
Accelerating Software Radio Astronomy FX
Correlation with GPU and FPGA

Co-processors

Submitted to the Department of Electrical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering
Final Submission (with corrections)

Andrew Woods
University of Cape Town

Supervisor:
Prof. Michael Inggs

Co-Supervisor:
Dr. Alan Langman

October 28, 2010

Plagiarism Declaration

I know the meaning of plagiarism and declare that all the work in this document, save for that
which is properly acknowledged, is my own.

i

Abstract

This thesis attempts to accelerate compute intensive sections of a frequency domain radio
astronomy correlator using dedicated co-processors. Two co-processor implementations were
made independently with one using reconfigurable hardware (Xilinx Virtex 4LX100) and the
other uses a graphics processor (Nvidia 9800GT). The objective of a radio astronomy correlator
is to compute the complex valued correlation products for each baseline which can be used
to reconstruct the sky’s radio brightness distribution. Radio astronomy correlators have huge
computation demands and this dissertation focuses on the computational aspects of correlation,
concentrating on the X-engine stage of the correlator.

Although correlation is an extremely compute intensive process, it does not necessarily require
custom hardware. This is especially true for older correlators or VLBI experiments, where
the processing and I/O requirements can be satisfied by commodity processors in software.
Discrete software co-processors like GPUs and FPGAs are an attractive option to accelerate
software correlation, potentially offering better FLOPS/watt and FLOPS/$ performance.

In this dissertation we describe the acceleration of the X-engine stage of a correlator on a
CUDA GPU and an FPGA. We compare the co-processors’ performance with a CPU software
correlator implementation in a range of different benchmarks. Speedups of 7x and 12.5x were
achieved on the FPGA and GPU correlator implementations respectively.

Although both implementations achieved speedups and better power utilisation than the CPU
implementation, the GPU implementation produced better performance in a shorter develop-
ment time than the FPGA. The FPGA implementation was hampered by the development
tools and the slow PCI-X bus, which is used to communicate with the host. Additionally, the
Virtex 4 LX100 FPGA was released two years before the Nvidia G80 GPU and so is more be-
hind the current technologies. However, the FPGA does have an advantage in terms of power
efficiency, but power consumption is only a concern for large compute clusters. We found that
using GPUs was the better option to accelerate small-scale software X-engine correlation than
the Virtex 4 FPGA.

ii

Contents

Abstract ii

Acknowledgements vii

Glossary ix

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Background . 1

1.2 Software Correlation . 2

1.3 Co-processor Software Correlator Acceleration 3

1.4 Project Objectives and Scope . 5

1.4.1 Scope . 6

1.4.2 Related Work . 6

1.5 Document Outline . 6

2 Radio Astronomy Concepts and Correlation Principles 10

2.1 Background . 10

2.2 Simplified Correlation Operation . 12

2.3 Computing the Correlation . 14

2.3.1 Computing the Correlation Numerically 14

2.3.2 Triangular Kernel . 15

2.4 Correlation Focus and Simplifications . 17

2.5 Software Correlation and Skeleton Design . 17

2.5.1 X Engine Focus . 18

2.5.2 Correlator Skeleton Design . 19

2.5.3 Real World Correlator Requirements . 19

2.6 Contributions from Other Software Radio Astronomy 20

2.7 Conclusion . 21

iii

3 Software Co-Processor Acceleration 22

3.1 Code Acceleration . 22

3.2 Reconfigurable Computing (RC) . 23

3.2.1 Advantages of RC . 24

3.2.2 Programming FPGAs . 25

3.2.3 Dime-C and its Development Environment 25

3.2.4 The Nallatech H101-PCIXM Virtex 4 LX100 FPGA Board 28

3.3 General Purpose Graphics Processing . 29

3.3.1 Advantages of GPUs . 30

3.3.2 Programming GPUs . 30

3.3.3 CUDA Architecture and its Development Environment 30

3.3.4 Zotac 9800 GT GPU Board . 32

3.4 Conclusion . 33

4 FPGA Implementation of Correlator X Engine 34

4.1 Correlation Engine - Creating the pipeline . 34

4.1.1 System Overview . 34

4.1.2 Single Correlator Engine . 35

4.1.3 Parallel Correlator Engine and Reducing Memory Accesses 36

4.1.4 Correlator Block Implementation Results 41

4.2 I/O Management - Feeding the pipeline . 42

4.2.1 Memory Use in the Correlation Engine 43

4.2.2 Dynamic RAM . 44

4.3 Control - Keeping the Pipeline Full . 44

4.3.1 Design 1: Nested Loop . 45

4.3.2 Design 2: Single Loop with Double Buffering 46

4.3.3 Design 3: Single loop without double buffered input 50

4.4 Resource Utilisation . 53

4.5 Conclusion . 54

5 GPU Correlator Implementation 55

5.1 Design . 55

5.1.1 System Overview . 55

5.1.2 Design Considerations . 55

5.1.3 X-Engine Design . 56

5.1.4 Memory Ordering . 57

5.1.5 Allocating Blocks to Baselines . 58

5.1.6 Limitations of Design . 58

5.2 Implementation on Nvidia Geforce 9800GT . 59

5.3 Optimisation . 59

5.4 Conclusions . 60

iv

6 Performance Results and Discussion 61

6.1 Benchmark Environment and Method . 61

6.1.1 Runtime Measurement . 61

6.1.2 Correlator Input . 62

6.1.3 Validation . 62

6.1.4 Benchmark Platforms . 62

6.1.5 Notes on Benchmarks . 63

6.1.6 Arithmetic Intensity . 63

6.2 Final Implementation Benchmark Results . 64

6.2.1 General Performance Results . 64

6.2.2 Specific and Detailed Benchmarks . 68

6.3 Discussion of Benchmarks . 75

6.3.1 Correlator Design Efficiency . 76

6.3.2 Estimated Scaling with Future Hardware Generations 77

6.3.3 Result Conclusions . 79

6.4 Comparison with Other Correlators . 79

6.5 Conclusions on the Co-processor Correlator Implementations 81

6.5.1 Evaluation of Nvidia CUDA GPUs for Software Correlation Acceleration 81

6.5.2 Evaluation of Nallatech H101 for Software Correlation Acceleration . . . 81

7 Conclusion and Future Work 84

7.1 Future Work . 84

7.2 Conclusion . 84

A Source Code and Project Directory 86

B Astronomy Background 87

B.1 Angular Resolution . 87

B.2 Correlation . 89

B.3 KAT Correlator Prototype . 91

C Co-Processor Design Considerations 92

C.1 SIMD/Streaming Processors for Data-Parallel Application 92

C.1.1 SIMD Co-Processors in HPC . 93

C.2 Deep and Wide Parallelism . 94

C.2.1 SIMD Execution . 95

C.2.2 Reduction . 96

C.3 Memory and I/O Limitations in GPUs and FPGAs 97

D Testing 99

D.1 Output Validation . 99

D.2 Data Precision Impact . 99

v

E Correlation on FPGAs 102

E.1 FPGA correlation examples . 102

E.2 Rotating both i and j axes to i’ and j’ . 103

E.3 Implementation Pictures . 105

F Equipment Used 108

G Derivations 110

G.1 Computing Complex Input . 110

G.2 Commutative Conjugate Multiplication Derivation 110

G.3 Correlator Output Derivation . 111

H DiFX 112

Bibliography 117

vi

Acknowledgements

I would like to acknowledge a number of people who have helped me considerably during my
project:

Firstly I would like to thank my supervisor Prof. Michael Inggs, who I was fortunate enough
to have as my undergraduate supervisor. Subsequently he was brave enough to supervise me
for my master’s study and reckless enough to employ me throughout this last year. His wise
and benevolent guidance kept my work on track and always knew when to apply the pressure.
Prof. has been a superb mentor and who has allowed me to learn and grow considerably during
the past few years under his guidance.

To Dr. Alan Langman, who co-supervised my work and donated much of his time for the
technical guidance of this thesis. Alan was always available online, contactable at any hour, to
offer excellent advice on technical and other life issues. His deep understanding of technology
and excitement and passion for engineering, especially the latest and greatest gadgets, is an
inspiration to my career, which I greatly admire.

To Peter "Polar Bear" McMahon, who was always available to give pragmatic and invaluable
advice, despite completing his two simultaneous MSc. Degrees. Polar has the maturity and
wisdom far beyond his mortal age (but he doesn’t sleep, so has lived twice as long :P).

To my sister Keri, who patiently helped me translate my nonsensical language back into English.
She always did this without complaint, even though I my requests for help usually came either
well into the night or the early hours of the morning.

To my family, Mom, Dad and Kristin, who were always supportive and encouraging, and gladly
read through my dissertation, despite it not being in their line of work.

Thanks to KAT/SKA for the funding and allowing me to use their facilities. The entire KAT
team were always supportive and interested in my work. Special thanks must go to Alan
Langman, Marc Welz, David George, Jasper Horrell and Jason Manley, who went beyond the
line of duty to help out.

Thanks go to Dr. Happy Sitole and Dr. Jeff Chen for allowing me to use the CHPC facilities
and for the employment over the last year. Special thanks must got o Kevin Colville and
Sebastian Wyngaard who were always willing to chat and offer advice. Housed at CHPC, is
one of Prof. research groups, the Advanced Computer Engineering (ACE) lab, of which I was
fortunate enough to be apart of. Mike Aitken, Andrew van der Byl, Jean-Paul da Conceicao,
Jane Hewitson, Ray Hsieh, David Macleod, Arjun Radhakrishnan, Jason Salkinder and Nick
Thorne were an awesome bunch of engineers and friends to work with.

Thanks to Prof. Inggs and Dr. Mark Parsons for facilitating the three-month research visit
to EPCC at the University of Edinburgh to work on their FPGA compute cluster, "Maxwell".
Thanks to Dr. Rob Baxter and James Perry for their guidance on their reconfigurable computer.

vii

We met many amazing people at EPCC, some of which like Mario Antonioletti and Catherine
Inglis, we still remain in contact with today.

Thanks to Alan Cantle who went out of his way to accommodate Polar and I for a week at the
Nallatech office in Bristol.

Thanks to Adam Deller for his responsive and thorough input to the DiFX correlator, and to
Walter Alef and Walter Brisken for suppling me with real world data.

Thanks to Chris Harris from UWA and his invaluable help with this GPU correlator.

To all my mates and girlfriend, who had to put up with my extended writeup and didn’t twist
my wrist when I declined the pub outings.

viii

Glossary

Airy Disc – The diffraction pattern resulting from a uniformly illuminated circular aperture,
has a bright region in the center, known as the Airy disc which together with a series of
concentric rings is called the Airy pattern.[1]

Angular Resolution The angular resolution of an aperture, is the smallest distance (angular)
that two differentiable sources can be recorded.

Aperture – an aperture is a hole or an opening through which electromagnetic waves are
admitted. [1]

Arcminute – A measurement of angle. There are 60 arcminutes in a degree and 60 arcseconds
in an arcminute.

Arithmetic Intensity – The amount of data reuse. "the ratio of arithmetic operations to
memory operations" [2].

Astrometry – The measurement of the positions,motions, and magnitudes of stars [3].

Baseline – Every antenna pair combination, can be represented as a vector which connects
them, called a baseline.

Block Ram – On Xilinx FPGAs, block ram is dedicated two-port memory containing several
kilobits of data.

Computational Unit – The most fundamental part of hardware that can perform arithmetic
calculations (eg. FPGA’s DSP).

Control Hazard – Branch in the pipeline which results in the pipeline stalling (interrupt the
flow of the pipeline).

Correlation Kernel – see Correlation Matrix.

Correlation Matrix – We refer to the all the correlation baseline products for a certain
time-slice and frequency as the correlation matrix or correlation kernel.

Data Hazard – Data Hazard refers to a situation where we refer to a result that has not yet
been calculated. This will often introduce stalling in the processing pipeline [1]. eg. 001: a =
b + c; 002: s = a + c;

Diffraction – refers to various phenomena associated with wave propagation, such as the
bending, spreading and interference of waves passing by an object or aperture that disrupts
the wave [1].

CMAC - Complex Multiply and Accumulate

CMP – Chip multiprocessor. When two or more microprocessors or microprocessor cores are
fabricated on a single silicon die. All desktop processors today are chip multiple processors eg.
Intel Core 2 Duo.

