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1 Verilog Coding Style

The tendency for the novice is to write Verilog code that resembles a computer
program, containing many variables and loops. It is difficult to determine what
logic circuit the CAD tools will produce when synthesising such code.

In general, synthesis tools have to recognise certain structures in code. From the
practical point of view, this will only work if users write code that conforms to a
commonly used style. A good approach is to “write Verilog code that obviously
represents the intended circuit.”

2 Comments in Verilog Code

In-line documentation can be included in Verilog code by means of writing a
comment. A short comment begins with the double slash, //, and continues to
the end of the line. A long comment can span multiple lines and is contained
inside the delimiters /* and */. Examples of comments are

// This is a short comment

/* This is a long Verilog comment

that spans two lines */

For more professional documentation, one can make use of Doxygen. Verilog
support can be added by means of an extension.

3 Signals and Constants

In Verilog, a signal in a circuit is represented as a net or a variable with a
specific type. The term net is derived from the electrical jargon, where it refers
to the interconnection of two or more points in a circuit. A signal declaration
has the form:

type [range] signal name{, signal name};

The square brackets indicate an optional field, and the curly brackets indicate
that zero or more additional entries are permitted. The signal name is an
identifier, as defined in the next section. Without the range field the declared
net or variable is scalar and represents a single-bit signal. The range is used to
specify vectors that correspond to multibit signals, as explained in section 3.2.

Verilog defines a number of types of nets and variables. These types are defined
by the language itself, and user-defined types are not permitted. SystemVerilog,
however, supports user-defined types, including structures, enumerations and
others. More about this in section 9.
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3.1 Identifier Names

Identifiers are the names of variables and other elements in Verilog code. The
rules for specifying identifiers are simple: any letter or digit may be used, as
well as the (underscore) and $ characters. There are two caveats: an identifier
must not begin with a digit and it should not be a Verilog keyword. Examples
of legal identifiers are f, x1, x_y, and Byte. Some examples of illegal identifiers
are 1x, +y, x*y, and 258. Verilog is case sensitive, hence k is not the same as K,
and BYTE is not the same as Byte.

For special purposes, Verilog allows a second form of identifier, called an escaped
identifier. Such identifiers begin with the (\) backslash character, which can then
be followed by any printable ASCII characters except white spaces. Examples
of escaped identifiers are \123, \sig-name, and \a+b. Escaped identifiers should
not be used in normal Verilog code; they are intended for use in code produced
automatically when other languages are translated into Verilog.

3.2 Nets

A net represents a node in a circuit. To distinguish between different types of
circuit nodes there exist several types of nets, called wire, tri, and a number of
others that are not required for synthesis.

The diagram below shows how a controller module might connect to two UART
modules. Every wire has to have a name, and can connect one output port to
many input ports, or many inout ports.

Controller

Data
Send
Busy

UART_Tx

Data
Ready
Ack

UART_Rx

Rx_Data
Rx_Ready
Rx_Ack

Tx_Data
Tx_Send
Tx_Busy

Wires

Bits

Bits Tx_Bits

Rx_Bits

Ports

The wire type is employed to connect an output of one logic element in a circuit
to an input of another logic element. The following are examples of scalar wire

declarations.

wire UART_Tx_Send;

wire UART_Tx_Busy;
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A vector wire represents multiple nodes, such as

wire [7:0]UART_Tx_Data;

wire [1:2]Array;

wire [3:0]S;

The square brackets are the syntax for specifying a vector’s range. The
range [Ra:Rb] can be either increasing or decreasing, as shown. In either case, Ra
is the index of the most significant (leftmost) bit in the vector, and Rb is the
index of the least-significant (rightmost) bit. The indices Ra and Rb can be either
positive or negative integers.

The net S can be used as a four-bit quantity, or each bit can be referred to
individually as S[3], S[2], S[1], and S[0]. If a value is assigned to S such
as S = 4'b0011, the result is S[3] = 0, S[2] = 0, S[1] = 1, and S[0] = 1.

The assignment of a single bit in a vector to another net, such as f = S[0],
is called a bit-select operation. A range of values from one vector can be
assigned to another vector, which is called a part-select operation. The
assignment Array = S[2:1] produces Array[1] = S[2] and Array[2] = S[1]. The
index used in a bit-select operation can involve a variable, such as S[n], while
the indices used with a part-select operation have to be constant expressions,
such as S[2:1].

The tri type denotes circuit nodes that are connected in a tri-state fashion.
These nets are treated in the same manner as the wire type, and they are used
only to enhance the readability of code that includes tri-state gates.

3.3 Variables

Nets provide a means for interconnecting logic elements, but they do not allow
a circuit to be described in terms of its behaviour. For this purpose, Verilog
provides variables. A variable can be assigned a value in one Verilog statement,
and it retains this value until it is overwritten in a subsequent assignment
statement. There are two types of variables, reg and integer. Consider the
code fragment

reg [2:0]Count;

integer k;

Count = 0;

for (k = 0; k < 4; k = k+1) begin

if (S[k]) Count = Count + 1;

end

The for and if statements are described in section 6. This code stores in Count

the number of bits in S that have the value 1. Since it models the behaviour of
a circuit, Count has to be declared as a variable, rather than a simple wire.
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The keyword reg does not denote a storage element, or register. In Verilog
code, reg variables can be used to model either combinational or sequential
parts of a circuit. In this example, the variable k serves as a loop index. Such
variables are declared as type integer. Integer variables are useful for describing
the behaviour of a module, but they do not directly correspond to nodes in a
circuit.

