
Direct Digital Synthesis
Kyle Harrison†, Warren Fletcher ‡, Sean Le Roux§ and Roan Song¶

EEE4084F Class of 2017
University of Cape Town

South Africa
† HRRKYL008 ‡FLTWAR002 §LRXSEA001 ¶ SNGROA001

Abstract—A brief overview of Direct Digital Synthesis systems
is described as well as the background to some DDS systems and
DDS systems in general. A modified version of the traditional
DDS system is presented for use within the audio range
of frequencies. Every western note (12-tone) is designed and
implemented on the Nexys4 DDR FPGA. Multiple waveforms
(Sinusoidal, Square, Sawtooth, Triangle) are created with 1024
Samples, each at 9-bit resolution. The resulting waveforms are
presented to the listener via PWM coupled with a Low Pass
Filter. The output is compared against simulated results and was
found to be successful.

I. INTRODUCTION

This report conveys the design process and implementation
of a Direct Digital Synthesizer (DDS). DDS is the process of
reproducing an analog signal using digital values stored in a
Look-up-table (LUT).

DDS systems are used in a multitude of fields, such as:
Biomedical, to locate the resonant frequencies or compensate
for temperature drift that can occur with electronic sensors
and systems; RF communications systems, for fast dynamic
frequency sources; A reference for a phase-lock-loop (PPL)
to improve resolution and many more applications where
accurate frequency generation is of top priority.

The chosen implementation is to control and sum the
frequencies of multiple waveform outputs in order to
reproduce high fidelity audio signals. This is achieved by
aggregating a number of waveforms, at various frequencies, to
form one analog signal output waveform via PWM. Control
over the sinusoidal frequencies is done via the Nexys 4 board’s
build in switches and buttons. As the Nexys 4 DDR board has
an on board PWM audio amplifier the LUT digital output is
converted into a PWM signal and passed through a fourth
order low pass filter [1], which filters out noise and smooths
out the produced analog signal.

These outputs can be compared to their simulated
equivalents as well as external function generator signals to
evaluate the degree of accuracy and quality of the produced
signal.

In this report, DDS is used to implement the western 12-tone
music standard with support for distinct increases or decreases
in pitch in the form of octave manipulation.

A. Objectives

The objective of this project is to accurately document
the process of re-creating 12 frequencies that correspond
to the notes found in western music in equal temperament

tuning (That is, the ’distance’ between each frequency note is
consistent) with support for octave and waveform adjustment:

1) Input
• User selection of desired note (frequency), octave, and

waveform
• IO de-bouncing
• User Feedback via the on-board 7-segment displays.

2) Processing Stage
• Storage of different preset waveforms (sine, triangle,

saw, square) in lookup table
• Application of frequency adjustment
• Send control signals to the output stage
• Send processed waveform to output buffer

3) Output Stage
• Read from the summing buffer and use and convert it

to analog output via PWM
• Ensure “flat” frequency response of amplifier

4) Stretch Goals
• User interface via UART
• Utilize the input analog signal as a reference signal.

This involves using an external ADC system
• Digital filtering of output signal to reduce noise
• Loading input signal into buffer to be sent to the

processing stage
• Dynamic storage of input signal in lookup table
• Peak/zero crossing detection to determine frequency of

input signal
• Adding a DC offset to input signal before ADC
• Dual channel Output
• Multiplexing inputs
• Frequency and/or amplitude modulation of two signals

B. Motivation

DDS systems are becoming increasingly important in
systems that require signal sources that have no disturbances
and little to no noise [2]. A DDS system provides extremely
fast and accurate tuning [3] while maintaining continuous
phase with no overshoot or undershoot. The tuning of the
system is implemented digitally and thus can be changed
“continuously” while maintaining high precision and with
relative ease. The frequency resolution is usually in the
micro-hertz range, although creating accurate clocks for each
DDS module based off the master clock can be problematic
if the accumulator that forms the sub-clock is required to

swinberg
Typewriter
P19



tick over at a non-integer divisor of the master. The digital
nature of the system also allows the system to be tested
and reconfigured remotely. Many unwanted analog electronic
circuit properties don’t effect the digital implementation,
such as temperature, dust etc [2]. DDS systems are gaining
support for solving frequency and waveform generation for
communication systems and industrial applications. These
system are packaged in IC chips which have low power
consumption and reduced cost [3].