CUDA – Compute Unified Device Architecture created by Nvidia.

ix

FIFO – First in First Out queueing system.

FLOPS – FLoating Point Operations Per Second.

FPU – Floating Point Unit.

FX - FX here refers to the order the correlation is performed. FX correlators do a multiplication
in the Fourier domain, while XF correlators perform a convolution in the time domain.

Far Field – A very far distance from the receiver that even spherical radiation is received as
a plane wave.

GPU – Graphics Processing Unit.

GPGPU – General Purpose on Graphics Processing Units.

Geodesy – the branch of mathematics dealing with the shape and area of the earth or large
portions of it [3].

Granularity The granularity of the parallelism is a description of the smallest chunk of data
that can be processed independently. If one were to execute the outer loop of a nested loop
on separate processing elements this would be course-grained, likewise if the inner loop was
distributed across processors this would be fine-grained.

HPC – High performance computing - a class of computing that solves problems requiring
large amounts of computation.

ICs – Integrated Circuit.

IPP – Intel Performance Primitives Library.

ISA – Instruction Set Architecture.

LUT – Look Up Table; the fundamental memory or building block of FPGAs reconfigurable
logic.

MAC – Multiply and Accumulate operation.

MADD – Multiply and Add operation.

MUL – Multiply operation.

Moore’s Law – or Moore’s Curve is the long-term trend in the history of computing hardware,
in which the number of transistors that can be placed inexpensively on an integrated circuit
has doubled approximately every two years, first noted by Intel co-founder Gordon E. Moore
[1].

Processing Elements – A group of one or more computational units that co-operate to
produce an output to a particular algorithm (eg. Groups of DSP to create a correlation
engine).

SIMD – Single Instruction Multiple Data.

SIMT – Nvidia’s Cuda architecture that runs thousands of threads on hundreds of processing
cores [2].

SMP – Shared Memory Processor.

SSE – (Intel’s) Streaming SIMD Extensions.

Scalar Processor (SP) – One of the 8 ALUs on a CUDA GPU’s Streaming Multiprocessor.

Sensitivity – a mesaure of the performance of a telescope, dish or array often measured in
m2/K. This determines how long it takes to observe a source of a particular flux. [4]

x

Streaming Multiprocessor (SM) – The fundamental vector processor on CUDA GPUs.
The number of SMs on a CUDA GPU depends on the model and cost.

Visibility – Is the Fourier transform of the radio brightness distribution of the sky and is the
desired output of a radio astronomy correlator.

xi

List of Figures

1.1 Diagrammatic Representation of an Interferometric Telescope. 2

1.2 A network setup with a node that has a co-processor installed. 4

1.3 Comparison between different processing technologies. 5

1.4 The correlation operation with 3 antenna. 7

1.5 Showing the resulting triangular number of baseline correlations. 7

1.6 Co-processor Speed-up. 9

2.1 The Milky Way. 11

2.2 Real and Synthesised Antennas . 12

2.3 The radio astronomy processing pipeline . 12

2.4 Diagrammatic Representation of an Interferometric Telescope 13

2.5 Fringe produced by an interferometric telescope 14

2.6 Correlation Operation . 14

2.7 The different stages of the correlator . 16

2.8 The resulting triangular number of baselines . 16

2.9 Correlator’s non-linear memory accesses . 17

2.10 The division of the correlator into library calls and custom code 19

3.1 Parallel computation either on a vector processor or scalar processor 23

3.2 Code hot-spots . 23

3.3 Transistor utilisation in a microprocessor and FPGA 26

3.4 FPGA data dependency issues . 27

3.5 A conditional statement synthesised into a hardware block. 27

3.6 The Nallatech H101-PCIXM . 28

3.7 FPGA Architecture . 29

3.8 Comparison of transistor expenditure in CPUs and GPUs 30

3.9 CUDA Architecture . 31

3.10 Nvidia 9800GT Reference Board . 32

4.1 The FPGA correlator system design. 35

4.2 The basic correlator processing element . 36

4.3 Exploitation of parallelism across different frequencies 37

xii

4.4 Exploitation of parallelism across different time slices 38

4.5 Pseudo code for computing the correlation matrix 38

4.6 Correlation X-engine computing multiple channels simultaneously 39

4.7 Correlation X-engine computing multiple time-slices simultaneously. 40

4.8 Bandwidth and processing requirements with deep and wide parallelism 40

4.9 Data production and the differentiation of major and minor time steps 41

4.10 Double Buffering of the output. 43

4.11 Memory arrangement of the correlator X-engine. 43

4.12 A pipelined and unpipelined engine . 44

4.13 Correlation X-engine and its external memory interfaces. 44

4.14 Computation of the correlation with a nested loop PE 45

4.15 Square domain traversal . 46

4.16 Triangular domain traversal . 47

4.17 Single loop X-engine implementation . 48

4.18 Making the X-engine commutitive . 50

4.19 Single loop implementation without double buffering 52

4.20 Second example of single loop implementation without double buffering 52

5.1 The GPU correlator system design. 56

5.2 CUDA Architecture . 57

5.3 GPU X-engine computation . 57

5.4 CUDA thread I/O . 58

5.5 GPU Memory Management . 58

5.6 GPU correlator X-engine block allocation . 59

5.7 The group parallel approach suggested by Harris 60

6.1 Typical Execution Time Contribution . 62

6.2 Achieved GFLOPS . 65

6.3 Achieved Bandwidth per Antenna . 66

6.4 Clock Cycles Required . 67

6.5 Achieved Speedup . 68

6.6 Host-Device Transfer Impact . 69

6.7 FPGA Implementation Comparison . 70

6.8 Performance Ratios . 71

6.9 Speedup Details . 71

6.10 GFLOPS Details . 72

6.11 Bandwidth Details . 73

6.12 FFT Details . 74

6.13 Normalised Performance Results . 75

xiii

6.14 Performance scaling with future hardware generations. 78

6.15 Performance Comparison of Various Correlators 80

B.1 Diffraction . 87

B.2 Diffraction Pattern . 88

B.3 The diffraction response of a circular aperture 89

B.4 Diagrammatic Representation of an Interferometric Telescope. 89

B.5 Radio Astronomy Processing Pipeline . 91

C.1 Parallel computation either on a vector processor or scalar processor 92

C.2 Data Flow . 93

C.3 Code hot-spots . 94

C.4 A processing pipeline with ‘L’ stages. which . 95

C.5 2 pipelined engines computing interleaved instruction. 95

C.6 3 adders are used in a reduction operation . 96

C.7 Striped Memory . 98

E.1 Example Single loop diagonal width 6 and K = 6 102

E.2 Example Single loop diagonal width 7 and K = 7 103

E.3 Rotation of both ‘i’ and ‘j’ axes. 104

E.4 Nested Loop Implementation . 105

E.5 Single Loop Implementation with Double Buffering 106

E.6 Dime-Talk network . 107

H.1 DiFX Overview . 113

H.2 DiFX Core Classes . 114

H.3 DiFX FX Manager Class . 115

H.4 DiFX Data-stream Class . 116

xiv

List of Tables

2.1 Computation Scaling of F and X-engine . 18

2.2 Performance and data requirements of various planned arrays. 20

2.3 CPU cores required for software correlation of a variety of arrays 20

3.1 Nallatech H101-PCIXM Specifications . 28

3.2 Comparison of vector addition on a CPU and GPU 32

3.3 Nvidia 9800GT Specifications . 33

4.1 Nallatech H101-PCIXM Memory Resources . 42

4.2 Comparison of the nested loop and single loop descriptions of the correlation
kernel . 49

4.3 A comparison of the two single loop implementations 53

4.4 Utilisation of Resources for the Different Correlator Implementations 53

6.1 Benchmark Experiment Configuration . 62

6.2 Benchmark System Configurations . 63

6.3 Computation vs communication as the number of antennas and frequency chan-
nels increase. 63

6.4 Performance of the FPGA Correlator Implementation. 76

6.5 Performance of the GPU Correlator Implementation. 76

6.6 GPU Correlator Implementation Profile. 76

6.7 Processor Performance Growth . 77

6.8 Performance of Other Correlators . 80

D.1 CPU vs. GPU output . 100

F.1 Nallatech H101-PCIXM Specifications . 108

F.2 Nvidia 9800GT Correlator. 109

F.3 Intel Harpertown Correlator. 109

xv

Chapter 1

Introduction

In this thesis we aimed to accelerate compute intensive sections of a software radio astronomy
correlator using dedicated co-processors. Two co-processor implementations were developed us-
ing reconfigurable hardware (Xilinx Virtex 4LX100) and a graphics processor (Nvidia 9800GT).
Radio astronomy telescopes require correlation to perform interferometric operations which al-
low them to do imaging and other applications. Because radio telescopes operate at high data
rates, correlation is an extremely computationally intensive process. In this project we perform
the correlation in the frequency domain, which is known as FX correlation. We focus mainly
on the engineering aspects of accelerating software with co-processors, although an outline of
the astronomy principles behind the correlator will briefly be discussed. In this chapter we
provide a brief background to the project, identify the main objectives of the thesis and outline
the contents of the rest of the thesis.

1.1 Background

Radio astronomy is a branch of observational astronomy that studies astronomical sources
detectable in the radio spectrum. Measurement of the radio spectrum is one of the best
tools astronomers have to reveal the structure and formation of the Universe. Digital Signal
Processing technologies have contributed greatly to the success of radio astronomy and have
had a profound influence on how modern-day radio telescopes have evolved.

Traditionally, radio telescopes employed a single large antenna 1, however modern large radio
telescopes almost always consist of a number of individual antennas. These smaller dishes can
be used together in an interferometric process called aperture synthesis - which emulates a
larger antenna’s response, producing much higher resolution results than could be achieved by
a single antenna. Incredibly, an interferometric radio telescope can produce the same angular
resolution as an antenna with a diameter of the array’s longest baseline. Figure 1.1 shows a
simplified two antenna interferometric telescope.

1eg. Lovell, GBT, Arecibo [4]

Introduction

Correlate

τg { Plane Wave

θ

τg ∝ θ

Delay
Correction

Figure 1.1 – Diagrammatic Representation of an Interferometric Telescope. The spac-
ing between the antenna introduces a delay τg into the system, which is
corrected before correlation.

Interferometric radio telescopes use correlators to compute the cross-correlations of all an-
tenna pair combinations in the array2. These complex valued correlation products 3 are used
to emulate a larger antenna’s response. Each baseline correlation represents a specific spectral
response to the brightness function of a larger, synthesised aperture. The Fourier transforma-
tion of the brightness distribution of the synthesized aperture can be entirely reconstructed if
there are enough baselines to cover the entire spectrum of the brightness distribution4.

Radio astronomers want a telescope with as many baselines as possible; this number is limited
by how many baselines the correlator can process, which is itself dependent on the processing
technologies that it is built from. Because of the heavy reliance that radio interferometry
has on digital signal processing, a large portion of a radio telescope’s budget is spent on the
correlator - often requiring custom hardware to maximise performance and power consumption
efficiency. The correlator is one of the most computationally expensive operations of the radio
astronomy telescope.

1.2 Software Correlation

Software correlation uses general purpose compute clusters to perform correlation. Although
the latest telescopes require custom hardware, new generations of modern medium-sized general
purpose compute clusters can feasibly be used to replace older custom correlator hardware.
Software correlation is significantly more accessible and customisable than production hardware
correlators. Because of the low cost of commodity clusters, some astronomy institutions are
finding it more effective to use software correlation than to support old specialised correlator
hardware.

2Each antenna pair combination can be represented by a vector which connects the two antennas together
from a reference position. This is called a baseline.

3known as complex-visibilities
4This is an over simplification as there are a number of practical considerations that limit this.

2 of 121

Introduction

Software correlation is increasingly becoming feasible due to the increased used of other
commodity hardware in radio telescopes and the wealth of tools and libraries available in
the software environment. Previously, the performance requirements of radio telescopes re-
quired almost all custom built hardware5, but as the performance of commodity hardware has
improved and the complexity of building custom hardware has increased, radio telescopes are
shifting to use commodity hardware wherever possible. With commodity hardware comes stan-
dardised, well-documented interfaces which make software integration easier. The high-level
software tools and the availability of optimised libraries allow software a significant reduction
in Non Recoverable Engineer (NRE) costs. While software cannot offer the same performance
as custom hardware, it is an ideal candidate for small to medium interferometers. 6

The flexibility of software and the customization of commodity computer clusters opens up
an interesting opportunity of employing co-processors to accelerate the demanding sections of
correlation. The number of co-processor peripherals available and the high-speed and mature
communication interfaces makes software correlation acceleration an exciting and increasingly
researched topic and is the focus of this thesis.