3.4 Memories

A memory is a two-dimensional array of bits. Verilog allows such a structure to
be declared as a variable (reg or integer) that is an array of vectors, such as

reg [7:0]R[3:0];

This statement defines R as four eight-bit variables named R[3], R[2], R[1],
and R[0]. Two-level indexing, such as R[3][7], can be used. There is also support
for higher dimension arrays. A three-dimensional array may be declared as

reg [7:0]R[3:0][1:0];

3.5 Constants

Verilog signals can have four possible values:

0 = logic value 0
1 = logic value 1
Z = tri-state (high impedance)
X = unknown value / don’t care

The Z and X values can also be denoted by the small letters z and x. The value X

can be used to denote a “don’t-care” condition. The question-mark symbol ?

can also be used for this purpose.

Signals can be scalar (1-bit) or vector (multiple bits). Constants in Verilog take
the following form:

[size][’radix]constant

where size is the number of bits in the constant, and radix is the number
base. Supported radices are

d = decimal
b = binary
h = hexadecimal
o = octal
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When no radix is specified, the default is decimal. If no size is specified, the
default is 32. Hexadecimal digits can be lower or upper case.

If size specifies more bits than are required to represent the given constant,
then in most cases the constant is padded with zeros on the most-significant
side. The exception to this rule is when the first character of the constant is
either X or Z, in which case the padding is done using that value.

Constants can also be specified by ASCII text, which takes a different form.
Some examples of constants include:

0 the number 0
10 the decimal number 10
'b10 the binary number 10 = (2)10
'h10 the hexadecimal number 10 = (16)10
4'b100 the binary number 100 = (4)10
4'bx an unknown 4-bit value xxxx

8'b1000_0011 can be inserted for readability
8'hFX equivalent to 8'b1111_xxxx

"j" the 8-bit number (6A)16 = (106)10

3.6 Parameters

A parameter associates an identifier name with a constant. Let the Verilog code
include the following declarations:

parameter N = 4;

parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

then the identifier N can be used in place of the number 4, the name S0 can be
substituted for the value 2'b00, and so on. An important use of parameters is in
the specification of parametrised sub-circuits, which is described in section 5.

Local constants can be defined by using the localparam keyword. This is
especially useful when defining states for a state machine, as in the following
example:

localparam Start = 2'd0;

localparam Do_Stuff = 2'd1;

localparam End = 2'd2;

The difference between parameter and localparam is that the former can be
modified upon module instantiation, whereas the latter cannot. Put differently,
a parameter is visible, and therefore modifiable, from outside the module it is
defined in, whereas a localparam is only visible from within the module in which
it is defined. More on modules in section 5.
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4 Concurrent Statements

In any hardware description language, including Verilog, the concept of a
concurrent statement means that the statement is considered in parallel with
all the other concurrent statements and the ordering of these statements in the
code does not matter.

4.1 Operators

Verilog has a large number of operators, as shown in table 1. The table uses
operands named A, B and C, which may be either vectors or scalars. The syntax ~A

means that the ~ operator is applied to the variable A, and the syntax L(A) means
that the result has the same number of bits (length) as in A. N and M are integer
constants.

The table is in order of descending precedence. Operators with equal precedence
are grouped together. The table has been adapted from https://www.

utdallas.edu/~kad056000/index_files/verilog/operators.html.

Verilog has no boolean type as such. All boolean results are actually scalar
signals, and can be used by any operator that accepts scaler signal input.

The bit-select, part-select and concatenate operators are all allowed on the
left-hand side of an assignment as well. The operators /, %, === and !== are
not synthesisable and only meaningful during simulation.

4.2 Continuous Assignments

Continuous assignments permit the description of a circuit’s function. The
general form of this statement is

assign net assignment{, net assignment};

The net assignment can be any expression involving the operators listed in
table 1. Multiple assignments can be specified in one assign statement, using
commas to separate the assignments, as in

assign Cout = (x & y) | (x & Cin) | (y & Cin),

s = x ^ y ^ z;

It is possible to combine a continuous assignment with a wire declaration. For
example, the sum, s, and carry-out, c, of a half-adder could be defined as

wire s = x ^ y,

c = x & y;

6
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Table 1: Verilog operators and bit lengths

Operator Purpose Result length

A[N] Bit select 1

A[N:M] Part select |N−M|+1

(...) Grouping

!A Logical not 1

~A Bitwise not L(A)

&A and Reduction 1

~&A nand Reduction 1

|A or Reduction 1

~|A nor Reduction 1

^A xor Reduction 1

^~A or ~^A xnor Reduction 1

+A No effect L(A)

-A 2’s Compliment L(A)

{A, ..., B} Concatenate L(A)+. . . +L(B)

{N{A}} Replicate N×L(A)

A * B Multiply L(A)+L(B)

A / B Divide L(A)−L(B)

A % B Modulus L(B)

A + B Add Max(L(A), L(B))

A - B Substract Max(L(A), L(B))

A << B Shift left L(A)

A >> B Shift right L(A)

A > B Greater than 1

A < B Less than 1

A >= B Greater or equal 1

A <= B Less or equal 1

A == B Equal 1

A != B Not equal 1

A === B Equivalent 1

A !== B Not equivalent 1

A & B Bitwise and Max(L(A), L(B))

A ^ B Bitwise xor Max(L(A), L(B))

A ~^ B or A ^~ B Bitwise xnor Max(L(A), L(B))

A | B Bitwise or Max(L(A), L(B))

A && B Logical and 1

A || B Logical or 1

A ? B : C Conditional Max(L(B), L(C))
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An example of a multibit assignment is

wire [1:3] A, B, C;

assign C = A & B;

The arithmetic assignment

wire [3:0] X, Y, S;

assign S = X + Y;

represents a four-bit adder without carry-in or carry-out. If carry-in and
carry-out signals are declared,

wire carryin, carryout;

then the statement

assign {carryout, S} = X + Y + carryin;

represents the four-bit adder with carry-in and carry-out. Verilog treats the wire
type as an unsigned number. Since a five-bit result is needed in {carryout, S},
each operand is padded with a zero. When using Verilog for synthesis, it is up
to the compiler to determine, or infer, that a four-bit adder with carry-out is
required and to recognize the carry-in.