The disadvantage of DDS systems such as spurs which
are due, mainly, to truncation effects in the NCO. Crossing
spurs are due to the Nyquist sampling effects. Sampling
effects such as quantization noise, aliasing, filtering must be
considered. Further considerations are higher order harmonics
that fold back into the Nyquist bandwidth, which cannot be
filtered when using a digital implementation [4], as well as a
higher noise floor at large frequency offsets due to the Digital
to Analog Converter (DAC) [5]. These reasons make DDS
systems undesirable, but methods for improving the quality of
the output waveform are being developed [6].

II. BACKGROUND

Due to the widespread use of digital techniques
in instrumentation and communications systems, a
digitally-controlled method of generating variable frequencies
from a reference frequency source was developed called
Direct Digital Synthesis (DDS) [4].

A. DDS Overview

Figure 1 shows an abstracted block diagram implementation
of a DDS system. Samples of a periodic waveform to be output
are stored in a LUT and an address for the LUT is stored
in register, in Figure 1 it is the address counter but it is also
known as a phase accumulator. This phase accumulator’s value
is incremented every clock cycle in order to traverse through
the entire block of memory. The output of the LUT is stored
in a register in order to be output through a DAC, where it is
then filtered in order to minimize the effects of quantization
that occur during the conversion from a digital waveform.

Fig. 1: Simple DDS Block Diagram [4]

This basic DDS system outputs a single frequency which
is dependent on the clock rate and the size of the LUT. In

order to dynamically adjust the frequency which is necessary
for DDS, the size of the increment of the address each clock
cycle requires adjustment. This is done through a tuning word
M . Figure 2 shows how the nature of an overflowing address
register can be viewed as a phase wheel traveling from 0 to
360 degrees at set intervals, where each interval is a sample’s
address. By adjusting the jump size or tuning word the rate
at which the LUT is traversed is increased, as fewer samples
are being read out.

Fig. 2: Phase Wheel [4]

For an n-bit phase accumulator, there are 2n possible phase
points on the wheel. If fc is the clock frequency, then the
frequency, fo, of the output waveform is equal to:

fo =
Mfc
2n

(1)

An issue with this simple DDS system is that attaining
certain frequencies is not possible, due to the phase wheel
operating at fixed integer increments. If a frequency requires
a fractional tuning word it will automatically be truncated
due to the integer nature of registers, this introduces a phase
truncation error causing a reduction in SNR and the requires
frequency to not be obtained. The other major issue is a loss of
fidelity of a high frequency output signal due to quantization
introduced by leaving out a large number of samples from the
large tuning word.

B. Types of DDS

DDS architectures fall into 6 major categories: pulse output,
sine output, triangle output, phase interpolation, jitter injection,
and fractional divider or pulse snatching DDS’s [7].

1) Pulse Output DDS: This is the simplest DDS
architecture. A tuning word is added to an accumulator register
once every clock period. The frequency of the output is the
frequency at which a carry occurs in the accumulator for a
pulse output or the most significant bit, MSB, for a square
wave. Where n is the bit size of the accumulator and M is the
tuning word.

F =
M

2n
(2)

fo = Ffc (3)



2) Sine Output DDS: This DDS system adds a sine-wave
LUT to the Pulse output DDS system and a DAC to convert the
digital output to an analog output. This is the system described
in the Introduction of this paper. The input of the DAC is
determined by the value stored in the sine LUT at the address
that the accumulator points to. Many methods of truncating the
LUT have been developed, while still maintaining acceptable
accuracy. Where xth is the specified sample at an instance in
time.

