
Hardware Accelerated Convolutional Neural
Networks

Kiuran Naidoo, Othniel Konan and Luke Schwartzkopff
Department of Electrical Engineering

University of Cape Town
Rondebosch, Cape Town, South Africa

Abstract—The FANNtom Menace project is an at-
tempt to create an FPGA accelerated neural network.
The concern is not to facilitate the training of neural
networks on the FPGA but rather to use traditional
methods to train a model that can be verified and run
on a PC. This model, once trained to an acceptable
level of accuracy, should then be used to configure
the FPGA using appropriate synthesisable code. Due
to the highly parallel nature of a neural network a
significant speedup is expected here over traditional
computational hardware. Not only do we expect the
FPGA to improve on latency due to each layer of the
neural network being able to be computed in parallel,
we also expect a great increase in throughput due to
each layer of the neural network acting as a pipeline
stage on the FPGA. The example used to test our
implementation will be the classification of an image
as either a cat or a dog (a binary classifier).

The speedup of this solution will be compared to
a golden measure implemented on a PC - specifically
our C++ implementation setup and compiled for an
ordinary x86 CPU. Both latency as well as throughput
will be considered as well as the resource consumption
on the FPGA (amount of BRAM required etc).

I. Introduction And Background Theory

Neural Networks are a biology-inspired form of
machine learning that borrows the idea of a vast
network of simple processing units (neurons). Neu-
rons receive inputs from a previous layer, perform
processing on these inputs and then pass on the
output to neurons in the following layer. The way
these neurons are connected between layers, the
intermediate processing that is done and the non-
linearities introduced vary from model to model
and application to application[1].

Convolutional Neural Networks (CNN) are a very
popular form of contemporary neural network used
for analysing grids of data with their primary ap-
plications lying in image classification and other

computer vision tasks. In this paper, we deal with
the network in two distinct development phases:
Training and Synthesis and Implementation. Using
the Keras Framework we train the model before
migrating and implementing the trained model ar-
chitecture and weight values to an FPGA to conduct
image classification on new images the FPGA is fed.

The purpose of this project is not simply to create
an accelerator for the purposes of increased perfor-
mance by leveraging FPGA parallelism - but also
for the purposes of cost and power consumption
for embedded systems. If a GPU or CPU powerful
enough to reach this tier of performance were
placed in an embedded system, its cost and power
consumption would be huge. Thus, with an FPGA
we can create practical embedded systems for pur-
poses of image recognition and other functions
which require the use of neural networks.

II. Methodology

The methodology utilised for creating the device
described previously can be broken into two dis-
tinct components, the training methodology and
the synthesis and implementation methodology.
Those methodologies are illustrated in Figure II-B3
which shows the general workflow of the FANN
design.

A. Training Methodology

In this aspect, a simple convolutional network
was created with Keras Framework using the Theano
for the back-end. The model created in this envi-
ronment uses a modified LeNet model of a simple
CNN. This architecture was chosen because it is
simpler than other CNN architectures and as such
would ease the model conversion to hardware. The
training methods use employ the back-propagation
and gradient-descent algorithms. Additionally, a

swinberg
Typewriter
P20

dropout layer was used in the model during train-
ing. This dropout layer sets 50 percent of the
neurons in the layer to have a transfer function of 0
randomly every training epoch. This helps prevent
over-fitting, especially when using small datasets.

B. Synthesis and Implementation Methodology

1) C Implementation: The C Code that is utilised
to create the convolutional layers is based on
macros which can be programmed using a higher-
level abstraction. A sample of the convolutional
layer is given in the appendix. These structures
will take in values from the model generated in
Keras and tranfirm this data into statically declared
matrices that can be used for synthesis in Vivado.