Some compilers extend the result, not the inputs, so it is advisable to manually
extend at least one of the input signals in order to ensure that the carryout

signal is assigned properly:

assign {carryout, S} = {1'b0, X} + Y + carryin;

A complete example of arithmetic assignments is given below.

wire [3:0] X, Y,

wire [7:0] S, S2s

assign S = X + Y,

S2s = {{4{X[3]}}, X} + {{4{Y[3]}}, Y};

There are two four-bit inputs, X and Y, and two eight-bit outputs, S and S2s. To
produce the eight-bit sum S = X + Y the Verilog compiler automatically pads X

and Y with four zeros.

The assignment to S2s shows how a signed (2’s complement) result can be
generated. The assignment to S2s uses the concatenate and replication operators
to pad X and Y with four copies of their most-significant bit, thereby performing
sign extensions.
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The example above specifies an adder for four-bit numbers. This code could
be generalised by introducing a parameter that sets the number of bits in the
adder. Below is the code for an N-bit adder. The number of bits to be added
is defined with the parameter keyword, introduced in section 3.6. The value of N

defines the bit widths of X, Y, S and S2s.

parameter N = 4;

wire [ N-1:0] X, Y;

wire [2*N-1:0] S, S2s;

assign S = X + Y,

S2s = {{N{X[N-1]}}, X} + {{N{Y[N-1]}}, Y};

5 Modules and Subcircuits

A circuit or sub-circuit described with Verilog code is called a module. The
general structure of a module declaration is presented below.

module module name #(

[parameter declarations]

)(

[input declarations]
[output declarations]
[inout declarations]

);

[wire or tri declarations]
[reg or integer declarations]

[function or task declarations]

[assign continuous assignments]

[initial block]
[always blocks]

[gate instantiations]

[module instantiations]

endmodule

The module has a name, module name, which can be any valid identifier,
followed by an optional list of parameters and a list of ports. The term port
is adopted from the electrical jargon, in which it refers to an input or output
connection in an electrical circuit. The ports can be of type input, output, or inout

(bidirectional), and can be either scalar or vector.
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An example of a module declaration is

module MyModule(

input x, y, Cin,

input [3:0]X, Y,

inout [7:0]Bus,

output reg [3:0]S,

output s, Cout

);

endmodule

The ports Cout, s, and Bus are nets in this example, while S is a variable. Any port
used as a variable must be explicitly declared as such. A module may contain
any number of net (wire or tri) or variable (reg or integer) declarations, and a
variety of other types of statements that are described later in this reference.

Below is the declaration for a module FullAdd, which represents a full-adder
circuit. The input port Cin is the carry-in, and the bits to be added are the
input ports x and y. The output ports are the sum, s, and the carry-out, Cout.
The functionality of the full-adder is described with logic equations preceded by
the keyword assign, which is discussed in section 4.

module FullAdd(

input Cin, x, y,

output s, Cout

);

assign s = x ^ y ^ Cin;

assign Cout = (x & y) | (Cin & x) | (Cin & y);

endmodule

There is usually more than one way to describe a given circuit using Verilog.
Another version of the FullAdd module, in which the functionality is specified by
using the concatenate and addition operators, is given below:

module FullAdd(

input Cin, x, y

output s, Cout

);

assign {Cout, s} = x + y + Cin;

endmodule

The circuits generated from the two modules above are the same.

5.1 Using Sub-circuits

A Verilog module can be included as a sub-circuit in another module. For this to
work, both modules must be defined in the same file or else the Verilog compiler
must be told where each module is located (the mechanism for doing this varies
from one compiler to the next).
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The general form of a module instantiation statement is presented below:

module name [#(parameter overrides)] instance name (

.port name([expression]) {, .port name([expression])}
);

The instance name can be any legal Verilog identifier and the port connections
specify how the module is connected to the rest of the circuit. The same module
can be instantiated multiple times in a given design, provided that each instance
name is unique. The #(parameter overrides) can be used to set the values
of parameters defined inside the module name module. This feature is discussed
in section 5.3.

Each port name is the name of a port in the sub-circuit, and each expression
specifies a connection to that port. The syntax .port name is provided so
that the order of signals listed in the instantiation statement does not have
to be the same as the order of the ports given in the module statement of
the sub-circuit. In Verilog jargon, this is called “named port connections”. If
the port connections are given in the same order as in the sub-circuit, then
.port name can be omitted. This format is called “ordered port connections”.

An example is presented below. It gives the code of a four-bit ripple-carry adder
built using four instances of the FullAdd sub-circuit presented in section 5.

module Adder4(

input carryin,

input [3:0] X, Y,

output [3:0] S,

output carryout

);

wire [3:1]C;

FullAdd Stage0(carryin, X[0], Y[0], S[0], C[1]); // Ordered connections

FullAdd Stage1(C[1] , X[1], Y[1], S[1], C[2]); // Ordered connections

FullAdd Stage2(C[2] , X[2], Y[2], S[2], C[3]); // Ordered connections

FullAdd Stage3( // Named connections

.Cout(carryout),

.s (S[3] ),

.y (Y[3] ),

.x (X[3] ),

.Cin (C[3] )

);

endmodule

The Adder4 module instantiates four copies of the FullAdd sub-circuit. In the
first three instantiation statements, ordered port connections are used. The
last instantiation statement gives an example of named port connections. The
port connections used in the instantiation statements specify how the FullAdd

instances are interconnected to create the Adder4 module.
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5.2 The Generate Block

The module Adder4 above instantiates four copies of the FullAdd sub-circuit
to form a four-bit ripple-carry adder. A natural extension of this code is to
add a parameter that sets the number of bits required and then use a loop to
instantiate the sub-circuits. This can be achieved with the generate construct.
The generate construct has the simplified form

generate
[for loops]

[if-else statements]

[case statements]

[instantiation statements]

endgenerate

If a for loop is included in the generate block, the loop index variable has to be
declared of type genvar. A genvar variable is similar to an integer variable, but
it can only have positive values and it can only be used inside generate blocks.