Vo = sin(2πFfcxthTc) (4)

3) Triangle Output DDS: The output of a Pulse output
DDS system passes through a bit compliment logic circuit
after which it is converted to an analog signal using a DAC.

4) Fractional Divider or Pulse Snatching DDS:
This is a modification to the pulse output DDS. Every time

a carry occurs in the accumulator block the value stored in
the divider block, initially the clock frequency fc, is divided
by n+ 1. The output of the divider block determines the rate
at which the accumulator is clocked at, and the rate at which
a carry occurs for a constant tuning word.

fo =
fc

n+ F
(5)

5) Phase Interpolation DDS: Whenever an output
transition occurs in the Pulse output DDS or Fractional
divider DDS, the value stored in the accumulator register R
is proportional to the time or phase difference between the
output transitions of the DDS and that of an ideal frequency
generator. Therefore R is used to phase shift or delay the
output of a pulse output or fractional divider DDS, but will
result in lower phase jitter and spurs. A simplified version
of this system, is called a microstepper and can produce
small variations in the output frequency with extremely high
resolution.

6) Jitter Injection DDS: A jitter signal is injected into a
Pulse DDS system which reduces the size of the spectral spurs
the output.

III. METHODOLOGY

This section outlines the spiral design approach used in
order to define the system. It begins by broadly outlining
what needs to be achieved through the systems specifications
and goes on to define the functional requirements to better
understand the possible implementation of these functions.

The final design relies on these key decisions defined in the
functional requirements which are then used to confirm the
system achieves the necessary goals. Throughout the process
the advantages and disadvantages of each possible decision
will be discussed in order to supplement the final design choice
and provide an explanation for the systems functions.

The system must be designed in a modular fashion, this
assists the nature of the verilog programming necessary to
implement the FPGA system. Along with this, designing the
system in such a manner using the spiral approach allows for
each component to be independent and its performance and

functionality to be tested and analysed. Finally this approach
allows for easy expansion and added functionality to be
integrated seamlessly.

A. Design Specifications

This section details the broad requirements the final
implementation much accomplish in order to be successful.
The functional requirements will be used to determine the
methodology for possible implementations.

The following list defines the necessary functional
requirements:

• User control over system behavior ie: which outputs to
generate and when to do so

• Multiple fundamental notes (12)
• Octaves of fundamental notes
• Audio output
• Visual feedback ie: 7-Segment Display

Fig. 3: Block diagram of necessary components

Figure 3 shows the block diagram form of each individual
and independent component that the system is required to
implement in order to function. By abstracting the required
functionality into independent but linked blocks it simplifies
the modeling of constraints as well as creating modularity of
design.

B. Functional Requirements

This section outlines the more specific modules which the
design will employ. It details how each specification can
be achieved and the advantages and disadvantages of each
possible implementation. These requirements will be used to
decide on a final design implementation based on the pros and
cons of each possible modules implementation.
1) User input:

In order for the system to be dynamically modified once
functioning on the FPGA and the full range of its abilities
to be displayed it requires input from the user which can
be done in the following ways.
Design Decisions:
• Ease of use
• Intuitive interface
• Ease of implementation
Implementations:

a) Piano Keyboard: As the DDS system is generating audio
waveforms like an audio synthesizer the ideal input
would be an audio keyboard.