The Distributed FX (DiFX) correlator is an example of a popular software correlator imple-
mentation [5] and served as an inspiration for the opportunities of software correlation.

1.3 Co-processor Software Correlator Acceleration

Although software correlation has many appealing attributes, CPU’s architecture is not ide-
ally suited to correlation [6]. New emerging markets, such as gaming and embedded systems,
have grown remarkably in recent years, bringing with them their own processing technologies.
Graphics processing units (GPUs) and Field Programable Gate Arrays (FPGAs), are ubiq-
uitous in the gaming and embedded markets . These high volume markets have made high
performance hardware affordable. Many HPC facilities are adding GPUs and FPGAs as co-
processors to their existing CPU cluster infrastructure, which can be used to accelerate suitable
applications under the control of the CPU (see Figure 1.2).

Processor architecture is heavily influenced by the applications that it runs. Different archi-
tectures use roughly the same number of transistors, but they are employed differently. CPUs
dedicate a large proportion of available transistor area to on-board memory, important for desk-
top computing, but leaving fewer transistors for computational units. In contrast, GPU and
FPGA’s architecture is much more computation orientated7. Figure 1.3 shows a comparison
between the peak computational performance of the different architectures.

A correlator’s code profile has a close resemblance to game engines and embedded applications,
more so than general software - the essence of the correlator’s profile is a large number of
calculations with relatively little branching in data flow. The similarities that game engines,
embedded applications and correlation share, coupled with the growing support of GPUs and
FPGAs in the HPC environment, justifies investigating GPUs and/or FPGAs for software
correlator acceleration.

3 of 121

Introduction

Co-Processor Card

Global
Memory

CPU

Co-
Processor

Local
Memory

Hi
gh

 S
pe

ed
 C

om
pu

te
r B

us

(P
CI

e,
 H

TX
, P

CI
-X

)

Network

Global
Memory

CPU

Hi
gh

 S
pe

ed
 C

om
pu

te
r B

us

(P
CI

e,
 H

TX
, P

CI
-X

)

Figure 1.2 – A network setup with a node that has a co-processor installed. Inspired by
McMahon [7]

.

In this project we implemented two simple correlators, using FPGAs and GPUs independently.
In this dissertation we discuss the design, implementation, performance and feasibility of the
two co-processor correlators.

5this includes not only processors, but network interconnects, memory, storage etc
6Software correlation has also been implemented in large scale facilities such as LOFAR.
7FPGAs have the flexibility to be either memory or computation oriented.

4 of 121

Introduction

Nvidia GPUs
Xilinx FPGAs
Intel CPU's

NV35 NV40

G70

G71

G80

GT200

V4 LX200

V5 SX240

V6 SX475T

Core2
Harpertown

i7 Core

V2Pro

G
FL

O
Ps

0

500

1000

Year
2004 2006 2008

(a)

Dual Core Xeon 5150

Quad Core Xeon 5300

V4LX100

V5LX220

V5LX330

GT200

GFLOP/Watt
0 1 2 3 4 5

(b)

Figure 1.3 – Comparison between different processing technologies. (a) showing the sin-
gle precision floating point performance [8, 9, 10, 11, 2] and (b) showing
the GFLOPs/watt of the different architectures [12, 13]. Note however that
these are theoretical GFLOP performance figures and real world perfor-
mance will vary considerably. Due to FPGA’s reconfigurable data path, it
is typically easier to achieve closer to its peak performance.

1.4 Project Objectives and Scope

In this project, we investigate using GPU and FPGA co-processors to accelerate a simple
software correlator. The software correlator was created using the popular open-source software
correlator, DiFX, as a foundation. The DiFX correlator is a complex software project. While
it has thousands of lines of code, the heavy computation is contained in only a few lines. We
found that DiFX’s large code base complicated performance analysis and verification of our
co-processor acceleration. This justified creating a simplified software correlator by preserving
the compute intensive sections of the DiFX correlator and removing the rest8. The compute
intensive sections of DiFX were identified by using Intel’s VTUNE Analyser, a profiling tool.
As expected, they were the frequency transformation and complex multiplication.

The simplified correlator became the basis of the co-processor design and was used as a
performance benchmark. 9.

Specifically our aims were to:

1. present correlator designs for both the GPU and FPGA co-processor platforms.

2. implement the designs on the respective hardware and record the performance results.

3. evaluate the co-processors’ performance and compare them with the simplified optimised
software correlator implementation.

8The simplified correlator focuses on the computationally intensive functions of the correlations while avoid-
ing the smaller intricacies. The more subtle intricacies are important to the accuracy of the correlator, but
largely computationally insignificant.

9

5 of 121

Introduction

1.4.1 Scope

Complete correlators are complex systems, involving many intricacies to improve the inter-
ferometry accuracy. This project focuses on meeting the computational requirements of the
‘correlation stage’ of the correlator, not producing the final visibility output. Therefore, for
simplicity, we do not perform delay correction or fringe stopping, assume input are stored
locally on the host machine, and are represented as single precision floating point numbers.10

It was difficult to compare technologies fairly as we only used one example of each. Further-
more, the Virtex 4 FPGA was released two years before the G80 GPU and Harpertown CPU.
The performance is more fairly compared when we estimate the performance on the latest
technologies from the different vendors.

1.4.2 Related Work

Similar FX correlation acceleration work has been attempted by the University of Western
Australia [14] and Helsinki University of Technology [15] using GPUs and Cell BBE respectively.
Both papers have reported encouraging results ranging in between 10-50x speedup over a pure
CPU implementation, which justifies our choice to pursue co-processor acceleration.

It must be noted for clarity that the DiFX correlator was only used as a source of inspi-
ration for our correlator implementations. Our implementations are independent and there
is no interoperability with the DiFX correlator. However, some design choices were made to
potentially allow for DiFX integration - this is discussed in Appendix H

1.5 Document Outline

The rest of this dissertation is structured as follows:

Chapter 2 covers some background radio astronomy, and its importance in the radio interfer-
ometry imaging pipeline.

The point of the correlator is to compute the complex valued correlation products for each
baseline11 [16] to form complex visibilities. An FX correlator computes the correlation in the
frequency domain, which is broken into two separate stages. Firstly, the FFT is computed
for each of the antenna in the array. Secondly, the transformed output of each antenna is
multiplied with that of every other antenna12, and accumulated for a few time steps, as shown
in Figure 1.4.

10Fixed-point arithmetic would most likely be a better choice for the FPGA implementation, but would
require careful consideration on the impact on accuracy, therefore for simplicity single precision floating point
arithmetic was used.

11Every possible combination of antennas is a baseline
12Autocorrelations are also performed

6 of 121

Introduction

X X X

Crossbar Switch

FFTFFT

0 1 2i

j=0

FFT

j=1 j=2

Figure 1.4 – The correlation operation with 3 antenna, which equates to 6 baselines
correlations (including autocorrelation)

The conjugate complex multiplication, performed by the X-engine, is more computationally
expensive than the channelisation13, performed by the F-engine, when using the FFT14 15 .
Therefore the focus of our co-processor correlator acceleration is only on the conjugate complex
multiplication and accumulation stage of the correlation [14, 17].

The number of correlation multiplications is a triangular number - since each antenna needs
one less correlation than the previous as shown in Figures 1.4 and 1.5. This triangular pro-
gression requires more careful flow control to avoid branches in the pipeline, which is discussed
further in the implementation chapters 4 and 5 .

(0,0)

(1,1)(0,1)

(2,2)(1,2)(0,2)

(3,3)(2,3)(1,3)(0,3)

0 1 2 3

3
2

1
0

(Cij)

i

j

Figure 1.5 – Showing the resulting triangular number of baseline correlations in a 4 an-
tenna array.

Chapter 3 looks at the Nvidia GPU and Nallatech FPGA used in this project. Correlation
is an extremely compute intensive process but does not necessarily require custom hardware.
This is especially true for older correlators or VLBI experiments, where the processing and I/O
requirements can be satisfied by commodity processors. Discrete software co-processors like

13This is only true above a certain number of dishes in an array - but is almost always the case for modern
telescopes which tend to have a substantial number of antenna.

14The conjugate complex multiplication is an O(N2) problem, while the FFT is O(NlogN).
15Polyphase filter banks are also sometimes used to do channelisation, which increase the computational

requirements of the F-engine

7 of 121

Introduction

GPUs and FPGAs are an attractive option to use to accelerate software correlation, potentially
offering better FLOPS/watt and FLOPS/$ performance.

Chapter 4 discusses the design and implementation on the two Nallatech H101 FPGAs. The
design of the correlator dealt with three different aspects: processing resources, I/O capabilities
and control.

Each Nallatech H101 is equipped with a Xilinx Virtex 4LX100 and we were able to implement
88 FPUs per FPGA. For every complex conjugate MAC we required 8 FPUs, which allowed
for 11 complex conjugate multipliers. This gives us a total of 22 baseline pipelines using the 2
available Nallatech FPGAs.

We tried three different approaches to describe the correlator’s triangular kernel. The naive
approach gave a speedup of 4x over the CPU implementation. However, the processing pipeline
stalled frequently due to branching16. The second implementation removed the stalls and
obtained a 5.5x speedup, but required double buffering of input. The final design stems from
the second design, but the occasional redundant operation was added to remove the double
buffered input, creating a more memory efficient design. The final design was able to eradicate
any branches in the pipeline and the pipeline was always fully utilised. This resulted in an
overall speedup of 7x over the CPU implementation17.

Chapter 5 discusses the GPU correlator design and implementation, which was developed
using Nvidia’s Compute Unified Device Architecture (CUDA) on a Geforce 9800GT. The GPU
CUDA correlator design was based on work done by Harris et al. [14] on GPU correlator
acceleration. Harris’s idea is to take advantage of CUDA’s multiple hardware threads and
initialise these threads in a rectangular domain. This will create dormant threads, but also
create a simplified square correlation kernel. The lightweight nature of CUDA threads, results
in the dormant threads adding little memory and processing overhead. The result is a clean
description of a square kernel, with a small overhead and allowing efficient linear memory
addressing (coalesced memory accesses). We were able to achieve a 12.5x speedup over the
CPU implementation.

Chapter 6 presents and discusses the performance, scaling potential and power utilisation of
the co-processor implementations18.

We compare the co-processors’ performance against the CPU correlator implementation,
which makes use of the CPUs vector SSE instructions. Both correlator implementations were
tested on a range of antenna input streams and spectral channels. Speedups of 7x and 12.5x
were achieved on the FPGA and GPU correlator implementations respectively. While the GPU
delivers consistent performance, the FPGA performs poorly with 64 and fewer antenna streams.
Ignoring the time it took to move data from host to co-processor, speedups of 10.5x and 13.5x
were achieved on the FPGA and GPU correlator implementations respectively. These results
are shown in Figure 1.6.

16A branch was taken when a series of baseline correlations had finished with a particular antenna.
17The FPGA implementation uses both of the Nallatech boards.
18Power utilisation was not measured directly but instead power estimation tools provided by the vendors

were used.

8 of 121

Introduction
Sp

ee
du

p

0

2

4

6

8

10

Antenna
32 6480 128 256 512

CPU (3.0GHz Xeon)
FPGA (naive implementation)
FPGA (optimised)

(a) Including Bus Transfers

Sp
ee

du
p

0

5

10

15

Antenna
32 6480 128 256 512

FPGA communication impact
GPU communication impact
GPU
CPU
FPGA

(b) Excluding Bus Trans-
fers

W
at

ts

0

30

60

90

120

M
Fl

op
s/

W
at

t

43

210

268

Architecture
CPU GPU FPGA

Watt
MFlops/Watt

(c) Power Consumption

Figure 1.6 – Co-processor speed-up vs 3.0GHz Xeon CPU software correlation with 256
spectral channels. (a) shows the speedup of two of the FPGA designs (b)
shows performance results of the best FPGA design and the GPU design.
(b) also shows the bus overhead on the GPU and FPGA co-processors,
where the time spent in I/O is shown in the shaded region. The PCI-X bus
had a large impact on the H101’s performance, while I/O on the faster PCIe
bus on the GPU contributed less to the runtime performance. (c) shows
the power consumption of the correlator implementations across the differ
processing architectures.