Below is the definition of a Ripple_g module, which instantiates N FullAdd

modules. Each instance generated in the for loop will have a unique instance
name, produced by the compiler, based on the for loop label.

module Ripple_g #(parameter N = 4)(

input carryin,

input [N-1:0]X, Y,

output [N-1:0]S,

output carryout

);

wire [N:0]C;

assign C[0] = carryin;

assign carryout = C[N];

genvar n;

generate

for(n = 0; n < N; n = n+1) begin: Addbit

FullAdd Stage(C[n], X[n], Y[n], S[n], C[n+1]);

end

endgenerate

endmodule

12



5.3 Sub-circuit Parameters

By default, the Ripple_g module above describes the same 4-bit adder as
the Adder4 module. When creating an instance of this module, however, one
can choose how many bits the adder should be. Some examples of instances of
the Ripple_g include:

// 4-bit adder

Ripple_g My4BitAdder(carryin, X, Y, S, carryout);

// 15-bit adder with ordered parameter override

Ripple_g #(15) My15BitAdder(carryin, X, Y, S, carryout);

// 128-bit adder with named parameter override

Ripple_g #(.N(128)) My128BitAdder(carryin, X, Y, S, carryout);

6 Procedural Statements

In addition to the concurrent statements described in section 4, Verilog provides
procedural statements (also called sequential statements). Whereas concurrent
statements are executed in parallel, procedural statements are evaluated in the
order in which they appear in the code. Note that these statements are still
executed in parallel, even though they are evaluated sequentially.

Verilog syntax requires that procedural statements be contained inside an always

block. It has the form

always @(sensitivity list)

[begin]
[procedural assignment statements]

[if-else statements]

[case statements]

[while, repeat, and for loops]

[task and function calls]

[end]

When multiple statements are included in an always block, the begin and end

keywords are required, otherwise these keywords can be omitted. The begin

and end keywords are also used with other Verilog constructs. Statements
delimited by begin and end are referred to as a begin-end block.

The sensitivity list is a list of signals that directly affect the output results
generated by the always block. In essence, the always block will be evaluated
whenever any signal in the sensitivity list changes value.

13



A simple example of an always block is

always @(x, y) begin

s = x ^ y;

c = x & y;

end

Since the output variables s and c depend on x and y, these signals are included
in the sensitivity list, separated by a comma. When specifying a combinational
circuit by using an always block, it is also possible to simply write

always @(*)

which indicates that all input signals used in the always block are included in
the sensitivity list.

For simulation purposes, Verilog also provides the initial construct. The initial

and always constructs have the same form, but the statements inside the initial

construct are executed only once, at the start of a simulation. This is not
meaningful for synthesis.

A Verilog module may include several always blocks, each representing a part
of the circuit being modelled. Each entire always block can be considered as a
concurrent statement.

Any signal assigned a value inside an always block has to be a variable of type reg

or integer. A value is assigned to a variable with a procedural assignment
statement. There are two kinds of assignments: blocking assignments, denoted
by the = symbol, and non-blocking assignments, denoted by the <= symbol. The
term blocking means that the assignment statement completes and updates its
left-hand side before the subsequent statement is evaluated. More on these in
section 6.6.

You can also find more examples on the web at http://www.asic-world.com/
verilog/vbehave1.html.

6.1 The If-Else Statement

The general form of the if-else statement is given below.

if(expression1) begin

// statements;

end else if(expression2) begin

// statements;

end else begin

// statements;

end
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If expression1 is true, then the first statement is evaluated. When multiple
statements are involved, they have to be included inside a begin-end block.

The else if and else clauses are optional. Verilog syntax specifies that
when else if or else are included, they are paired with the most recent
unfinished if or else if.

An example of an if-else statement used for combinational logic is

always @(w0, w1, s) begin

if (s == 0) f = w0;

else f = w1;

end

which defines a 2-to-1 multiplexer with data inputs w0 and w1, select input s,
and output f.

6.2 Statement Ordering

Another way of describing the 2-to-1 multiplexer with an if-else statement is
presented below.

always @(*) begin

f = w0;

if(s == 1) f = w1;

end

Instead of using an else clause, this code first makes the default
assignment f = w0 and then changes this assignment to f = w1 if s has the value 1.
The Verilog semantics specify that a signal assigned multiple values in an always

construct retains the last assignment.

When the default assignment f = w0 is removed, the compiler will infer a latch
in order to remember the previous value of f when s == 0. See section 8.1 for
more information regarding implied memory.

6.3 The Case Statement

The form of a case statement is illustrated below.

case(expression)

alternative1: statement;

alternative2: statement;

default: statement;

endcase

The bits in expression, called the controlling expression, are checked for a
match with each alternative. The first successful match causes the associated
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statements to be evaluated. Each digit in each alternative is compared for an
exact match of the four values 0, 1, X, and Z. A special case is the default clause,
which takes effect if no other alternative matches.

The Verilog case statement differs from the equivalent C switch statement
in that the alternatives do not need to be constants. It is valid to use a
constant expression with variable alternatives, or even a variable expression with
variable alternatives.

An example of a case statement is

always @(*) begin

case (s)

1'b0: f = w0;

1'b1: f = w1;

endcase

end

This code represents the same 2-to-1 multiplexer described in section 6.1. When
using Verilog for simulation, it is necessary to give alternatives for all possible
valuations of the controlling expression. A default has to be included for any
valuations not explicitly covered by the listed alternatives. In this example, s

can have the four values 0, 1, X, or Z; hence, a default should be included to
handle the cases where s is X or Z. The default clause has not been included here
because synthesis tools require only the bit values 0 and 1 to be considered.