• Advantages: Automatically debounced, easy and
intuitive interface intrinsically linked to music

• Disadvantages: Expensive or difficult to obtain,
requires advanced interfacing and communication
through either and ADC, UART or Midi

b) Buttons: The nexys 4 board has 5 built in buttons on the
board.
• Advantages: On-board, easy to implement
• Disadvantages: Requires debouncing, only 5

available therefore limited abilities
c) Switches: The nexys 4 board has 16 built in switches on

the board.
• Advantages: On-board, easy to implement
• Disadvantages: Always on/always off. Not much

customisablity for advanced envelope funtions
2) Lookup tables:

The nature of DDS is that it requires a wave table lookup
stored digitally, this can be achieved in a variety of ways.
Design Decisions:
• Resolution
• Types of waveforms, fundamentals would be Sin, Saw,

Triangle, Square
Implementations:

a) Pre-generated LUT: A LUT can be generated using
MatLab, output to a Xilinx .coe file, a .txt file or a .dat
depending on the chosen implementation.
• Advantages: Can be plotted and viewed/analyed for

correctness
• Disadvantages: Simple, fundamental waveforms

b) ADC Input: An ADC can read in a sampled signal for
a period of time and this can be the fundamental LUT.
• Advantages: Customizable, complex
• Disadvantages: Difficult to implement, added

complexity
3) Memory:

Once the LUT have been generated it needs to be accessed
from internal memory, there are multiple options for this.
Design Decisions:
• Access speeds, clock delays
• Size limitations
• Resolution, number of samples and bits per sample ie:

width and depth
Implementations:

a) ROM: Read only memory can be generated from an input
file.
• Advantages: Easy implementation using Xilinx IP

Cores, design via Wizard, input via a MatLab
generated .coe file.

• Disadvantages: Less customisation, design is based
on options avalialbe in the Xilinx ROM IP Core.
Limited to Single/Dual input/output. This would
require a different LUT for each note.

b) Registers: The verilog synthesiser allows for the function

readmemb which reads a block of data from a file into
a two dimensional block of registers.
• Advantages: Easy to implement, concurrent memory

access
• Disadvantages: Limited in size

4) Changing note frequency:
Once the LUT has been generated it needs to be accessed
from internal memory, there are multiple options for this.
Design Decisions:
• Ease of expansion and integration
• Accuracy
• Modularity
Implementations:

a) Fractional address counter: Implementing a fixed clock
rate with a large LUT allows for development of an
advanced address counter which uses a bit format
implementing fractional bit representations.
• Advantages: Allows for a single clock frequency for

all notes, no chance of clock timing inaccuracies
• Disadvantages: Difficult to implement, difficult to

integrate the rest of the system to fractional bit
format

b) Different clock frequencies per note: By iterating over
the same size LUT for each note at different speeds the
output waveforms frequency is determined.
• Advantages: Simplicity, each note would have a

different downclock counter triggering increment,
creates an indepdent module

• Disadvantages: May introduce clock inaccuracies, if
two note clocks are fast and close to the 100MHz
clock their posedge triggers may create different
timings

5) Audio Output:
In order for the synthesised waveform to be audible to the
user an audio output is required.
Design Decisions:
• Fidelity of signal
• Ease of implementation
Implementations:

a) High Resolution DAC: The ideal audio interface would
be a high quality DAC.
• Advantages: High fidelty audio limited only by

resolution of LUT and quantisation
• Disadvantages: Difficult implementation, no

on-board DAC, would require digital output and
possibly external circuitry

b) PWM: The Nexys 4 has an on-board PWM audio
amplifier.
• Advantages: PWM is on-board and simply requires

an enable signal via the constraints. Built in low pass
filter at 10kHz

• Disadvantages: 10kHz low pass filter is lower that
20kHz audible frequency



6) User display output:
In order for feedback to be provided to the user a display
of the systems current parameters is necessary.
Design Decisions:
• Customisabilty/Possible outputs
• Ease of implementation and cost
Implementations:

a) Screen: The nexys 4 has a VGA/HDMI output that can
be used for an external screen.
• Advantages: Highly customisable and ability to

display a lot of information
• Disadvantages: Difficulty implementing

b) Seven Segment Display: The Nexys 4 has 8 seven
segment displays available.
• Advantages: Easy implementation as its on the board,

all notes can be displayed in 7 seg format.
• Disadvantages: Limited to seven segment format

for advanced displays. Only 8 avaliable Difficulting
to translate multiple unit binary format to hex for
decoding