Although both implementations achieved speedups and better power utilisation than the CPU
implementation, the GPU implementation produced better performance in a shorter develop-
ment time than the FPGA. The FPGA implementation was hampered by the development
tools and the slow PCI-X bus, which is used to communicate with the host19.20.

Chapter 7 discusses possible future work and concludes on the co-processor correlator imple-
mentations.

19The bus speed is a limitation of the vendor board not inherently of the FPGA.
20It should also be noted that the FPGA used in this project is from an older generation of technology,

released in 2005, than the GPU and CPU, which were released in 2007.

9 of 121

Chapter 2

Radio Astronomy Concepts and
Correlation Principles

The objective of a radio astronomy correlator is to compute the complex valued correlation
products for each baseline1 to form complex visibilities [16]. From these complex visibilities the
sky’s brightness distribution can be reconstructed, which is discussed in detail in Thompson
et al.[17] 2. The correlation operation is where the majority of the compute time is spent, and
was the focus for our co-processor acceleration [14].

This dissertation focuses on the computational aspects of FX correlation, not the scientific
significance of the result. For a richer treatment of the subject, we advise you to see [17, 18].
In this chapter we very briefly review the background to interferometric telescopes, which will
be followed by a more detailed discussion of FX correlators.

We end off the chapter by reviewing related work in the field.

2.1 Background

One of the central goals of astronomy is to create a clearer understanding of our Universe. For
centuries astronomers have contributed towards this goal by studying the visible objects in
the night sky. However, visible light is only a small fraction of the electromagnetic spectrum
produced by astronomical objects. In the early 1930’s, astronomers discovered that the Universe
is full of radio information, which is a key untapped source of information[18]. This discovery
helped identify entirely new classes of objects such as pulsars, quasars and radio galaxies.
Radio waves have also been used to detect neutral hydrogen, the most abundant element in
the Universe. The measurement of neutral hydrogen is one of the best ways to reveal the
structure of the Universe3. Figure 2.1 is an example of the recording of the radio brightness
of the Milky Way, from Hartebeesthoek Radio Astronomy Observatory (HartRAO) by Jonas
[19].

1Every possible combination of antennas is a baseline
2Basically complex visibilities are used to construct the 2D Fourier transformation of the brightness distri-

bution of the observation source.
3The spiral structure of the Milky Way was discovered by measuring neutral hydrogen’s spectral lines, which

occur at around 1.42GHz.

Radio Astronomy Concepts and Correlation Principles

Figure 2.1 – The Milky Way recorded at HartRAO. Image from J. Jonas [19]

Unfortunately, many of the radio sources of interest are very distant and therefore their
signals are extremely weak by the time they reach Earth. Larger receiver antennas provide
the resolution and sensitivity needed to detect and accurately record these signals 4, however,
building large steerable radio receivers is an extremely expensive undertaking. To address
this short coming, a virtual large antenna can be synthesised from an array of smaller ones,
using a special type of interferometry, called aperture synthesis (see Figure 2.2). Aperture
synthesis allows an artificial antenna to be created from the combination of two or more receiver
responses, improving what is possible with small antennas. Amazingly, aperture synthesis
provides a way for two physically separated antennas to produce the same resolution as a
receiver the size of the distance between them!5 Antenna arrays also allow for different antenna
configurations for different experiment types.

However, aperture synthesis comes at a large computational expense: the interferometric
result required to perform aperture synthesis needs to be computed, typically digitally, in
high speed correlation devices. The computational requirements of aperture synthesis grow
quadratically with the size of the antenna array. But as the performance of microprocessor
technologies have improved and the physical cost of antennas has risen6, it becomes increasingly
cost effective and viable to build large interferometric antenna arrays7 8.

4Better resolution is acquired by increasing the aperture diameter. Better sensitivity is acquired by increasing
the collection area.

5However, the synthesised aperture created from the two smaller antennas will have poorer sensitivity and
other artifacts.

6Typically as a result of steel
7Quote the ATA.
8Complex correlator but with many small cost effective antennas.

11 of 121

Radio Astronomy Concepts and Correlation Principles

Focus

Large Antenna

Plane Wave Front

(a)

Focus

+ +

+

Virtual
Focus

Small Antenna

Plane Wave Front

(b)

Figure 2.2 – Diagrammatic representation of (a) a large antenna and its focus point and
(b) a virtual large antenna, synthesized from an array of small antennas.
Figure adapted from [20].

Aperture synthesis is a complex process and is usually performed in a number of separate
stages. Figure 2.3 is a simple example of the decomposition of aperture synthesis (Figure B.5
is a more complete processing overview from van der Merwe and Lord [21]). The objective of
this project was to accelerate the correlation operation, but not the entire processing pipeline.

The remainder of this dissertation will focus only on the correlator, but it should be noted
that many other operations that occur in a fully working interferometric telescope are not
addressed or implemented here. The balance of this chapter will discuss the core functionality
of the correlator and the part that was implemented in this dissertation. For a more thorough
description of correlation and how it fits into aperture synthesis, refer to Thompson et al. [17],
which is a well written and highly recommended reference.

Local
Processing

Correlation

Local
Processing

Calibration Imaging

Figure 2.3 – The radio astronomy processing pipeline from antennas to images, inspired
by [22]

2.2 Simplified Correlation Operation

In this section we will present a simplified description of correlation and then detail how it is
computed digitally.

Figure 2.4 shows a simple two antenna array, where both antennas are observing the same
far-field source and for simplicity we will assume that the source is monochromatic. Connected

12 of 121

Radio Astronomy Concepts and Correlation Principles

Correlator

τg { Plane Wave

θ

τg ∝ θ

Delay
Correction

X

�

Figure 2.4 – Diagrammatic Representation of an Interferometric Telescope. The spac-
ing between the antenna introduces a delay τg into the system, which is
corrected before correlation.

to the antennas is a correlator, which combines the independent antennas by multiplying 9

the two signals together and integrating for a period of time10. The source radiation reaches
the antenna as a plane wave as shown, but because of the antennas’ geometric spacing the
plane wave reaches each antenna at a slightly different time, resulting in a phase shift. These
phase shifts reduce the correlation magnitude and cause the incorrect correlation products
to be recorded. Figure 2.5 shows the correlation results after integration when observing an
object for varying angles from the zenith, which result in different phase shifts. The nulls
occur when there is a 90◦phase difference. The desired correlation reading is when there is a
0◦phase difference, which occurs when the source is directly overhead. However, by adding a
delay equal to the geometric delay, the phase shift can be reduced to zero when the source is
not directly above the array. In this dissertation we assume that the phase correction is not
performed by the correlator.

In reality, sources are not monochromatic and have bandwidth, therefore, before correlation
there needs to some form of a spectrometer, usually an FFT or polyphase filter bank as shown
in Figure 2.6.

9Adding interferometers also exist, which are simpler but often inferior. [23]
10Integrating is used to improve SNR and reduce bandwidth

13 of 121

Radio Astronomy Concepts and Correlation Principles

-0.5π -0.25π 0 0.25π 0.5π

-1

1

Figure 2.5 – An example of a fringe produced by an interferometric telescope, when
observing a monochromatic point source object, where x is the angle from
the zenith of the interferometer.

2.3 Computing the Correlation

The correlation dealt with in this project is a four dimensional problem - this involves two
antenna inputs, i, j, in a specified frequency band, v, at a discrete time interval a - which we
choose to represent as C [i, j, v, a]. To design and understand the correlation, it was helpful
to visualise the operation graphically. The illustrations in this chapter aid in explaining the
FPGA and GPU correlator implementations and will be referred to in later chapters.

2.3.1 Computing the Correlation Numerically

In this section we look at how the correlation is computed numerically. For a more fundamental
description see Appendix B.2.

F Engine
X Engine

X X X

Crossbar Switch

FFTFFTFFT

� � �

LPF

ADC

LPF

ADC

LPF

ADC

Figure 2.6 – Correlation operation with arrows showing the input requirements for the
different stages. The 3 antennas equate to 6 baselines correlations (including
autocorrelation). In large correlators, the F engine channelisation is often
performed independently for each antenna and the interconnecting cross-
bar switch does the necessary corner turning for the X-engine as described
in section 2.4.

14 of 121

Radio Astronomy Concepts and Correlation Principles

Figure 2.6 shows the correlation operation, which is usually decomposed into two sections, the
F and X-engines. Figure 2.7, shows the operations the two stages perform. More specifically:

i. Figure 2.7a shows the operation of the first stage, the F engine. The F engine is respon-
sible for transforming the time sample signals into low bandwidth spectral channels11. In
this project we used the FFT, which transformsK antenna time samples into V frequency
channels, xk
 Sk.

Sk[an, v] =
L−1∑

l=0

xk[l]e−i2πvl/L (2.1)

ii. (a) Figure 2.7b shows the operation of the first part of the second stage, the X-engine.
Here the cross-power spectrums are computed by performing conjugate multiplica-
tion. This cross conjugate multiplication is performed with every antenna in the
array, but not mixing channels. Equation 2.2, is the conjugate multiplication of
antenna ‘i’ with antenna ‘j’, for the same channel ‘vm’ for a certain time instance
‘an’.

cij [an, vm] = Si[an, vm]S∗j [an, vm] (2.2)

(b) Figure 2.7d shows the operation of the second part of the X-engine, which is the
accumulation of ii (a) for a certain period A, where a represents the position in the
accumulation. The accumulation is used to improve the SNR and lower the output
bandwidth.12

Cij [A, vm] =
A−1∑

a=0

Si[a, vm]S∗j [a, vm]

=
A−1∑

a=0

cij [a, vm] (2.3)

2.3.2 Triangular Kernel

A complexity worth noting is that the number of correlation products is a triangular number
- since each antenna needs one less correlation than the previous one, as shown in Figure 2.8.
This triangular progression requires more careful flow control to avoid branches in the pipeline,
which is discussed further in the implementation chapters.

11As close to monochromatic signal as possible
12Accumulation does improve the SNR and reduce the output bandwidth of the correlator, but also introduces

problems like time-smearing and false-negative detection of transients [17].

15 of 121

Radio Astronomy Concepts and Correlation Principles

3210

t

FFT

0 1 2

3210

FFT

3210

FFT

3

3210

FFT

(a) F Engine

Channel 0

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

Channel 1 Channel 2

3210

3

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

Channel 3

3210 3210 3210

0 1 2

(b) X Engine

3,
a0

2,
a0

1,
a0,0

(c) X Engine computa-
tion

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

Channel 1Channel 0

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

Channel 2

3
,
a
0

2
,
a
0

1
,
a
0

0
,
a
0

Channel 3

(d) Accumulation

Figure 2.7 – The different stages of the correlator: (a) the antenna outputs are trans-
formed into a number of frequency channels by the X-engine. (b) all an-
tennas send the same frequency channel to the different X-engines, via a
crossbar switch. (c) the cross-products are computed. Note that from 4
antennas, 10 cross products are created. More generally for Na antennas
there are (Na)(Na +1)/2 correlation products. (d) the correlation products
in (c) are accumulated for a certain period before being recorded.

(0,0)

(1,1)(0,1)

(2,2)(1,2)(0,2)

(3,3)(2,3)(1,3)(0,3)

0 1 2 3

3
2

1
0

(Cij)

i

j

Figure 2.8 – The resulting triangular number of baseline correlations in a 4 antenna
array.

16 of 121

Radio Astronomy Concepts and Correlation Principles

2.4 Correlation Focus and Simplifications

In reality, sources are not monochromatic as assumed in section 2.2, and have a broad spectrum
of frequencies. Correlating signals with bandwidth introduces problems with phase correction
and very low bandwidth signals are desired [17]. Therefore, before correlation there needs to be
some form of a spectrometer, usually an FFT or polyphase filter bank. This channelisation often
occurs in two stages, coarse and fine channelisation. A two stage process has the advantage of
rejecting frequency bands which are not of interest for an experiment, before they are finely
channelised, reducing computational requirements. In this project we only take into account
the fine channelisation, which involves breaking a coarse channel into a further 32-512 fine
channels.