2) Hardware Description Language: This stage
makes use of the power of Vivado Design Suite.
Vivado has a High Level Synthesiser which can
convert any synthetisable C code into a Hardware
Description Language. Vivado will be used to convert
the Neural Network implementation made in C to a
Verilog solution. Prior to that, the C implementation
will need to be optimized on different levels.Those
levels ranges from splitting the BRAM used to into
independent blocks to unrolling or even pipelining
the for loops. This section will be more experimental
as various optimization parameters will modify to
achieve the best resource utilization.

3) Testing: The CNN used will be trained with
hundred of images. Those images will be used for
testing the FANN. The images will be uploaded to
the FPGA’s BRAM during compilation time. The
result of the classification of the image will be
display on the seven segments display.
Ideally, the system would be able to stream images
from a camera in real time and perform classifica-
tion.

III. Design

In this section, the design aspects of the neural
network as well as its implementation on the FPGA
will be explained, discussed and justified.

A. Over-fitting and Under-fitting

Over-fitting and under-fitting are problems that
arise in statistics when attempting to model a real
world problem. Over-fitting means that the model
is too tuned to the examples that have been used
to derive it and as such will not be very accurate
on other real-world examples that the model hasn’t

’seen’ before. Under-fitting means that the model
is not complex enough to accurately predict the
behaviour of the system it is attempting to model.
These ideas are taken into consideration when de-
signing the CNN architecture.

B. Elements of a Convolutional Neural Network

The following section describes the various layers
and the functions that they perform in order to
create an effective, fully functioning network. These
layers were then judiciously selected and arranged
in order to create a network most applicable for
our purposes. How these layers were chosen and
arranged is discussed in Design.

1) Convoutional Layer: A convolutional layer pro-
vides a way to filter certain elements of an im-
age in order to create a mapping that has certain
distinguishing characteristics that allow the rest
of the neural network to be trained using these
accentuated physical features. This means that the
neural network obtains better results without hav-
ing to utilise many fully connected layers which is
useful considering that an image is a large input
vector and the training process with many fully
connected layers would be computationally inten-
sive. The standard convolutional layer utilises a
matrix operation that works on a block of data such
that:

∑
n

xiyi (1)

where x is the block of the image and y is the filter
that the image is being convoluted with. The block
of the image and the filter produce a dot product.

2) Max Pooling: The purpose of max-pooling is
to decrease the matrix size of that is used in the
operations of the neural network. It takes the max-
imum value of a neighbourhood of pixel values.
If this is done too coarsely than the the features
that are accentuated by convolution are lost and
the features become irrevocably distorted[2]. This
means that max pool mapping needs to occur at
such in such way that reduces operational size
while retaining fidelity. Generally, it is agreed by
literature that a suitable neighbourhood of pixels
is 2x2 [3]. Max pooling as an operation is not
immensely expensive as it computes the maximum
value from a series of pixels.

Fig. 1. General workflow

Fig. 2. An example of how convolutional layers work

3) Fully Connected Layer (Dense Layer): The fully
connected layers result from the connection of
convolutional neural layers to standard neurons
in a dense structure. This process can be quite
computationally challenging as all neurons are con-
nected and the resulting complextiy of all the per-
mutations can be expensive. However these per-
mutations can be parallelised considerably by cal-
culating all the permutations independently and
this calculation should prove more effective on the
FPGA compared to a normal general purpose CPU.
The resulting permutations from a fully connected
layer is of complexity n! where n is the number of
neurons in a layer.

C. Activation Layers (Non-Linear)

In general, non-linear activation functions are
used to allow non-linearity in the model such that
certain functions can be better approximated than
if the system were fully linear. They generally also
help to reduce over-fitting.

1) Sigmoid Function: The Sigmoid layer is often
used to rectify the output of a neuron between 0
and 1. This is useful in the output layer (especially
in binary classifiers) in order to quantify the proba-
bility of one of the output vectors being the correct
output from the input vector. The sigmoid function
is as follows: S(x) = 1

1+e−x
2) ReLu (Rectified Linear Unit): This non-

linearity layer acts an activation for the the con-
voluted data neurons. The non-linearity can be
expressed as a function of max(0,p) where p repre-
sents an element of the output matrix. This means
that an element in the matrix cannot not take
on negative values. ReLu activation functions have
been shown over time to allow for much faster
training of networks due to their algorithmic sim-
plicity while not offering significant accuracy dete-
rioration with respect to sigmoid or tanh activation
functions.