c) LEDs: The Nexys 4 has 8 seven segment displays
available.
• Advantages: On-board, simple interface and easy to

implement
• Disadvantages: Not much customisability, limited to

16

C. Measuring Results

Each independent module can be tested and verified
to ensure its accuracy. Vivado IDE allows for behavioral
simulations to test clock timing accuracy of inputs and outputs
and verify the systems functioning. It allows for a register to
be viewed in analog mode to show waveform outputs, this
can be used to verify the frequency of our output waveforms
and confirm they match the necessary notes. The inputs and
outputs can be tested individually, buttons and switches can
provide feedback via LED’s and the seven segment display,
their indented functions can be viewed via the simulation.

IV. DESIGN

Based on the functional requirements discussed in the
previous section the advantages and disadvantages of each
individual component were evaluated to determine which
implementation would be chosen for the final design. The
design was developed in an iterative modular fashion where
each component of the system was designed, tested, and
compared to the necessary requirements. This was repeated
until each module met its necessary requirements.

1) Design Choices:
• User Input: Buttons and switches
• Look-up tables: MatLab scripts are used to generate

fundamental sin, saw, triangle and square waveforms.
The choice was made to have each complete waveform
(1-period)consist of 1024 samples with an amplitude
resolution of 9 bits.

• Memory: Two dimensional registers are used to store each
waveform and enable concurrent memory access.

• Note frequency control: The frequency of each note is
done by varying the clock speed to each note module
which determines the rate the LUT is iterated at. The
octave control is done by incrementing the address pointer
at different multiples of two, leaving out a logarithmic
number of samples each octave increase.

• Audio output: A PWM module running at the 100MHz
clock transforms the required output into a PWM signal
to the on-board PWM audio output.

• User display: The LED’s and seven segment displays are
used to provide the user with feedback on the current
parameters of the system.

A. System Overview

Figure 8 shows an overview of the system’s functional
blocks. The core system is powered by the 100MHz clock of
the Nexsys 4. Twelve “note blocks” adjust this clock to create a
base frequency for each block. This new clock determines the
rate at which a look-up table (LUT) is iterated over, sending
values to be outputted by the system. The system’s button
inputs light corresponding LEDs and are fed into a control
core, which in turn sets the parameters of each note block:
LUT, octave, and waveform. The selected LUT determines
which waveform will be produced, the octave determines the
size of the steps through the LUT (Increments). The outputs of
all of the note blocks are fed into an aggregator - a block which
ensures that simultaneous notes do not overload the output, and
are instead rescaled into an acceptable voltage range. Finally,
the output is converted to an analog signal through the FPGA’s
pulse-width modulation (PWM) output.

Fig. 4: Block diagram of entire system

B. User interface

The input and output for the user is displayed in Figure
5, the user’s inputs are provided by the switches and buttons
and the systems current parameters are displayed on the seven
segment displays. The notes are always continuously being
generated but are only sent to the adder module when the user
selects a switch. This is done intentionally to prevent clock
skew from constantly starting, halting, and restarting the note
modules.



Fig. 5: User interface

Fig. 6: Display from implementation

The LED’s are used as a feedback for which note the current
user is interacting with when they interface with the buttons.
As shown in Figure 5, the left and right buttons increment and
decrement which LED is currently illuminated, the switch the
LED is above (when lit) is the current note being modified.
The note can have its octave increased or decreased with the
up and down buttons and the waveform type changed with the
center button.

Additionally, if the center button is held in for about
8 seconds, the system will reset back to the initial state
where every note is on the lowest octave (2) and outputting
a sin waveform. Figure 6 shows the final implementation
demonstrating the display. The current waveform is 0 for sin,
the note is A, the octave is 2 and the frequency is 110Hz.

C. DDS top

This is the top instantiation module that is used for
implementing all of the submodules interconnects as well as
the generation of LUT’s from .dat files.