The example below demonstrates the use of a case statement to specify truth
tables. This code represents the same full-adder that is described in section 4.

// Full adder

module FullAdd(

input Cin, x, y,

output reg s, Cout

);

always @(*) begin

case({Cin, x, y})

3'b000: {Cout, s} = 2'b00;

3'b001: {Cout, s} = 2'b01;

3'b010: {Cout, s} = 2'b01;

3'b011: {Cout, s} = 2'b10;

3'b100: {Cout, s} = 2'b01;

3'b101: {Cout, s} = 2'b10;

3'b110: {Cout, s} = 2'b10;

3'b111: {Cout, s} = 2'b11;

endcase

end

endmodule

The case statement is also important for representing some types of sequential
circuits, such as finite state machines, which are discussed in section 8.
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6.4 Casex and Casez Statements

In the case statement, the values X or Z in an alternative are checked for an exact
match with the same values in the controlling expression. The casez statement
adds more flexibility, by treating a Z digit in an alternative as a don’t-care
condition. The casex statement treats both X and Z as don’t cares.

The alternatives do not have to be mutually exclusive. If they are not, then
the first matching item has priority. The example below shows how casex can
be used to describe a priority encoder with the 4-bit input W and the outputs Y

and f.

module Priority(

input [3:0] W,

output reg [1:0] Y,

output f

);

assign f = (|W);

always @(W) begin

casex(W)

'b1xxx : Y = 2'd3;

'b01xx : Y = 2'd2;

'b001x : Y = 2'd1;

default: Y = 2'd0;

endcase

end

endmodule

6.5 Loops in Verilog

Verilog includes four types of loop statements: for, while, repeat and forever.
Synthesis tools typically support the for loop, which has the general form

for(initial index; terminal index; increment) statement;

The initial index is evaluated once, before the first loop iteration, and
typically performs the initialisation of the integer loop control variable, such
as k = 0. In each loop iteration, the statement is performed, and then the
increment statement is evaluated. A typical increment statement is k = k + 1.
Finally, the terminal index condition is checked, and if it is true (1), then
another loop iteration is done. For synthesis, the terminal index condition
has to compare the loop index to a constant value, such as k < 8.

It is worth mentioning at this point that a loop in Verilog (or any HDL for
that matter) is very different to a loop in a sequential programming language.
The loop describes a combinational circuit, i.e. it does not cause the statements
to run sequentially on different clock cycles. Loops can generate a very large
circuit with little code, so care is required when using them.
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An example of using a for loop to describe an N-bit ripple-carry adder is
presented below.

module Ripple #(

parameter N = 4

)(

input carryin,

input [N-1:0] X, Y,

output reg [N-1:0] S,

output reg carryout

);

reg [N:0] C;

integer n;

always @(*) begin

C[0] = carryin;

for(n = 0; n < N; n = n+1) begin

S[n ] = X[n] ^ Y[n] ^ C[n];

C[n+1] = (X[n] & Y[n]) (C[n] & X[n]) (C[n] & Y[n]);

end

carryout = C[N];

end

endmodule

The effect of the loop is to repeat its begin-end block for the specified values
of n. In this example, each loop iteration defines an instance of a full-adder.

A second for-loop example is given below.

module BitCount #(

parameter N = 4,

parameter log_N = 2

)(

input [N-1 :0] X,

output reg [log_N:0] Count

);

integer n;

always @(*) begin

Count = 0;

for(n = 0; n < N; n = n+1) Count = Count + X[n];

end

endmodule

This code produces a count of the number of bits in the N-bit input X that have
the value 1. Unrolling the loop, the first two iterations give

Count = Count + X[0];

Count = Count + X[1];

The first statement produces the value Count = 0 + X[0]. The second assignment
then gives Count = X[0] + X[1] and so on for the other loop iterations. At the
end of the loop,

Count = X[0] + X[1] + ... + X[n-1]
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is obtained, which is the expression the synthesis tool will use in generating the
circuit.

The general forms of the while, repeat and forever loops are shown below. The
while loop has the same structure as the corresponding statement in the C
language, and the repeat loop simply specifies a number of times to repeat its
begin-end block. The forever loop loops endlessly and is only meaningful in
simulation.

while(condition) begin

statement;

end

repeat(constant_value) begin

statement;

end

6.6 Blocking versus Non-blocking Assignments for
Combinational Circuits

Consider the blocking assignments

S = X + Y;

p = S[0];

The first statement sets S using the current values of X and Y, and then the
second statement sets p according to this new value of S. Verilog also provides
non-blocking assignments, specified as

S <= X + Y;

p <= S[0];

In this case, the statements are still evaluated in order, but they both use the
values of variables that exist at the start of the evaluation. The first statement
determines a new value for S based on the current values of X and Y, but S is not
changed to this new value until all statements in the associated always block
have been evaluated. Therefore, the value of p is based on the value of S before X

or Y changed.

All the previous examples of combinational circuits used blocking assignments,
which is a good way to design such circuits. A natural question is whether
combinational circuits can be described using non-blocking assignments. The
answer is that this would work in many cases, but if subsequent assignments
depend on the results of preceding assignments, non-blocking assignments can
produce nonsensical combinational circuits.
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As an example, consider changing the for loop in the previous section to use
non-blocking assignments. For simplicity, assume that N = 3, so that the unrolled
loop is

Count <= Count + X[0];

Count <= Count + X[1];

Count <= Count + X[2];

Since non-blocking assignments are involved, each subsequent assignment
statement sees the starting value of Count, which is 0, rather than a new Count

value produced by the previous statements. The for loop thus degenerates to

Count <= 0 + X[0];

Count <= 0 + X[1];

Count <= 0 + X[2];

When there are multiple assignments to the same variable in an always

block, Verilog semantics specify that the variable retains its last assignment.
Therefore, the code produces the wrong result Count = X[2], instead of the
intended Count = X[0] + X[1] + X[2].