Corner turning is also a consideration in correlation. Figure 2.9 demonstrates that both the F
engine and X-engine access non-linear addressed memory. This decreases memory performance,
affecting the correlator’s throughput. Corner turning is the process of efficiently transposing
data in memory, enabling linear memory access. For example, the corner turning needed
between the F and X-engine can often be performed by the interconnecting cross-bar switch.

0
1

N

corner turner

antenna

corner turner

time

linear memory mapping

antenna

freqbuffer F engine X engine

Figure 2.9 – The non-linear memory accesses by the different stages of the correlator
require corner turning to improve memory performance [24].

In this thesis we assumed that data was already optimally ordered in memory and we did not
implement any corner turning. However, corner turning is worth mentioning as it can become
a major issue in real world correlators - leading to no end of cabling and interconnect issues
[4].

2.5 Software Correlation and Skeleton Design

In this section we discuss when software correlation is useful, why the X-engine was the focus
of our correlator implementation and some real world performance requirements.

The flood of data produced by antennas makes it impractical to store the data and process
it later and many radio telescopes correlate in real-time to alleviate this problem. Since the
correlator is the joining point or intersection of the antenna feeds, it has the potential of being
the bottleneck of the telescope. The computational and networking requirements for large
arrays make it justifiable to build custom correlation hardware, usually from FPGA or ASIC
devices.

17 of 121

Radio Astronomy Concepts and Correlation Principles

Although the latest telescopes require custom hardware, new generations of modern medium-
sized general purpose compute clusters can feasibly be used instead of some older custom
correlator hardware. This software correlation is significantly more accessible and customisable
than production hardware correlators. Because of the low cost of commodity clusters, some
astronomy institutions are finding it more effective to use software correlation than to support
old specialised correlator hardware. The flexibility and availability of software can help extend
and improve the life of a telescope.

Besides replacing older correlator hardware, another popular domain for software correlation
is Very Large Baseline Interferometry (VLBI), because the large antenna separation makes
it impractical for online correlation 13. The recorded antenna data is usually transferred to
a central processing point for offline correlation. Off-line correlation has less stringent time
requirements than real-time processing, making software a good option.

This project implemented three simple software correlators using an x86 CPU, GPU and
FPGAs.

2.5.1 X Engine Focus

The computational requirements of the F and X-engines depend on the number of channels and
baselines in the array and are listed in Table 2.1. The FFT F engine grows at O(Nc logNc),
as the number of channels, Nc, increases, and linearly as the number of antennas Na increases.
The number of baselines grows quadratically with the number of antennas. Specifically the
number of baselines, Nb, is related to the number of antennas, Na, by: 14

Nb =
(Na + 1)(Na)

2
(2.4)

Therefore the X-engine grows at O(N2
a) as the number of antennas increases and linearly as

the number of channels Nc inceases.

Table 2.1 – Computation Scaling of F and X-engine

F Engine X Engine
Computation Nc logNc ×Na

(Na+1)(Na)
2 ×Nc

Order O(N logN) O(N2)

There are a number of FFT libraries available for both GPUs and FPGAs, which can be used
in our implementation of the F engine. Additionally, in most cases the X-engine is dominant
since its computational requirements quickly overtake the F engine as shown in Table 2.1. For
this reason the X-engine was the focus of this project and we relied on FFT libraries for the
channelisation.

13VLBI usually also has lower data rates and fewer antennas in the array
14Using the figures as an example, the 2 antenna in Figure 2.4 produce 3 baselines, while the 3 antenna in

Figure 2.6 produce 6 baselines, including autocorrelations.

18 of 121

Radio Astronomy Concepts and Correlation Principles

2.5.2 Correlator Skeleton Design

The correlation implementation can be divided into two sections - library calls for the F-engine
and custom code for the X-engine. This division and the basic operation of the correlator are
shown in Figure 2.10.

C
ustom

 C
ode

Library C
alls

FFT

K Antenna

(V Channels) x K

Correlation
for(v=0; v<V; v++)
 for(i = 0; i<K; i++)
 for(j=i; j<K; j++)
 c[v,i,j] = S[v,i].S[v,j]*

V x K(K+1) output
 2

a>A

Accumulate
C[v,i,j] += c[v,i,j]
a++

Write out
V x K(K+1)

2.A
yes

no

Figure 2.10 – The division of the correlator into library calls and custom code. The
custom code includes the basic operation of the correlator.

2.5.3 Real World Correlator Requirements

To demonstrate the large amount of computation necessary for correlation, Table 2.2 shows
the performance requirements for the planned meerKAT and SKA correlators taken from the
unofficial SKA and KAT requirements (note this excludes the post image processing require-
ments). Table 2.3 lists the number of CPU cores required to meet the correlator requirements
in software. These tables show the high computational burden of correlation.

19 of 121

Radio Astronomy Concepts and Correlation Principles

Table 2.2 – Performance and data requirements of various planned arrays.

meerKAT SKA(2017) SKA(2021)
Antennas 80 620 2400
Data Rate (per antenna) 32 Gbps 32 Gbps 32 Gbps
Data Rate (total) 3 Tbps 20 Tbps 80 Tbps
Processing Requirements 52 TeraOps 3 PetaOps 47 PetaOps
Completion Date 2013 2017 2021

Table 2.3 – CPU cores required for software correlation of a variety of arrays. Based on
3GHz Pentium processors from Brisken [25, 26].

VLA VLBA EVLA
CPUs 150 250 200,000

2.6 Contributions from Other Software Radio Astronomy

The idea of using co-processor hardware to accelerate radio astronomy correlation is not unique
to this project. There are a number of research projects taking advantage of multi-core ar-
chitectures for software correlation. Below are two projects which had the greatest influence
on our two co-processor correlator implementations. There are, however, many others such
as, Berkeley Emulation Engine 2 (BEE2) [27, 28], Murchison Widefield Array (MWA) [16],
Helsinki University of Technology’s Cell Correlator [15], Bunton et al. [29].

DiFX Correlator and our Simplified Software Correlator

The Distributed FX15 (DiFX) correlator is a popular software correlator implementation. The
DiFX correlator was developed at Swinburne University and is a parallel, open-source, software
implementation of a fully functional radio astronomy correlator [5]. Designed to work with the
less processor intensive, very long baseline interferometry (VLBI)16, the DiFX is an attrac-
tive correlator solution for smaller correlator arrays. The DiFX correlator has had a positive
response in both astronomy and HPC communities, allowing research to be carried out on
standard Linux compute clusters, without sharing or endangering production correlators. The
National Radio Astronomy Observatory (NRAO) and Max Plank Institute fur Radioastonomie
(MPIfR) have adopted the DiFX correlator for the correlation of their Very Long Baseline Array
(VLBA) data [30, 31] and have released their own NRAO-DiFX modification [32]. Although
the DiFX correlator is not used directly in this project, for reasons explained in Appendix H,
it served as an inspiration for the opportunities of software correlation.

We began by using the DiFX correlator as a reference to create a simplified software correlator.
The DiFX correlator project is a complex software project, with thousands of lines of code,
while the heavy computation is contained in only a few lines. The simplified correlator was
an extraction of the compute intensive sections of the code in a new software project. This

15FX here refers to how the correlation is performed. FX correlators do a multiplication in the Fourier
domain, while XF correlators perform a convolution in the time domain.

16VLBI typically uses smaller arrays (<10) with baselines that can span 1000s of kilometers. Since there
is relatively small number of data sources, produced at distributed sites it is practical to perform off-line
correlation.

20 of 121

Radio Astronomy Concepts and Correlation Principles

simplified correlator became the basis of the co-processor design and was used as a performance
benchmark.

The simplified correlator was created to be very minimalistic, performing the correlation op-
erations on raw input data on a single CPU host - ignoring the data unpacking and distributed
communication of the DiFX correlator. This allowed the software correlation runtime not to
be contaminated with other unrelated operations, which were not the focus.

We borrowed the DiFX correlator’s approach to using Intel’s Performance Primitive’s (IPP)
libraries to perform the correlation operations on the pre-correlated data. The IPP contains
optimised libraries that take advantage of modern x86 processor’s Streaming SIMD Extensions
(SSE). The IPP libraries were used to implement the FFT channelisation and the complex
MAC.

See the attached DVD for the source code and more details on the software correlator imple-
mentation.

GPU Correlator

Chris Harris was, at the time of development, working on GPU acceleration of software corre-
lation [14]. Our GPU implementation borrows ideas from Harris’ GPU correlator design and
is discussed in more detail in Chapter 5.

2.7 Conclusion

Radio astronomy correlation is a vital and very computationally intensive part of a synthetic
aperture array, often requiring custom hardware to maximise performance. However software
correlation is a much more accessible platform, making it appealing for correlator prototyping
and replacing older hardware correlators.

In the next Chapter we look at the Nvidia GPU and Nallatech FPGA co-processors which
were used to accelerate software correlation.

21 of 121

Chapter 3

Software Co-Processor Acceleration

Correlation is an extremely compute intensive process but does not necessarily require cus-
tom hardware. This is especially true for older correlators or VLBI experiments, where the
processing and I/O requirements can be satisfied by commodity processors.

Discrete software co-processors like GPUs and FPGAs are an attractive option to acceler-
ate software correlation, potentially offering better FLOPS/watt and FLOPS/$ performance.
These different technologies bring with them their own unique architecture, development tools
and environment. These differences need to be addressed and understood when developing the
software correlator. This chapter looks at the Nvidia GPU and Nallatech FPGA used in this
project and their respective development tools.

3.1 Code Acceleration

The limited speed of serial processing is inadequate to perform radio astronomy correlation in a
reasonable amount of time. Fortunately the correlation workload is embarrassingly parallel and
can be easily and logically divided up amongst multiple sequential processors and processed in
parallel. Software correlators, such as the DiFX correlator, use compute clusters to accelerate
the correlation in this manner. Radio astronomy correlators exhibit a class of parallelism called
data-parallelism, which maps well to FPGAs and GPU architecture.

An example of data-parallelism is a code loop, when the same operation is performed across
an array of data. If each loop iteration is independent, the order in which each iteration is
computed is not important, making them suitable for parallel computation.1

Many scientific computing applications display a large amount of data-parallelism, but it
is rarely present in desktop applications and therefore commodity microprocessors are not
designed to exploit data-parallelism.2 However, SIMD co-processors can be added via computer
expansion buses such as PCIe and PCI-X to improve a system’s SIMD capabilities. Capable
SIMD processors, such as GPUs and FPGAs, have grown remarkably in performance and

1Another name for data-parallelism is in fact loop-parallelism.
2CPU manufacturers have shown a moderate interest in exploiting data-parallelism and have added some

limited SIMD hardware. The current SSE SIMD instructions are limited to 128 bit vectors, inadequate for
serious number crunching.

Software Co-Processor Acceleration

programability and are becoming an attractive option to be used in scientific applications.
Figure 3.1 shows a data-parallel application being processed on scalar processors and a SIMD
processor.

Single
instruction stream

Parallel
Data stream

Output stream

(a) SIMD Processing

Instruction streams Data streams

Output streams

(b) Scalar Processing

Figure 3.1 – The above figure shows parallel computation either on (a) a vector processor
or (b) the data-parallelism being exploited by multiple scalar processors.
However (b) requires an instruction stream for each scalar processor and
synchronisation of data. Inspired by Arstechnica [33]

Figure 3.2 (a) shows a typical software application with a processing hot-spot, which could
be suitable for co-processor acceleration. In Figure 3.2 (b) is the same application with the
hot-spot computed on the co-processor, however there is now a host-device communication
overhead which must be taken into consideration. With processor capabilities running ahead
of memory and inter-processor communication speeds, it is important that hot-spots have a high
arithmetic intensity or a high FLOP/Byte ratio to minimise the impact of the communication
overhead [34].

Pure Software Code Co-Processor Code

Software Code

Hot Spot

Communication

(a) (b)

Figure 3.2 – (a) original software design (b) co-processor accelerated software with com-
munication overhead

The co-processors used in this project and their respective development environments are
introduced below.

