagram showing frame averaged interpolation

Fig. 7. Diagram for VGA timings [9]

B. Prototype implementation

Figure 8 shows a block diagram of the final prototype
design implementation. Figure 9 displays the test case used
on the prototype design, in which the top two images are two
consecutive frames from a sample video. The prototype cycled
through these frames with the averaged frame inserted in
between and included an option to display the frames without
the interpolated frame to demonstrate the contrast. In addition,
the prototype had an option to cycle between the two original
frames without the interpolated frame. This was done in order
to highlight the difference between the original video stream
and an interpolated one.

VI. CONCLUSION

In this paper a concept design implementation for a motion
estimated frame interpolation device is proposed. The product
is to be embedded in a 120 Hz 4K-capable output screen and
receive up to 4K video at 60 Hz to interpolate with motion
compensated frames. A detailed design and explanation of the
proposed pipeline and algorithm implementation is discussed.

In addition, a demonstrative prototype implementation on a
Nexys 4 FPGA was developed that shows frame averaging of
two stored frames using a VGA output. This projects hopes to
contribute to the fast growing modern display device industry
and gain an understanding of the algorithmic approach and
high processing nature of frame interpolation.



Fig. 8. Prototype design block diagram

Fig. 9. Prototype design test case showing the two video frames and the
averaged frame

REFERENCES

[1] J. Zhai, K. Yu, J. Li, and S. Li, “A low complexity motion compensated
frame interpolation method,” in Circuits and Systems, 2005. ISCAS 2005.
IEEE International Symposium on. IEEE, 2005, pp. 4927–4930.

[2] S. Ertürk, “Digital image stabilization with sub-image phase correlation
based global motion estimation,” Consumer Electronics, IEEE
Transactions on, vol. 49, no. 4, pp. 1320–1325, 2003.

[3] “HDMI Overview,” http://www.hdmi.org/manufacturer/hdmi 2 0/.
[4] “NMath Premium: FFT Performance,”

http://www.centerspace.net/nmath-premium-fft-performance.
[5] V. Argyriou and T. Vlachos, “Motion estimation using quad-tree phase

correlation,” in Image Processing, 2005. ICIP 2005. IEEE International
Conference on, vol. 1. IEEE, 2005, pp. I–1081.

[6] V. S. Rosa, A. A. Susin, and S. Bampi, An HDTV H.264
Deblocking Filter in FPGA with RGB Video Output. IEEE,
2007. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=4402519

[7] G. Triantafyllidis, D. Tzovaras, and M. Strintzis, “Blocking artifact
detection and reduction in compressed data,” IEEE Trans. Circuits Syst.
Video Technol., vol. 12, no. 10, pp. 877–890, 2002.

[8] “VGA Signal Timing,” http://www.tinyvga.com/vga-timing.
[9] N. Ickes, “Vga video output,” http://www-mtl.mit.edu/Courses/6.111/labkit/vga.shtml.

[10] G. D. Bergland, “Fast fourier transform hardware implementations–an
overview,” Audio and Electroacoustics, IEEE Transactions on, vol. 17,
no. 2, pp. 104–108, 1969.

http://www.hdmi.org/manufacturer/hdmi_2_0/
http://www.centerspace.net/nmath-premium-fft-performance
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4402519
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4402519
http://www.tinyvga.com/vga-timing
http://www-mtl.mit.edu/Courses/6.111/labkit/vga.shtml

	I Introduction
	II Overview
	II-A Motion estimation
	II-B Frame interpolation
	II-C Artifact masking

	III Detailed Design
	III-A Architecture
	III-B Interpolation pipeline and buffering
	III-C Motion estimation
	III-D Frame interpolator
	III-E Artifact masker

	IV Methodology
	IV-A Block ROMs
	IV-B Frame averaging
	IV-C VGA interface
	IV-D Frame rotation

	V Results
	V-A Expected results of concept design
	V-B Prototype implementation

	VI Conclusion
	References