7 Functions and Tasks

A Verilog function provides the means to write code in modular fashion without
the need for separate modules. It has the general form:

function [range | integer] function name;

[input declarations]
[parameter, reg, integer declarations]

begin
statement;

end
endfunction

A function is defined within a module, and it is called either in a continuous
assignment statement or in a procedural assignment statement inside that
module. A function can have more than one input, but it does not have an
explicit output, because the function name itself serves as the output variable.
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The code below shows a BCD to 7-segment decoder for 3 digits:

module Group_f(

input [11: 0] Digits,

output reg [ 1:21] Lights

);

function [1:7]LEDs;

input [3:0]BCD;

begin

case(BCD) // abcdefg

4'd0 : LEDs = 7'b1111110;

4'd1 : LEDs = 7'b0110000;

4'd2 : LEDs = 7'b1101101;

4'd3 : LEDs = 7'b1111001;

4'd4 : LEDs = 7'b0110011;

4'd5 : LEDs = 7'b1011011;

4'd6 : LEDs = 7'b1011111;

4'd7 : LEDs = 7'b1110000;

4'd8 : LEDs = 7'b1111111;

4'd9 : LEDs = 7'b1111011;

default: LEDs = 7'bx;

endcase

end

endfunction

always @(*)

begin

Lights[ 1: 7] = LEDs(Digits[ 3:0]);

Lights[ 8:14] = LEDs(Digits[ 7:4]);

Lights[15:21] = LEDs(Digits[11:8]);

end

endmodule
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Another method of writing this code appears below. This code uses a Verilog
task, which is similar to a function. While a function returns a value, a task
does not. It has input and output variables, like a module.

module Group_f(

input [11: 0] Digits,

output reg [ 1:21] Lights

);

task LEDs;

input [3:0]BCD;

output [1:7]LEDs;

begin

case(BCD) // abcdefg

4'd0 : LEDs = 7'b1111110;

4'd1 : LEDs = 7'b0110000;

4'd2 : LEDs = 7'b1101101;

4'd3 : LEDs = 7'b1111001;

4'd4 : LEDs = 7'b0110011;

4'd5 : LEDs = 7'b1011011;

4'd6 : LEDs = 7'b1011111;

4'd7 : LEDs = 7'b1110000;

4'd8 : LEDs = 7'b1111111;

4'd9 : LEDs = 7'b1111011;

default: LEDs = 7'bx;

endcase

end

endtask

always @(*)

begin

LEDs(Digits[ 3:0], Lights[ 1: 7]);

LEDs(Digits[ 7:4], Lights[ 8:14]);

LEDs(Digits[11:8], lights[15:21]);

end

endmodule

Functions and tasks are not crucial for designing Verilog code, but they facilitate
the writing of modular code without using separate modules. One advantage
of functions and tasks is that they can be called from an always block, whereas
these blocks are not allowed to contain instantiation statements. These features
of Verilog become increasingly important as the size of the code being developed
increases.

8 Sequential Circuits

While combinational circuits can be modelled with either continuous assignment
or procedural assignment statements, sequential circuits can be described only
with procedural statements.
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8.1 A Gated D Latch

Below is the code for a gated D latch. The if statement specifies that Q should
be set to the value of D whenever Clock is high. There is no else clause in the if

statement, which implies that Q should retain its previous value when the if

condition is not met.

module Latch(input D, input Clock, output reg Q);

always @(*) begin

if(Clock) Q = D;

end

endmodule

8.2 Register

The code below shows how registers are described in Verilog. The always

construct uses the special sensitivity list @(posedge Clock). This event expression
tells the Verilog compiler that any reg variable assigned a value in the always

construct is the output of a register.

module Register(input D, input Clock, output reg Q);

always @(posedge Clock) Q <= D;

endmodule

This code generates a register, with input D and output Q, that is sensitive
to the positive clock edge. A negative-edge sensitive register is specified
by @(negedge Clock).

The signal D is not specified in the sensitivity list because it does not influence
when the always block must be evaluated. The always block is only evaluated on
the positive Clock edge.

8.3 Multi-bit Register

One possible approach for describing a multibit register is to create an entity
that instantiates multiple registers. A more convenient method is illustrated
below. The code describes a four-bit register with synchronous clear.

module Register(

input Clock, nReset,

input [3:0]D,

output reg [3:0]Q

);

always @(posedge Clock) begin

if(!nReset) Q <= 0;

else Q <= D;

end

endmodule
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The code below shows how the above module can be extended to represent an
N-bit register with an enable input, E.

module RegEn #(

parameter N = 4;

)(

input Clock, nReset, E,

input [N-1:0]D,

output reg [N-1:0]Q

);

always @(posedge Clock) begin

if (!nReset) Q <= 0;

else if( E ) Q <= D;

end

endmodule

The number of registers is set by the parameter N. When the active clock edge
occurs, the registers cannot change their stored values if the enable E is low. If E
is high, the register responds to the active clock edge in the normal way.

8.4 Shift Registers

An example of code that defines a three-bit shift register is provided below. The
lines of code are numbered for ease of reference.

// A three-bit shift register

1 module Shift3(

2 input w, Clock,

3 output reg [1:3]Q

4 );

5 always @(posedge Clock) begin

6 Q[3] <= w;

7 Q[2] <= Q[3];

8 Q[1] <= Q[2];

9 end

10 endmodule

The shift register has a serial input, w, and parallel outputs, Q. The right-most
bit in the register is Q[3], and the left-most bit is Q[1]. Shifting is performed
in the right-to-left direction. All assignments to Q are synchronized to the clock
edge by the @(posedge Clock) event, hence Q represents the outputs of registers.
The statement in line 6 specifies that Q[3] is assigned the value of w.