D. LeNet Architecture

The LeNet architecture is a very simple architec-
tural structure for a CNN. It was first described in
1997 and forms the most basic practical CNN[3].
It has been used in the past to accurately classify
handwritten digits. It was used as the basis for the
custom CNN we designed for Cat/Dog classifica-
tion.

E. Chosen Design

The chosen design for the CNN implemented
is shown in Fig 2. It is the simplest architecture
used that can give reasonably accurate results. The
simplicity is important for successful FPGA im-
plementation. The max pooling layers are used to
reduce dimensionality as well as to stop overfitting.
ReLu activiation functions are largely used in order
to quicken training and classification time. The

final layer utilises a flattening as well as a densely
connected layer in order to concatenate the convo-
lutional spaces into a 1D space that can be used
to generate a binary output. Finally, the sigmoid
function is used to rectify the output between 0
and 1.

F. Hardware

The FANN runs on an ARTIX-7. It takes its input
images from a USB. Two buttons are used to select
the images from the USB to be sent to the FANN’s
RAM. After the image is being processed, the FANN
display the output using the on-board seven segment
display. Figure III-F shows the hardware connection
of the FANN.

G. Software

Figure III-G shows the steps performed for image
classification.

IV. Proposed Development Strategy

The current development plan for FANN consists
of multiple phases. These can be listed as:

1) Create a neural network model for image
classification utilising the Keras Framework

2) Implement the blocks to model the elements
of a neural network in hardware utilising C
and Verilog

3) Create an interface between the Keras Frame-
work and Vivado to exchange weight values

4) Utilise Vivado to synthesise the neural net-
work using the weighting values from Keras

5) Test new data on CPU, and FPGA and com-
pare results.

As a final product, the FANN would have a Neu-
ral Network performing image classification based
on trained data used in the Neural Network. It
would require two inputs: an image coming from
camera and a file containing the trained data for
the network. The output of the result would still
be displayed on the seven segments display. For
efficiency of the process, the trained data would be
imported only when it is a new data.

Furthermore it is important to note that the
digital accelerator being created is the first of its
kind and should it be successful, further develop-
ment around this topic will take place. As such
the main points of this project can be refined in
order to create a better experience for the user. An
envisioned final use for the FANN would to make

the entire learning process transparent to the user
and create a product that was a neural network on
a chip where the user could download the weights
and these would be automatically placed on the
FPGA. This means that the product could be used
for multiple purposes.

Finally the FANN could in the future do the
entire neural network on an FPGA. This means that
the device could complete backward propagation
as well as feed-forward. This is in contrast to the
current version which only accelerates the feed-
forward model based on offline training.

V. Experiments and Results

The FANN is being implemented on a Nexys 4
DDR. This FPGA is an Artix-7 device running with
an internal clock of 450MHz+ (although we will
only use 100Mhz), a DDR2 of 128MiB, a Block RAM
of 4,860 and 15,850 Logic Slices. The performance
of the FANN will be compared to a CNN using a
similar implementation running on a1.5Ghz 2 core
x86-64 CPU (the golden measure).
The performance test will be based on the:
• Percentage of error
• Latency
• Resource utilization

A. Golden Measure

The golden measure used for this experiment
is the C code mentioned in section II-B1. It was
decided that this would be used instead of the
python implementation as it is far more similar
to what will be run on the FPGA - giving a more
relevant comparison. The C code that was used for
Vivado synthesis was retooled to work on a gen-
eral purpose computer. Using the standard Clang
LLVM compiler the C code was built for the x86-
64 architecture under MacOS Sierra (10.12.5). The
compiled program was run and the standard C
time library was utilised to obtain a benchmark of
runtime performance was established. The specifi-
cations for the MacBook Air used was: 1.5GHz Intel
i5, 8GB RAM.