3.2 Reconfigurable Computing (RC)

Reconfigurable computing is a category of computing that makes use of special-purpose hard-
ware that allows the programmer to adapt the hardware to better suit a specific computational

23 of 121

Software Co-Processor Acceleration

problem. This flexibility potentially lets the user create an architecture which makes efficient
use of the processing resources. FPGAs are a type of reconfigurable hardware which allow any
kind of operation and interconnection to be created and are a popular technolgy used in recon-
figurable computers [35]. FPGAs consist of an array of LUTs3 and a configurable interconnect.
The LUTs can be be programmed to emulate any kind of logic gate and the configurable in-
terconnect allows these LUTs to be connected together in any configuration. Early FPGAs
were very resource limited and only simple circuits requiring very low level programming could
be built4. However, FPGAs have grown exponentially in the last two decades and now have
enough reconfigurable logic to be configured into complex processor designs.

FPGAs today are commonly used in the embedded computing market to create custom
designs, without the fabrication expense. The success of FPGAs in the embedded market
has meant that reconfigurable computing hardware can be purchased at reasonable prices. The
reconfigurable computing industry has successfully implemented a number of HPC applications,
such as image processing [36], data mining [37] and bioinformatics [38] 5.

3.2.1 Advantages of RC

From a processing perspective FPGAs have relatively weak floating point arithmetic when
compared to GPUs and only offer around one fifth of the theoretical performance as shown
in Figure 1.3a. However, reaching GPU’s peak performance is only possible when making full
utilisation of its processing pipeline6, which is rarely achieved. Because of FPGA’s flexibility,
a custom pipeline can be created for a particular application, implementing only the func-
tional units needed, allowing them to get closer to their theoretical peak. Some unique FPGA
optimisations allow for:

• Variable Precision Arithmetic - FPGAs are not locked to a specific data type and
can use any arbitrary data length suitable for the application.

• Optimised Pipeline - In a programable pipeline architecture, instructions are unpacked
and issued by dedicated hardware units at runtime. In a reconfigurable pipeline, the data
path is determined at synthesis, removing the need for instruction decoding and allowing
application pipeline optimisations [40].

• On-chip Communication - On-chip FPGA Block RAM and distributed memory can
be connected in any configuration, allowing very low latency and high bandwidth on-chip
communication.

Despite these advantages, a custom pipeline creates an extra layer of programming complexity
to FPGA computing. This is partly being addressed by new programing languages for FPGA
reconfigurable computing.

3Look up tables (LUTs)
4This was typically done in Register Transfer Languages (RTLs)
5Via [39]
6Peak performance figures are calculated assuming all ALUs on the GPU are performing MADD and MUL

operations per clock cycle

24 of 121

Software Co-Processor Acceleration

3.2.2 Programming FPGAs

Much of FPGAs’ potential performance advantage comes from the ability to create highly
parallel compute architectures. Unless this parallelism is realised in the hardware, it is very
unlikely that any speed-ups will be achieved due to FPGAs’ slow clock rate, typically in the
low 100MHz.

FPGAs are typically programmed using hardware descriptive languages (HDL). Programming
FPGAs effectively requires a thorough understanding of hardware design concepts such as
pipelining and dealing with different clock domains [41].

FPGAs’ programmable logic density has grown to a point where many believe it would be
more practical to use high level languages (HLLs). FPGA HLLs attempt to hide many of the
underlying hardware concepts, which an HDL developer is responsible for7. HLLs provide an
abstraction to these concepts and are compiled into HDLs before synthesis. FPGA HLLs aim
to reduce hardware design times as well as appealing to a larger audience, including software
developers unfamiliar with hardware concepts.

HLL for FPGAs

The majority of FPGA HLLs are based on a subset of ANSI C syntax. ANSI C does not
explicitly allow the programmer to identify parallelism in the algorithm and the FPGA HLLs
differ in their approach of how to express this parallelism. We investigated three different
FPGA HLLs: Impulse-C, Mitrion-C and Dime-C. Impulse-C has compiler directives to hint to
the compiler the area of code and type of parallelisation that should be implemented. Mitrion-
C diverges from the ANSI C standard quite significantly and looks like C but is really a
functional language, very different from the traditional procedural C. Dime-C does not require
any explicit modification to identify parallelism, but this requires code to be written in a way
that the compiler recognises the parallelism.

The deviation of Mitrion-C from ANSI-C, made it less accessible than Dime-C and Impulse-C
and for this reason we did not consider Mitrion-C seriously as an easy to use option. We chose
to use Dime-C over Impulse-C since, at the time of the FPGA correlator development, not
all the memory interfaces were accessible using Impulse-C on our Nallatech FPGAs. However,
it must be noted that Impulse-C and Mitrion-C offer more polished and refined development
tools and environment than Dime-C

All FPGA development in this project used Dime-C and in the next section we discuss Dime-C
and its development environment.

3.2.3 Dime-C and its Development Environment

Dime-C is a C-to-HDL language created by Nallatech. Dime-C converts ANSI-C into HDL,
which is compiled to program the FPGA. However, there are a few omissions from the standard
ANSI-C language - notably pointers and recursion [42].

7FPGAs perform best when an algorithm is described in a parallel and pipelined manner. Keeping track of
pipeline timing is a laborious and error prone task which is exacerbated with the growing size of FPGA designs.

25 of 121

Software Co-Processor Acceleration

Writing ANSI-C for hardware synthesis

Although Dime-C syntax looks like ANSI-C, the semantics are quite different to ordinary C.
An ANSI-C software program is written to control a processor, while a Dime-C is written to
create one. Because FPGAs have no fixed structure, Dime-C is used to describe a custom
datapath and the operation units required. This minimises the percentage of the processor
dedicated to control, freeing up resources for other processing. Only operational units required
are implemented, as shown in Figure 3.3. Knowing the structure of the code and the types of
computation at compile time, allows the Dime-C compiler to create a customised architecture
for the application.

Under Utilised Hardware

Effectively Utilised Hardware

KEY

Integer Arithmetic
Complex

Control Unit
Floating Point

MUL

ADD/SUB

DIV

MUL
R0,R1,R2

MUL
R3,R4,R5

Large Cache

Instruction and Data

(a)

R0,R1,R2

R3,R4,R5

Only Data

MUL

R6,R7,R8

MUL

MUL

Interconnect
O

verhead

Reconfigurable
Logic

(b)

Figure 3.3 – Transistor utilisation in (a) a microprocessor, and (b) an FPGA

To get the most from Dime-C, it is important to structure the code in a way that allows the
compiler to easily identify areas that can be parallelised. The Dime-C compiler attempts to
get a performance speedup by identifying loops in the application that can be pipelined and
execute these loops in parallel. The amount of parallelism and speedup possible depends on
data dependancies and is restricted by the limitations of the underlying hardware. Data arrays
are mapped to block RAM and cannot be accessed more than once8 per clock cycle to avoid
data dependancies which can create problems for parallel execution as shown in Figure 3.4a
[42]. The function blocks in Figure 3.4c cannot be performed in parallel because both function
blocks need to access ‘C’. Each loop will be pipelined, but ‘Loop 0’ will be performed before
‘Loop 1’. This shows that it is important not to re-use variables unnecessarily, even if doing so
requires duplication of data.

8The block RAM on the Virtex 4 FPGAs used is dual-ported, but only one port is connected to the FPGA
device, while the other port is used to access the BRAM from the host.

26 of 121

Software Co-Processor Acceleration

✖out = in_0 + in_1
Loop

A
A
B

out
in0
in1

(a)

✓out = in_0 + in_1Loop

A_temp
A
B

out
in0
in1

(b)

✖out = in_0 + in_1

Loop 0

A
B
C

out = in_0 + in_1

Loop 1

C
D
E

out
in0
in1

out
in0
in1

(c)

Figure 3.4 – A hardware function block which performs the operation A = B + C on
the block RAM, which could be connected in various configurations: (a)
This configuration cannot be pipelined because ‘A’ needs to be both read
and written to in one clock cycle. (b) This configuration can be pipelined
because ‘A’ is only read from, and not written to. (c) These calculations
cannot be performed in parallel because both function blocks need to access
‘C’. Each loop will be pipelined, but ‘Loop 0’ will be performed before ‘Loop
1’.

Nested loops are problematic to Dime-C. In the case of nested loops, only the innermost
loop will be pipelined and stalls will be encountered on each outer loop iteration, making it
preferable to convert nested loops into a single fused/coalesced loop if possible. This nested
loop problem was encountered in the correlator implementation and is discussed in Chapter 4.

When writing Dime-C programs, the user must be aware that all code is synthesised into
hardware, consuming logic. For example, conditional statements require a different data path
for each unique branch, as shown in Figure 3.5, so it is expensive to accommodate the exceptions
to the main data path.

a == 0

a > 0

a < 0

unique
computation

unique
computation

unique
computation

Figure 3.5 – A conditional statement synthesised into a hardware block.

27 of 121

Software Co-Processor Acceleration

3.2.4 The Nallatech H101-PCIXM Virtex 4 LX100 FPGA Board

A large portion of the available reconfigurable computing hardware comes in the form of an
accelerator PC expansion card which communicates to the system via a high speed bus, such
as PCIe, HTX or PCI-X.

The Nallatech H101-PCIXM is an FPGA expansion card connected via PCI-X, and was the
RC hardware used in this project and is shown in Figure 3.6 with the specifications listed in
Table 3.1.

Compute FPGA

PCI-X interface FPGA Onboard DDR

Gigabit Comms Onboard SRAM

Figure 3.6 – The Nallatech H101-PCIXM [43]

Table 3.1 – Nallatech H101-PCIXM Specifications [43].

Processor Type Virtex-4 LX100
Block Ram 240 x 18Kbits
DSPs 96
Slices 49,152
Internal Memory 0.5MB @ 0.5 TBytes/sec bandwidth
External Memory 16MB DDR-II SRAM @ 6.4GB/sec

512MB DDR2 SDRAM @ 3.2GB/sec
Inter FPGA Comm. 4x 2.5 Gbit/sec serial links
Host Communication Bus PCI-X @ 400MB/s
Clock rate 100-200MHz
Maximum SP FLOPS 20GFLOPS
Typical Power Consumption 25W

The FPGA used in the Nallatech H101 is a Xilinx Virtex 4 LX100. FPGAs consist of recon-
figurable logic, hardware DSPs and Block RAM as shown in Figure 3.7. The number of these
resources depends on the FPGA family and model. The Virtex 4 LX100 used in the Nallatech
H101s is a mid range FPGA from Xilinx’s 90nm generation [44]. Newer 40nm Virtex 6’s [45]

28 of 121

Software Co-Processor Acceleration

have considerably more resources. This shouldn’t affect the fundamental design of our FPGA
correlator, but would enable us to process more baselines in parallel.

BRAM Logic Logic Logic DSP

BRAM Logic Logic Logic DSP

BRAM Logic Logic Logic DSP

Input Select

LUT LUT LUT LUT

FF FF FF FF

Output Select

Figure 3.7 – FPGA Architecture. Inspired by Thomas et al. [46]

It should be pointed out that the H101 has a hierarchal memory structure with quite extreme
drops in available bandwidth as shown in Table 3.1. This made it difficult getting data on and
off the FPGA as fast as it computed it.

3.3 General Purpose Graphics Processing

The video gaming industry has seen substantial growth in recent years and is estimated to
be worth $9.5 billion in the U.S. alone [47]. This competitive industry relies largely on visual
presentation, which is reliant on the rate that GPUs can compute the video frames. The pixels
in a static graphics frame are largely independent and are processed in parallel by multiple
graphic pipelines that exist in a single graphics processing unit (GPU) [48]. Unlike CPUs which
target a variety of application types, the GPU processing is very specific, therefore the GPU’s
architecture is designed specifically for graphics. Graphics requires a lot of processing and very
little complex control, similar to the requirements of correlation. GPUs provide a lot more
computational performance than the equivalent CPU generation [49] (see Figure 1.3a).

In 2006, Nvidia, a graphics card manufacturer, released their Compute Unified Device Ar-
chitecture (CUDA), enabling one to program their graphics pipeline in a standard software
environment. This has allowed GPUs to be used in computational applications other than for
graphics9. Many HPC and graphics algorithms share similar traits and types of computational
requirements, which has allowed GPUs to be successfully used in linear algebra [50], database
operations [51], k -means [52], AES encryption [53] and n-body simulations [54] 10.