The semantics of the non-blocking assignments mean that the subsequent
statements do not see the new value of Q[3] until the next time the always block
is evaluated (in the following clock cycle). In line 7, the previous value of Q[3],
before it is shifted as a result of line 6, is assigned to Q[2]. Line 8 completes
the shift operation by assigning the previous value of Q[2] to Q[1], before it is
changed as a result of line 7.

All registers change their values at the same time, as required in a shift register.
The statements in lines 6 to 8 could be written in any order without altering
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the meaning of the code.

An often more convenient way to write a shift register assignment is by using
concatenation. Lines 6 to 8 can be replaced with

Q <= {Q[2:3], w};

8.4.1 Blocking Assignments for Sequential Circuits

Blocking assignments should not be used for sequential circuits. As an example
of the semantics involved, consider changing the shift register above to blocking
assignments:

Q[3] = w;

Q[2] = Q[3];

Q[1] = Q[2];

The first assignment sets Q[3] = w. Since blocking assignments are
involved, the next statement sees this new value of Q[3] and therefore
produces Q[2] = Q[3] = w. Similarly, the final assignment gives Q[1] = Q[2] = w.
The code does not describe the desired shift register, but rather loads all registers
with the value of the input w.

To avoid the confusing dependence on the ordering of statements, blocking
assignments should be avoided when modelling sequential circuits. Also, because
they imply differing semantics, blocking and non-blocking assignments should
never be mixed in a single always construct.

8.5 Counters

The example below presents the code for a four-bit counter with a synchronous
reset input. The counter also has an enable input, E. On the positive clock edge,
if E is high, the count is incremented. If E is low, the counter retains its previous
value.

module Count4(

input Clock, nReset, E,

output reg [3:0]Q

);

always @(posedge Clock) begin

if (!nReset) Q <= 0;

else if(E ) Q <= Q + 1;

end

endmodule
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8.6 Moore-Type Finite State Machines

Verilog code for a simple Moore machine is shown below.

module Moore(

input Clock, w, nReset,

output z,

);

reg [1:0]y, Y; // State variables

localparam A = 2'b00, B = 2'b01, C = 2'b10; // State constants

always @(*) begin // State transitions

case(y)

A: if (w == 0) Y = A;

else Y = B;

B: if (w == 0) Y = A;

else Y = C;

C: if (w == 0) Y = A;

else Y = C;

default: Y = 2'bxx;

endcase

end

always @(posedge Clock) begin

if(!nReset) y <= A;

else y <= Y;

end

assign z = (y == C);

endmodule

The two-bit vector y represents the present state of the machine, and the
state codes are defined as parameters. Some CAD synthesis systems provide
a means of requesting that the state assignment be chosen automatically, but
the assignments has been specified manually in this example. The present state
signal y corresponds to the outputs of the state registers, and the signal Y

represents the inputs to the registers, which define the next state.

The code has two always blocks. The top one describes a combinational circuit
and uses a case statement to specify the values that Y should have for each
value of y. The other always block represents a sequential circuit, which specifies
that y is assigned the value of Y on the positive clock edge. The always block
also specifies that y should take the value A when nReset is low, which provides
the synchronous reset.

Since the machine is of the Moore type, the output z can be defined by using
the assignment statement z = (y == C) that depends only on the present state
of the machine. This statement is provided as a continuous assignment at the
end of the code, but it could alternatively have been given inside the top always

block that represents the combinational part of the FSM.

This assignment statement cannot be placed inside the bottom always block.
Doing so would cause z to be the output of a separate register, rather than a
combinational function of y. This circuit would set z to 1 one clock cycle later
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than required when the machine enters state C.

An alternative version of the code for the Moore machine is given below. This
code uses a single always block to define both the combinational and sequential
parts of the finite state machine.

module Moore(

input Clock, w, nReset,

output z

);

reg [1:0]y;

localparam A = 2'b00, B = 2'b01, C = 2'b10;

always @(posedge Clock) begin

if(!nReset) y <= A;

else case(y)

A: if (w == 0) y <= A;

else y <= B;

B: if (w == 0) y <= A;

else y <= C;

C: if (w == 0) y <= A;

else y <= C;

default: y <= 2'bxx;

endcase

end

assign z = (y == C);

endmodule
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8.7 Mealy-Type Finite State Machines

A code for a simple Mealy machine is shown below. The code has the same
structure as the Moore machine above, except that the output z is defined
within the top always block.

module Mealy(

input Clock, w, nReset,

output reg z

);

reg y, Y;

localparam A = 1'b0, B = 1'b1;

always @(*) begin

case(y)

A: if(w == 0) begin

Y = A;

z = 0;

end else begin

Y = B;

z = 0;

end

B: if(w == 0) begin

Y = A;

z = 0;

end else begin

Y = B;

z = 1;

end

endcase

end

always @(posedge Clock) begin

if(!nReset) y <= A;

else y <= Y;

end

endmodule

The case statement specifies that, when the FSM is in state A, z should be 0,
but when in state B, z should take the value of w. Since the top always block
represents a combinational circuit, the output z can change value as soon as the
input w changes, as required for the Mealy machine.
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9 SystemVerilog Extensions

Thus far, this reference described Verilog-2001, which is one of the most
commonly used versions of Verilog. If the compiler supports SystemVerilog,
however, one can make use of some useful extensions. A small subset of these
are described in the following sub-sections.

This section has been adapted from http://en.wikipedia.org/wiki/

SystemVerilog and http://www.asic-world.com/systemverilog/index.

html.