The C code implementation was created by recre-
ating the neural network structure in C utilising
for loop structures. In addition Python scripts were
made that dumped the weight and image data
into C style arrays that could be included with
the C code to create a full feedforward neural
network. This code required minimal changes so

Fig. 3. Prototype design of the FANN

that it could be synthesised on the FPGA using
Vivado. The code described here can be found at:
https://github.com/kiuran/FANNtomMenace/

B. Percentage of error

The CNN trained achieve a certain performance.
This experiment consists of evaluating the veracity
of the result of the FANN compared to the one
obtained from the C implementation.

C. Latency

The speedup of the FANN will be analysed. The
latency of the CNN on the FANN will be timed
using a pulse. By setting a pin high then low
before and after the CNN process, the latency of
the process would be obtainable by probing the
corresponding pin.

D. Resource utilization

Resource utilization of the FANN will be opti-
mised using Vivado. Vivado offers certain opera-
tions to maximize optimization of the FPGA. As
an example, for loops can be flattened, pipelined,
unrolled, These optimization are entirely done
in the C implementation. Figure V-D illustrates the
example described above.

E. Expected result

The Neural Network used has roughly 10
layers of significant computational demand. Each
layer will be pipelined, and therefore expect a
throughput increase of x10 in the pipelining
process. Three of the layers are convolutional layers
containing six nested for loops each. By the

use of optimization mentioned in section II-B2,
each for loop could be unrolled or even pipelined
to various extents. By means of unrolling, the
speedup in these layers can be improved by n6, n
being the number of loops per section. The value
of n will depend on the availability of resources,
but in a less pessimistic approach, n could be 2
allowing a speedup of 32 for these layers. The
BRAM block can be optimized. The BRAM can be
partitioned into many blocks. Ideally, it would be
fully partitioned decreasing drastically memory
access latency.
A decrease in latency due to intra-layer parallelism
is estimated to be roughly 10x based on other
studies and the availability of CLBs on the Nexys
4. Thus, we can expect the overall throughput as
the result of increased intra-layer parallelism and
layer pipelining FANN to be at least 10× 10 = 100.

The predicted performance of the FANN can only
be broadly speculative for now as is difficult to
perform exact or even very good approximation as
doing so will require knowing exactly how the logic
slices of the FPGA will be used - meaning specific
deterministic knowledge of the workings of Vivado
is needed.

VI. Results

Initially, the C implementation synthesised suc-
cessfully but could not be transferred to the FANN
due to the small amount of BRAM on the FPGA.
Streaming in the weight values would be absolutely

Fig. 4. Design of Neural Network using a reworked LeNet
Structure

Fig. 5. Vivado HLS Directive Editor

Fig. 6. Expected result

pointless and incredibly slow. A 5mb HD5 weight-
ing file was produced - 16mb when uncompressed
into C arrays. This resulted in around a 3000%
BRAM overusage (Figure VI).

Fig. 7. Synthesis summary

A. Remedial actions

The solution proposed was to sacrifice the neural
network complexity - thus reducing its size in a
trade-off with classification accuracy.

1) Attempt 1: Convolutional layer and dense
layer have their filter sizes halved (to 16,16, 32,
32). This results in a good start as the HD5 file is
reduced to 1.4mb, but it is not nearly good enough.
Accuracy remains acceptable (Figure VI-C).

2) Attempt 2: Convolutional layer and dense
layer have their filter sizes halved again (to 8, 8,
16, 16). This results in another good reduction as
the HD5 file is reduced to 340kb, but it is still
not good enough. We estimate we require a weight
file of under 150kb to suitably synthesise. Accuracy
remains acceptable (Figure VI-C).