It holds the parameters for each note:
• NoteClock: The fixed note counter target value
• NoteOctave: The current octave of a note
• NoteWave: The current waveform of a note
• NoteFreq: Hard coded value of the notes fundamental

frequency

• NoteName: Hard coded hex value for the seven segment
display

The top module handles various controls during its clock
trigger.

• Seven Segement display based on current note
• Adder for-loop
• Button debounce and their effect

D. Look-Up Table

A MatLab script is used to generate the four fundamental
waveforms shown in Figure 7. Each LUT has 1024 samples
with each sample comprised of 9 bits equating to a resolution
of of 6.14−3

Resolution =
2π

210 − 1
(6)

Fig. 7: Fundamental Waveforms

This produced a sampled waveform is stored in 1024 9-bit
registers on the FPGA representing a LUT. Using registers
allows for multiple Note modules, as discussed further on,
to access the same LUT value, which would not be possible
when ROM is used due to its nature. This utilizes the space
of the FPGA more efficiently while improving the design of
the system.

E. Note Module

A module generation loop is used to generate 12 note
modules. Each module implements a simple counter, with a
dynamically adjustable target value. The counter increments
during every clock from the system clock fc until it reaches
the target value. Arriving at the target value triggers an output
pulse and the counter value is reset. This effect divides the
system clock by a value V , the target value. The target value
is hard coded into the notes’ instantiation.

Each note outputs an individual address which is
incremented each time its specified clock target overflows.
This address is not linked to any specific waveform, if the
waveform is changed the address remains the same and is
now linked to a different LUT at the same point. This overflow
trigger represents the relative output frequency of the note.



F. Adder Module

The module is implemented by a for-loop which triggers on
the value of each switch. If a switch is activated it uses the
note’s address it is related to and the current waveform the note
uses in order to fetch the LUT value at that point and add it to
a temporary summing value. A counter is used to increment
based on the number of current notes activated, this count is
used as divisor for the value of the adder in order to normalise
it to a 9-bit value representing the summed waveforms. This
adder value is then sent to the PWM module.

G. PWM Module

This module consists of a counter that produces a binary
output, PWM, waveform that depends of the value supplied at
its input register. The value is scaled by the maximum value
of the LUT and an appropriate duty cycle is created. This is
done by setting the target value to the scaled value. The binary
output is set high, until the counter reaches its target value,
then it is held low. This high to low step occurs only once per
input clock.

V. PROPOSED DEVELOPMENT STRATEGY

Commercial development of this product could be beneficial
for the fields outlined in the introduction where accurate
waveform synthesis is required. The major difference in the
requirements between our audio based implementation and
in fields such as radar and biomedical is the degree of
accuracy and the scope of frequencies required. With our
current implementation we can achieve the 7th octave of notes
up to a frequency of 4kHz with high fidelity. In commercial
applications the range of frequencies required is often in the
MHz and GHz range at which point our output frequency
would be quantized away.

In terms of audio applications many electronic instruments
and audio synthesizers could benefit from a variable external
oscillator yet the major drawback of our implementation is the
forced use of a PWM output due to the Nexys4.

Converting our FPGA design into a self contained ASIC
would only be cost effective for mass production of a product
that would be successful in its niche environment. For this
reason two implementations for an audio device from our
project are proposed:

A. High End Audio Synthesiser

In order to produce a viable high end product the
unachievable functional requirements outlined in section three
would be implemented. For the scope of this project many
of these implementations would be overly expensive and
unnecessary but using components such as a high resolution
audio DAC, piano keyboard and screen for visualizing outputs
and parameters would need to be built in to the final product.

Converting an elaborate implementation of our design into
an ASIC to be sold as a commercial product would also
require advanced functionality such as audio effects, ADC’s
for potentiometer inputs and a UART interface for a mobile
app or computer application.