9.1 Array Port Definitions

Ports can be defined as any type, including arrays and user-defined types. In
Verilog-2001, it is illegal to define a module as

module Lights_Driver(

input [3:0]Digits[2:0],

output reg [1:7]Lights[2:0]

);

// BCD to 7-segment conversion here

endmodule

whereas in SystemVerilog it is perfectly valid.

9.2 Data Types

SystemVerilog define the following 2-state (‘0’ or ‘1’) data types:

byte 8-bit signed integer
shortint 16-bit signed integer
int 32-bit signed integer
longint 64-bit signed integer
bit 2-state version of wire

4-state (‘0’, ‘1’, ‘X’ and ‘Z’) data types include:

logic variable type
reg variable type
wire net type
integer 32-bit signed integer
time 64-bit unsigned integer

The reg data type is not restricted to inside always blocks. A reg variable can be
assigned a value by concurrent or procedural assignments. In order to make the
code more readable, the keyword logic can be used instead, which is synonymous
to reg.
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9.3 Assignment Operators

SystemVerilog defines additional procedural assignment operators:

+= -= *= /= %= &= |= ^= <<= >>= ++ --

These are all blocking operators and operate in the same way as their
counterparts in C. In addition, the procedural assignment operators <= and =

can operate directly on arrays.

9.4 Extended Data Types

SystemVerilog allows data type definitions of the form

typedef struct packed{

bit Sign;

bit [14:0]Exponent;

bit [63:0]Mantissa;

} long_double;

long_double d, f;

assign d = 80'd0; // zero

assign f.Sign = 0,

f.Exponent = 15'd_16_394,

f.Mantissa = 64'h81BE_72A9_16CD_9061;

These new types can then be used for any net, variable or port. The packed

keyword specifies that the structure describes a bit-vector.

Other examples include:

typedef enum logic [2:0]{Red, Green, Blue, Cyan, Magenta, Yellow} COLOUR;

COLOUR Colour;

assign Colour = Green;

enum reg [1:0]{Start=2'd0, Init=2'd1, Idle=2'd2, Run=2'd3} State;

always @(posedge Clk) begin

if(Reset) State <= Start;

else State <= Idle;

end
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9.5 Procedural Clarity

The always @(*) statement can be replaced with always_comb or always_latch,
depending on whether a combinational circuit or latch is intended.
Similarly, the always @(posedge Clk) statement can be replaced
with always_ff @(posedge Clk). This has no other purpose than to make
the code easier to read.

9.6 Interfaces

In large designs it is often difficult to connect modules together, simply because
of the number of connections required. SystemVerilog makes this easier by
means of an interface:

interface Interface(input wire Clk);

logic [5:0]A;

logic [5:0]B;

logic [7:0]C;

modport in (input Clk, input A, output reg B);

modport out(input Clk, input B, output reg C);

endinterface

module A(Interface.in Port);

always_ff @(posedge Port.Clk) Port.B <= Port.A + 5'd27;

endmodule

module B(Interface.out Port);

always_ff @(posedge Port.Clk) Port.C <= Port.B * 2'd3;

endmodule

module Top_Level(input Clk_50MHz);

Interface i(Clk_50MHz);

A A1(i);

B B1(i);

endmodule

The ports A, B and C do not need to be declared in the Top_Level module.
Interfaces can be quite complex things – for more information, see http:

//www.asic-world.com/systemverilog/interface1.html#Interfaces.

9.7 Improved Loops

Loops, such as for loops, support break and continue statements.
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10 Pre-processor

10.1 Overview

Verilog has a pre-processor very similar to that of C or C++. The `define,
`ifdef, `ifndef, `elsif, `else, `endif and `include directives function
similarly to #define, #ifdef, #ifndef, #elif, #else, #endif and #include

in C.

One notable difference, however, is in how macros are invoked. In C, the
#define MyMacro Q[7] macro can be invoked as MyMacro. In Verilog, a macro
defined as `define MyMacro Q[7], must be invoked as `MyMacro.

Use Verilog macro definitions sparingly, as the macro name-space is global. If
you want to define a bunch of constants, use localparam instead.

See http://www.veripool.org/papers/Preproc_Good_Evil_SNUGBos10_

paper.pdf for more details.

10.2 Example

Different platforms have different features. One might then have different
versions of a module for ASIC and FPGA implementations, or even different
FPGA devices. It would then be useful to declare the code in the following
fashion:

// Contents of Global.vh

`ifndef Global_vh

`define Global_vh

// Choose platform

`define FPGA_Cyclone

//`define FPGA_Virtex

// ASIC otherwise

// Other global user types and constants goes here

`endif

// Contents of SomeVerilog.v

`include "Global.vh"

`ifdef FPGA_Cyclone

Cyclone_Module MyModule(Reset, Clk, Data, Result);

`else

`ifdef FPGA_Virtex

Virtex_Module MyModule(Reset, Clk, Data, Result);

`else // ASIC

ASIC_Module MyModule(Reset, Clk, Data, Result);

`endif

`endif
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An alternative method, especially useful with longer lists, is:

// Contents of Global.vh

`ifndef Global_vh

`define Global_vh

// Choose platform (one-hot)

`define FPGA_Cyclone 0

`define FPGA_Stratix 0

`define FPGA_Virtex 1

`define FPGA_Spartan 0

`define ASIC 0

// Other global user types and constants goes here

`endif

// Contents of SomeVerilog.v

`include "Global.vh"

`if FPGA_Cyclone

Cyclone_Module MyModule(Reset, Clk, Data, Result);

`elsif FPGA_Stratix

Stratix_Module MyModule(Reset, Clk, Data, Result);

`elsif FPGA_Virtex

Virtex_Module MyModule(Reset, Clk, Data, Result);

`elsif FPGA_Spartan

Spartan_Module MyModule(Reset, Clk, Data, Result);

`elsif ASIC

ASIC_Module MyModule(Reset, Clk, Data, Result);

`else

`error_unsupported_platform

`endif
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