3) Attempt 3: Convolutional layer and dense
layer have their filter sizes halved again (to 4, 4,
8, 8). This results in another good reduction as
the HD5 file is reduced to 110kb. This is possi-
bly small enough to synthesise. Accuracy is now
possibly unacceptable for some purposes though -
with an error rate of greater than 25%. However -
Trials showed that BRAM usage was still at 214%
(Figure VI-C).

4) Attempt 4: Convolutional layer and dense
layer have their filter sizes halved again (to 2, 2,
4, 4). This results in another good reduction as
the HD5 file is reduced to 49kb. Accuracy is again
reduced to around 67%. This was barely too large to
synthesise at 113% BRAM capacity (Figure VI-C).

5) Attempt 5: Convolutional layer and dense
layer have their filter sizes halved again (to 1, 1,
2, 2). This doesnt reduce the size much (to 35kb)
and results in catastrophic underfitting essentially
resulting in a very expensive coin-toss network.
The training trends show that the data is underfit
and any short-term gains are example specific. This
does fit in BRAM though! (Figure VI-C).

B. HD5 File Size vs CNN Accuracy

Figure VI-C shows the HD5 file size versus the
CNN accuracy. There are clearly diminishing re-
turns to simplifying the network. The rate at which
the returns diminish is problem dependent.

C. Golden Measure vs FPGA

The results for the golden measure and the
eventual FPGA implementation are given below in
(Figure VI-C). The particular network implemented

on the FPGA was the same simple and inaccurate
network used on the FPGA in order to have a fair
comparison.

It can be seen that there is a speedup of roughly
10x for a single iteration, and roughly 20x for
1000 iterations. This indicates that the primary
performance improvement is because of intra-layer
parallelism (offering roughly 10x) while pipelining
offers a 2x overall performance increase. This in-
dicates that the FPGA was constrained and could
not implement all of the neural network’s lay-
ers simultaneously. This is confirmed by the CNN
implementation barely meeting synthesis memory
limits.

VII. Conclusion

FPGA implementations of neural networks are
certainly viable and beneficial. If a larger FPGA
with more memory was used - the original net-
work could have been implemented and a high-
accuracy model could have been implemented. If
additional memory beyond this was available, the
FPGA would be able to more fully roll out the
loops and parallelise the code - further increasing
performance as well.

In this case, the network used was too small to
tackle this particular problem. If a more simple
recognition problem was tackled, it is more likely
that an accurate neural network could have fit in
the FPGA’s BRAM. The inaccurate network was
used as proof of concept and shown to offer good
speed increases.

FANNs are practical and beneficial with respect
to a CPU based implementation provided that the
FPGA is powerful enough and the CNN structure
of the particular problem is simple enough.

VIII. References

[1] I.Goodfellow, Y.Bengio and A.Courville, Deep
Learning. Cambridge, Mass: The MIT Press, 2017.

[2]”Dogs vs. Cats — Kaggle”, Kag-
gle.com, 2017. [Online]. Available:
https://www.kaggle.com/c/dogs-vs-cats/data.
[Accessed: 17- Jun- 2017].

[3] Krizhevsky, Alex, Ilya Sutskever, and Geof-
frey E. Hinton. ”Imagenet classification with deep
convolutional neural networks.” Advances in neural
information processing systems. 2012.

[4]”CS231n Convolutional Neural
Networks for Visual Recognition”,

Fig. 8. FPGA vs Golden Measure Performance Comparison

Fig. 9. Model accuracy and model loss of the CNN using filter size of 16,16, 32, 32

Fig. 10. Model accuracy and model loss of the CNN using filter size of 8,8, 16, 16

Cs231n.github.io, 2017. [Online]. Available:
http://cs231n.github.io/convolutional-networks/.
[Accessed: 17- Jun- 2017].

Fig. 11. Model accuracy and model loss of the CNN using filter size of 4, 4, 8, 8

Fig. 12. Model accuracy and model loss of the CNN using filter size of 2, 2, 4, 4

Fig. 13. Model accuracy and model loss of the CNN using filter size of 1, 1, 2, 2

Fig. 14. HD5 File Size vs CNN Accuracy