B. Low Cost Audio Device

The cheaper alternative that would require less development,
no added functionality and cost effective components is a
proposed children’s audio toy or entry level audio synthesizer.
The scope of our implementation encompasses the basics
of fundamental audio, it could be used educationally for
understanding how music works to beginners. By adding a low
cost screen that could visualize output waveforms similar to an
oscilloscope it could be used educationally as an introduction
to signals and the science of music.

VI. EXPERIMENTATION

This section details the experiments that where undergone
to ensure the integrity and fidelity of the system.

A. Systems-level Test

The final system successfully managed to be synthesized,
implemented and written to the FPGA with no critical
errors. Key Note modules where tested using the simulation
environment found within the Vivado IDE package.

B. Audio Performance

The accurate synthesis of digital signals is the main focus of
this project, and the results section shall reflect this by giving
precedence to this set of results.

Integration tests were performed live and using
oscilloscopes and simulated matlab results to ensure the
produced waveform is as expected. The pre-recorded
waveform that was generated by matlab was found to be
indiscernible from the FPGE generated waveform to our
testing team and differences on the oscilloscope were found
to be negligible. Multiple waveforms were created and tested
with the overall results being consistently accurate.

At higher octaves, the number of samples per waveform is
significantly decreased. This causes artifacts to be present in
the form of jagged parts of the wave. The intensity of the error
is largely waveform dependent, but the SNR of the produced
waveform is still high enough for the human ears to not detect
any significant loss of audio quality.

Due to the requirement for integer downscaling when
determining each note’s effective clock. Some truncation is
done. this effectively quantizes the value. At lower frequencies
this is not a problem, but as the octaves are increased,
this can be noticeable to individuals who have perfect-pitch.
Initially this was of some concern in the design phases. In
implementation, however, it was found for the note of C8 was
4213.3Hz while the A440 standard for C8 is 4186Hz leading
to an error of 0.6%.

VII. RESULTS

This section details the results of the experimentation and
how the compared to the ideal waveforms.



A. Waveform Specifications
Each waveform will consist of 1024 9-bit values per

period. These are created in matlab and are used as the LUT
values. These values were chosen to ensure the processing
can complete within the 100Mhz Clock speed of the FPGA
Development Board. For each note to be correctly replicated.
Each sample, of which they are 1024, needs to undergo a 9-bit
audio PWM creation process. For our highest base frequency
(B3 at 246.94Hz). This would mean 246.94 * 1024 * 512 =
129467678.72Hz or roughly 130Mhz. This is beyond the speed
of the FPGA and hence we lowed the entire initial range by 1
octave. This adjustment causes B2 to be our highest frequency
at 123.47Hz. This effectively halves the minimum required
clock cycle down to 65Mhz. A speed obtainable on the FPGA
with sufficient headroom.

These decisions do not come without costs however.
Lowering the base octave relieves pressure on the FPGA’s
clock rate but cuts down on the number of samples made
available to higher octaves. Table I shows the number of
effective samples if C3 is chosen as our base note.

Note Frequency Number of Samples
C3 130.8 1024
C4 261.6 512
C5 523.3 256
C6 1047 128
C7 2093 64
C8 4186 32

TABLE I: Table of Effective Samples per note at different
harmonics with C3 as lowest frequency

As we increase the octave of the note, we can observe
the drastic degradation of the wave by observing the smaller
amount of samples available to represent the full wave.

If we change down the base note to be C2, we observe that
C8 is now at 16 effective samples. a 50% drop.

Note Frequency Number of Samples
C2 65.9 1024
C3 130.8 512
C4 261.6 256
C5 523.3 128
C6 1047 64
C7 2093 32
C8 4186 16

TABLE II: Table of Effective Samples per note at different
harmonics with C2 as lowest frequency

B. Combination of DDS Modules
We successfully managed to add two waveforms together.

We created two independent DDS Modules. One running at
C3 = 130.8hz and the other running at G3 = 196.0Hz. In
music terms, the G is a perfect 5th away from the C. The
output of each module was added together and normalized.
The output was shown to be correct by comparing it to a
MatLab Simulation.