9GPU’s have been used to do general purpose processing since GPUs began offering programable shaders in
the early 2000’s, via 3rd party development tools, such as Brooke. However, these type of tools were a hack
to use the graphics pipeline to do other processing. Not until the CUDA GPUs has the GPU hardware been
slightly modified to accommodate general purpose processing, allowing for a more refined interface.

10Via [39]

29 of 121

Software Co-Processor Acceleration

3.3.1 Advantages of GPUs

• Commodity Price - The ubiquitous success of GPUs has made them affordable high
performance hardware. In recent years GPUs have been producing peak performance in
an order of magnitude greater than CPUs of the same generation.

• Large development community - GPUs have been embraced by the HPC and other
general purpose computing domains and there is a large repository of available libraries,
tutorials and forums.

• Backward compatibility and future support - Nvidia is a financially healthy com-
pany, with a clear intent to support the CUDA architecture in the future. Together
with the advent of multi-vendor GPGPU OpenCL API, this creates confidence that an
investment into GPU software will be supported in future.

3.3.2 Programming GPUs

GPUs are large programable parallel processors that can be programmed in a similar way to
a CPU [14], however, the large caches and control logic found in CPUs, is either significantly
reduced or absent. GPUs instead use the majority of the chip die area to implement ALUs
and thus have far greater computational peak performance than CPUs. This reduction in
control and on-board memory means that algorithms relying on fast random memory accesses
or complex control branches will perform poorly on a GPU - but applications that execute in
a predictable instruction flow can achieve much greater throughput.

(a) CPU (b) GPU

Figure 3.8 – Comparison of transistor expenditure in CPUs and GPUs. Taken directly
from CUDA guide [2].

3.3.3 CUDA Architecture and its Development Environment

Figure 3.8 shows how transistor space is used on a CPU vs. GPU. CUDA is both a programming
library and the GPU architecture created by Nvidia to utilise their GPUs for general purpose

30 of 121

Software Co-Processor Acceleration

processing. CUDA is not so much a new architecture but more of a re-branding of the GPU
architecture, presenting a more suitable API for traditional software developers11.

Figure 3.9 shows the CUDA GPU Architecture. The fundamental computational unit of
the CUDA architecture is a Scalar Processor (SP) which executes CUDA threads. Eight of
these SPs, together with a small shared cache are grouped to form a Streaming Multiprocessor
(SM). SMs are an analogy to the architecture of SMP multi-core CPUs12. The difference is
that SMs have a much smaller cache and a single control unit. A single SM administers the
scheduling and control for all the SPs (SM behaves very much like a vector unit and schedules
vector instructions of length 32, called a warp [55]). If all threads perform the same operation,
this operation can be computed in parallel, if not the threads will be serialised. Likewise, if
each thread requests linear global memory access, this can be done in a single request, if not,
this needs to be serialised. In parallel programs these types of non-divergent operations and
memory access patterns are common and GPUs take advantage of this by having one control
unit for multiple threads, leaving more transistors for computation.

DDR
bank

DDR
bank

DDR
bank

Arbiter

SM SM SM SM SM

SP

SP

SP

SP

SP

SP

SP

SP S
h
a
r
e
d

M
e
m

I
n
s
t
r

I
s
s
u
e

Figure 3.9 – CUDA Architecture. Inspired by [46, 2].

The CUDA model has an advantage over FPGAs as it uses standard C language to describe
the computation. An application is described as an operation of many CUDA threads, using
each thread’s unique identifier to express its part in the application. Table 3.2 is a comparison
of vector addition on a CPU and GPU. The threading control is expressed in a few extensions
to the C language. For a more detailed description of the Nvidia CUDA architecture, see the
CUDA Programming guide [2].

The number of SMs on a CUDA GPU depends on the model, with entry level GPUs having
1 SM and high-end GPUs having 3013.

11 For example the fundamental computation unit in CUDA is the Scalar Processor (SP) which executes a
CUDA thread - while a graphics programmer refers to shader processors, which executes a shader programs.

12This is a big abstraction
131 and 30 SM refer to Nvidia 8300 and Nvidia GTX280 GPUs respectively

31 of 121

Software Co-Processor Acceleration

Table 3.2 – Comparison of vector addition on a CPU and GPU. The CPU code uses an
incrementing loop variable as the index to the array. CUDA code instantiates
‘N’ threads and uses the unique thread ID as the index. This type of linear
addressing works very well on GPUs.

CPU Code CUDA Code

for(int i=0; i<N; i++)
C[i] = A[i] + B[i];

C[thread_id] = A[thread_id] + B[thread_id];

3.3.4 Zotac 9800 GT GPU Board

In this project we used the Zotac 9800 GT GPU Card (shown in Figure 3.10) for the correlator
implementation, the specifications are shown in Table 3.3. and Palatino looks like this.

Figure 3.10 – Nvidia 9800GT Reference Board [56]

32 of 121

Software Co-Processor Acceleration

Table 3.3 – Nvidia 9800GT Specifications [56, 2].

Processor 9800 GT GPU (G92)
112 SPs (14 MPs) @ 1.5GHz

Internal Memory 8192 32bit Registers/MP
16KB Shared Memory/MP

Onboard Memory 512MB GDDR3@ 57.6GB/sec
Memory interface 256bit
Host Communication Bus 16 lane PCI-E 2.0 @ 8GB/s
Maximum SP FLOPS 504 GFLOPS
Maximum Power Consumption 105W

3.4 Conclusion

Discrete software co-processors like GPUs and FPGAs are an attractive option to acceler-
ate software correlation, potentially offering better FLOPS/watt and FLOPS/$ performance.
There are a number of software tools for both technologies, that are designed specifically to ac-
commodate software developers, removing the need for much of the domain specific knowledge
to access these technologies. Additionally, FPGA and GPU are both technologies that have
had a huge market penetration and have seen sustained growth. This is promising for future
support of these technologies, with improved development environments and performance.

Having presented the FPGA and GPU hardware, the next chapter looks at the FPGA X-
engine correlator design and implementation on the two Nallatech H101 FPGAs.

33 of 121

Chapter 4

FPGA Implementation of Correlator X
Engine

This chapter discusses the FPGA implementation of the correlator X-engine. The correlation
dealt with in this project is a four dimensional problem - this involves two antenna inputs,
i, j, in a specified frequency band, v, at a discrete time interval a. This gives us three degrees
of parallelism: baseline, time and frequency. In our FPGA implementation, time parallelism
was exploited, resulting in an FPGA X-engine correlator which computes eleven time slices
simultaneously. We begin with the design of the basic processing element (PE), which is used
to compute the baseline correlations for a particular time slice, which is replicated eleven times
to create the correlator engine. The final FPGA correlator achieved a speedup up to 7x over
a 3.0GHz Xeon CPU.

The FPGA correlator development dealt with three different aspects: processing resources,
I/O capabilities and control. These points are discussed below. The FPGA correlator went
through an evolutionary process of three different designs. Though they have different ap-
proaches to the control of the correlation engine, they share the same processing and I/O
design aspects. The three implementations and their divergence in control are discussed after
we describe the processing element and I/O design.

4.1 Correlation Engine - Creating the pipeline

4.1.1 System Overview

In this chapter, we will discuss our final FPGA correlator design, as shown in Figure 4.1. Here
we have a hybrid system with the CPU acting as the F-engine and the two FPGAs performing
the X-engine operation. The uncorrelated data is read from disk by the CPU performing the
F-engine. The output of the F-engine is passed via the PCI-X bus and is divided between the
two FPGAs by even and odd channels. The correlated result is then sent back via the PCI-X
communication bus and stored on disk.

FPGA Implementation of Correlator X Engine

X-Engine Data SourceF-Engine

FPGA

Input Cache

Pipelined PEs

SRAM

Host
DDR CPU

PCI-X

FPGA

Input Cache

Pipelined PEs

SRAM

PCI-X

Vn Vn−1

Disk

Figure 4.1 – The FPGA correlator system design.

4.1.2 Single Correlator Engine

In this section we present the basic correlator processing element (PE) which computes all the
baselines for a certain spectral channel, vm and time slice, an. This result is then accumulated
for a period before being sent back to the host CPU. This process is repeated for each spectral
channel and time slice. Since the input to the correlator is complex valued, the correlator needs
to deal with both real and imaginary data.

The basic PE performs the complex conjugate multiplication, which can be simplified to four
multiplications and two additions/subtractions, as shown below:

Si[an, vm]S∗j [an, vm] = (pi + jqi)(pj + jqj)∗ (4.1)

= (pi + jqi)(pj − jqj)

= (pipj + qiqj)︸ ︷︷ ︸
Pan,ij

+j (qipj − piqj)︸ ︷︷ ︸
Qan,ij

The result shown in Equation 4.1 is the cross correlation products for a certain baseline, time
slice and frequency, and must be accumulated for ‘A’ time slices, Cij [A, vm] :

Cij [A, vm] =
A−1∑

a=0

Si[a, vm]S∗j [a, vm] (4.2)

We therefore require two more additions for both the real and imaginary parts of Cij [A−1, vm],
where Cij [A−1, vm] represents the running total from the previous time slice an−1. The output
to the correlator at time slice an is therefore Cij [A, vm] as shown:

Cij [A, vm] = R{Cij [A− 1, vm]} + Pan,ij

+ j
(

Im{Cij [A− 1, vm]} + Qan,ij

)
(4.3)

This gives us a total of four multiplications and four addition/subtraction operations, giving

35 of 121

FPGA Implementation of Correlator X Engine

a total of eight operations per PE. The complex conjugate multiply and accumulate are the
two fundamental functions that are used by the correlator X-engine. Figure 4.2 shows the
complex conjugate multiplier and accumulator (MAC), represented in Equations 4.1 and 4.2,
synthesised into hardware.

Complex Conjugate Multipliy Adders

X

X

X

X

pi

pj

qi

qj

+

-

+

R{C(an−1,i,j)}

+

Im{C(an−1,i,j)}

Im{C(an,i,j)}

R{C(an,i,j)}
Pij

Qij

Figure 4.2 – The basic correlator processing element, which is used to build the correla-
tion X-engine. This computes a correlation product and accumulation for
a certain time slice and frequency.

4.1.3 Parallel Correlator Engine and Reducing Memory Accesses

The basic PE presented above computes a single complex conjugate MAC per clock cycle1. A
single PE will compute the entire triangular correlation matrix2 for a certain time-slice and
frequency channel in Nb clock cycles 3. There are multiple copies of the PE, each computing its
own correlation matrix in parallel4. Multiple PEs can be connected to exploit the parallelism
in either frequency or in time5. In frequency parallelism, correlation matrices for different
frequency channels are computed independently and concurrently, and each PE computes mul-
tiple correlation matrices for different time-slices, as shown in Figure 4.3. In time parallelism,
correlation matrices for different time-slices are computed independently and concurrently, and
each PE computes multiple correlation matrices for different time-slices, as shown in Figure
4.4. Notice that at stage (d) in Figures 4.3 and 4.4, both methods have reached the same point.
It should also be noted that the number of PEs is usually less than the number of frequency
channels or time steps in the correlation, so the above process has to be repeated. Figure 4.5
is pseudo code describing the different orders of computing the correlation.

1Since the PE is pipelined, calculating a CMAC in one clock cycle does not reduce the clockspeed.
2We refer to the all the correlation baseline products for a certain time-slice and frequency as the correlation

matrix or correlation kernel.
3The computation in Nb clock cycles is assuming that memory is already in block RAM, therefore one clock

cycle away. If this is not the case, there will be additional overhead. Memory considerations are discussed in

36 of 121

FPGA Implementation of Correlator X Engine

Channel 0 Channel 1 Channel 2

Correlations produced by

PE 0

PE 1

PE 2

(a)

Channel 0 Channel 1 Channel 2

(b)

Channel 0 Channel 1 Channel 2

(c)

+
+

+
+

Channel 0 Channel 1

+
+

Channel 2

time

(d)

Figure 4.3 – Exploitation of parallelism across different frequencies, using three process-
ing elements, allowing channel 0, channel 1 and channel 2 to be computed
concurrently. Each block represents a single correlation product. (a) Com-
pleted 1 baseline correlation product for multiple channels after 1 clock
cycle; (b) completed 2 baseline correlation products for multiple channels
after 2 clock cycles; (c) completed Nb baseline correlation products for mul-
tiple channels after Nb clock cycles. Each PE has completed a correlation
matrix for a single channel; (d) completed Nb baseline correlation products
for multiple channels and 3 time slices, after 3Nb clock cycles.