Fig. 8: Oscilloscope output at 130.8Hz at 1024 Samples

Fig. 9: Oscilloscope output at 523.3Hz at 256 Samples

Fig. 10: Oscilloscope output at 2093Hz at 64 Samples



Fig. 11: Oscilloscope output at 8372Hz at 16 Samples

Fig. 12: Oscilloscope output of C3 added to G3 and
normalized

Fig. 13: MatLab Simulation of C3,G3, and C3 + G3

Fig. 14: Fourier Analysis showing the two Peaks: P1 centered
at 130.8Hz. P2 centered at 196.0Hz.

VIII. CONCLUSION

In conclusion, we successfully managed to build a system
from the ground up to allow individuals to play all 12 notes
of the western music system. We created the system using
equal temperament tuning with the modern A=440Hz standard.
Each note was allowed a dynamic waveform with on-the-fly
octave adjustment. We speculated and showed that higher
octaves would produce waveforms that deviated from their
analog counterparts due to less samples being used, but that the
general shape is maintained and only minor distortion would
be observed by the listener.

The system successfully managed to produce these higher
frequency waveforms, while itself did not need any form of
dynamic clock adjustment. This was all achieved in realtime
using bitshifting.

This project can further be expanded by allowing parallel
communication with a desktop computer via the UART port
and by displaying the produced waveforms to the VGA
output.

REFERENCES

[1] Digilent, “Nexys 4 fpga board reference manual,” 2016.
[Online]. Available: https://reference.digilentinc.com/ media/nexys:
nexys4:nexys4 rm.pdf

[2] K. Bhagat, “Tutorial on designing and implementing a direct digital
synthesizer (dds) on a field programmable gate array (fpga),” 2012.

[3] C. S. Eva Murphy, “All about direct digital
synthesis,” Ask The Application Engineer33, 2004. [Online].
Available: http://www.analog.com/media/en/analog-dialogue/volume-38/
number-3/articles/all-about-direct-digital-synthesis.pdf

[4] A. Devices, “Fundamentals of direct digital synthesis (dds),” Analog
Devices, 2009. [Online]. Available: http://www.analog.com/media/en/
training-seminars/tutorials/MT-085.pdf

[5] Wikipedia, “Direct digital synthesizer,” 2017. [Online]. Available:
https://en.wikipedia.org/wiki/Direct digital synthesizer

[6] L. Cordesses, “Direct digital synthesis: A tool for periodic wave
generation (part1),” dsp tips & tricks, 2004. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1311140

[7] V. S. Reinhardt, “Direct digital synthesizers.”

https://reference.digilentinc.com/_media/nexys:nexys4:nexys4_rm.pdf
https://reference.digilentinc.com/_media/nexys:nexys4:nexys4_rm.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf
https://en.wikipedia.org/wiki/Direct_digital_synthesizer
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1311140

	I Introduction
	I-A Objectives
	I-B Motivation

	II Background
	II-A DDS Overview
	II-B Types of DDS
	II-B1 Pulse Output DDS
	II-B2 Sine Output DDS
	II-B3 Triangle Output DDS
	II-B4 Fractional Divider or Pulse Snatching DDS
	II-B5 Phase Interpolation DDS
	II-B6 Jitter Injection DDS


	III Methodology
	III-A Design Specifications
	III-B Functional Requirements
	III-C Measuring Results

	IV Design
	IV-1 Design Choices
	IV-A System Overview
	IV-B User interface
	IV-C DDS_top
	IV-D Look-Up Table
	IV-E Note Module
	IV-F Adder Module
	IV-G PWM Module

	V Proposed Development Strategy
	V-A High End Audio Synthesiser
	V-B Low Cost Audio Device

	VI Experimentation
	VI-A Systems-level Test
	VI-B Audio Performance

	VII Results
	VII-A Waveform Specifications
	VII-B Combination of DDS Modules

	VIII Conclusion
	References