37 of 121

FPGA Implementation of Correlator X Engine

+
+

Channel 0

time

Correlations produced by

PE 0

PE 1

PE 2

(a)

+time

+

Channel 0

(b)

+
+

Channel 0

time

(c)

+
+

+
+

Channel 0 Channel 1

+
+

Channel 2

time

(d)

Figure 4.4 – Exploitation of parallelism across different time slices, using three processing
elements, allowing time-slice 0, time-slice 1 and time-slice 2 to be computed
concurrently. Each block represents a single correlation product. (a) Com-
pleted 1 baseline correlation product for multiple time-slices after 1 clock
cycle; (b) completed 2 baseline correlation products for multiple time-slices
after 2 clock cycles; (c) completed Nb baseline correlation products for mul-
tiple time-slices after Nb clock cycles. Each PE has completed a correlation
matrix for a single time-slice; (d) completed Nb baseline correlation prod-
ucts for multiple time-slices and 3 frequency channel, after 3Nb clock cycles.

while (observing)
 for m = 0 to accumulation_length
 for n = 0 to num_channels
 compute_correlation_matrix
 send_result_to_host

while (observing)
 for m = 0 to accumulation_length
 for n = 0 to num_channels
 compute_correlation_matrix
 send_result_to_host

(a)

while (observing)
 for m = 0 to accumulation_length
 for n = 0 to num_channels
 compute_correlation_matrix
 send_result_to_host

while (observing)
 for n = 0 to num_channels
 for m = 0 to accumulation_length
 compute_correlation_matrix
 send_result_to_host

(b)

Figure 4.5 – (a) Pseudo code for computing the correlation matrix for all frequency chan-
nels and then accumulating across time-slices, as shown in Figure 4.3. (b)
Pseudo code for computing the correlation matrix for the full accumulation
length and then for all frequency channels, as shown in Figure 4.4.

Each correlation product (represented as a block in Figures 4.3 and 4.4) needs to be accumu-
lated to the correlation product in the next time step. Since each PE is responsible for many

section 4.2
4Where the number of PEs depends on the size of the FPGA used
5There can of course be a hybrid where time and frequency parallelism are both exploited, but this is not

considered here.

38 of 121

FPGA Implementation of Correlator X Engine

correlation products, the intermediate result needs to be stored while the PE computes other
correlation products. Dime-C unfortunately limits this storage to BRAM or SRAM which has
a limited number of writes per second.6

Although exploiting frequency or time parallelism does not reduce the number of computa-
tions needed, it has an impact on the number of external memory accesses made. External
memory accesses here refers to any movement of data outside the interconnected PEs - block
ram and SRAM are also considered external memory. Figure 4.6 shows three PEs wired up to
exploit frequency parallelism, where each PE needs three external inputs and creates one ex-
ternal output. Specifically, each PE requires the previous correlation accumulation, Can−1 [v],
as well as the real and imaginary inputs, Si[v] and Sj [v], and writes out the new accumulation
output,Can [v]. On the other hand Figure 4.7 shows three PEs wired up to exploit time paral-
lelism. Here every PE, except the first PE, requires only two inputs and every PE, except the
last PE, has no external output. By using the result from a previous PE as the input to the
next PE, the external memory accesses are roughly halved. Only two boundary PEs require
the running correlation accumulation and write the new accumulation output.

For this reason we chose to exploit time parallelism rather than frequency parallelism.

+
X

Ĉan−1 [v0]

Ĉan
[v0]

+
X

Ĉan−1 [v1]

Ĉan
[v1]

+
X

Ĉan−1 [v2]

Ĉan
[v2]

(a)

+
X

Ĉan−1 [v0]

Ĉan
[v0]Si[v0]

Sj [v0]

can
[v0]

+
X

Ĉan−1 [v1]

Ĉan
[v1]Si[v1]

Sj [v1]

can
[v1]

+
X

Ĉan−1 [v2]

Ĉan
[v2]Si[v2]

Sj [v2]

can
[v2]

(b)

Figure 4.6 – Correlation X-engine computing multiple channels simultaneously. Exter-
nal communications are shown as solid lines and internal communications
are shown as dashed lines. (a) a simplified diagram not showing all inputs
and intermediate outputs which are shown in (b).

Reducing the number of external memory accesses is important as there is a limitation on
the number of accesses that can be made per clock cycle (discussed in next section). This

6Note this is a limitation of the Dime-C compiler rather than the hardware - ideally each correlation product
would be stored in its own register.

39 of 121

FPGA Implementation of Correlator X Engine

+
X

Ĉan−1 [v0]

X

X

+

+ Ĉan+2 [v0]

(a)

+
X

Ĉan−1 [v0]

can
[v0]

S(an,j)[v0]

S(an,i)[v0]

X
S(an+1,j)[v0]

S(an+1,i)[v0]

X
S(an+2,j)[v0]

S(an+2,i)[v0]

+
can+2 [v0]

can+1 [v0]

+

Ĉan
[v0]

can+1 [v0] + can+2 [v0]

Ĉan+2 [v0]

(b)

Figure 4.7 – Correlation X-engine computing multiple time-slices simultaneously. Exter-
nal communications are shown as solid lines and internal communications
are shown as dashed lines. (a) a simplified diagram not showing all inputs
and intermediate outputs which are shown in (b).

will affect how well the design will scale with increasing PEs. Internal memory accesses are
effectively free as an internal output on a PE is internally wired to the input of the next PE
and is not under any constraint of external memory.

The different approaches in exploiting either frequency or time parallelism either widens or
deepens the pipeline. By computing time-slices in parallel, we have deepened the correlation
pipeline7 and kept the number of external memory accesses constant as the number of PEs
increase. On the other hand, computing spectral channels in parallel widens the pipeline and
requires more external memory bandwidth as the number of PEs increase. These effects are
shown in Figure 4.8.

Memory
Bandwidth

Fr
eq

ue
nc

y
Pa

ra
lle

lis
m

Processing
Resources

Time Parallelism

Figure 4.8 – Deepening the pipeline requires more processing resources, while widening
the pipeline requires both more processing and external memory bandwidth.

7Creating a systolic array

40 of 121

FPGA Implementation of Correlator X Engine

Disadvantages of exploiting time parallelism

Exploiting time parallelism minimises the external memory bandwidth requirements, but in-
troduces two complications to the correlator design: buffering and problems associated with a
deep pipeline.

Figure 4.9 shows how data is produced in minor and major time steps. The major time
step represents the number of minor time samples required before an FFT can be performed.
The grey blocks in the foreground represent data that is already available to be processed and
the colour shaded blocks in the background represent future data still to be produced. When
exploiting frequency parallelism, the current grey blocks are enough to begin processing the
correlation matrices. However, when exploiting time parallelism, we need future data still to
be produced before processing can begin. This requires buffering for as many major time steps
as there are PEs. If the software correlator is operating on pre-recorded data, this should not
be a problem, but buffering will be required when operating on live feeds.

The second complication is that by exploiting time parallelism, a deep pipeline is created. A
deep pipeline does not affect the throughput, but increases the pipeline latency. This increased
latency becomes a problem when control hazards, caused from branches, are introduced into
the pipeline. When a branch occurs, the entire pipeline needs to be flushed before the next
computation can begin. The larger the pipeline latency, the larger the branching penalty.
Removing these control hazards is dealt with in 4.3.

Time minor

Time major

0
1

N

FFT

Freq
Time major

Buffering

FPGA

C
h
a
n
n
e
l

1

C
h
a
n
n
e
l

0

FPGA

PCI-X

PCI-X

Figure 4.9 – Data production and the differentiation of major and minor time steps. A
number of major time steps are required before exploiting time parallelism.

4.1.4 Correlator Block Implementation Results

The Nallatech Dime-C compiler that was used to implement the correlator, only supports
traditional data types and does not have any native support for fixed-point arithmetic. For
this reason, all data storage and arithmetic in the correlator uses 32bit floating point numbers8.
Fixed-point arithmetic would most likely allow better utilisation of the FPGA hardware, but
Dime-C doesn’t have any native fixed point support, so the conversion would have to be done
manually. Additionally Dime-C uses the Xilinx Core Generator for floating point arithmetic,

8All data was complex and separate float arrays were used for the real and imaginary numbers.

41 of 121

FPGA Implementation of Correlator X Engine

which conforms to the IEEE-754 standard [42], making it more convenient to validate the
output with the CPU correlator’s output. The conversion to fixed point arithmetic falls outside
the scope of the project and is left for future work.

The Virtex 4 LX100 FPGA has enough resources to synthesise 11 PEs, using floating point
arithmetic. We had two Nallatech cards at our disposal, giving us a total of 22 PEs. This
meant we could compute 22 correlation products every clock cycle. Each PE consisted of 8
FPUs and the FPGA was clocked at 100MHz, resulting in a theoretical peak performance of
17.6 GFLOPs.

4.2 I/O Management - Feeding the pipeline

Supplying the processing engines with an uninterrupted flow of data is the ultimate goal of
parallel computation, as starvation causes under utilised resources. Data needs to be shipped
to the FPGA co-processor as efficiently as possible and stored in the most suitable memory
type and location to provide enough memory bandwidth for all PEs.

The H101 has both external SRAM and internal Block RAM memory banks as shown in
Table 4.1. Both types of memory are arranged into banks and each bank has a limited number
of accesses per clock cycle9. The Block RAM allowed our correlation design to be clocked at
155MHz while the SRAM can only be clocked at a slower rate of 100MHz. The Nallatech
H101 is connected to the host via an aging PCI-X bus, which was a memory bottleneck for
the correlator. The BRAM could accommodate the correlator’s inputs, but for every N inputs
there are N2/2 output correlation products, meaning that the output quickly fills up available
BRAM. Because of this, the slower but considerably larger SRAM was used to store outputs,
since the extra storage space allowed less frequent host-device communication, thereby reducing
the use of the slow PCI-X bus. Using the SRAMmeant that the correlator could only be clocked
at the slower rate. This reduces the theoretical peak performance of the correlator, but because
of the less frequent host-device communication, the actual performance increased.

Table 4.1 – Nallatech H101-PCIXM Memory Resources [43]

Static RAM Block RAM
Banks 4 240
Size/Bank 4MB 16kbits
Total Size 16MB 480KB
Bank Accesses/Clock Cycle 2 1
Clock Rate 100MHz 70 - 250MHz

Using FIFO buffers allows for asynchronous data transfers to the FPGA, which should min-
imise the host-device communication overhead. Surprisingly, asynchronous data transfers faired

9 Block ram has one read/write operation per bank and SRAM can perform two read/write operations per
bank.

42 of 121

FPGA Implementation of Correlator X Engine

worse than synchronous data transfers. This shouldn’t be the case, but investigating the cause
of this inefficiency was left for future work.

Double buffering10 was introduced to arrays requiring more than one access per clock cycle.
In all three correlator implementations, the correlation output needed an intermediate buffer
to support the two accesses per clock cycle - this is shown in Figure 4.10. A similar double
buffering scheme was introduced for the correlation input in one of the designs presented in
section 4.3.

X4 +

Ĉan−2 [v]Ĉan−1 [v]

Ĉan
[v]

(a) clock tick t

X4 +

Ĉan
[v]Ĉan−1 [v]

Ĉan+1 [v]

(b) clock tick t+1

Figure 4.10 – Double Buffering of the output.

4.2.1 Memory Use in the Correlation Engine

FPGA

Input Cache

Pipelined PEs

SRAM

DDR CPU

PCI-X

PCI-X

Figure 4.11 – Memory arrangement of the correlator X-engine.

Figure 4.11 shows the memory arrangement for the correlation engine. The input data was
stored in internal cache, composed from BRAM banks. Each cache bank can be accessed once
per clock cycle. The Dime-C compiler will only create pipelined processing elements if this is
not violated. Unless the PEs are pipelined, the performance is poor and therefore it is crucial to
double buffer the input in multiple cache banks. Figure 4.12 shows the data flow of a pipelined
and non-pipelined Dime-C processing block. See Appendix C.2 for more details on pipeline
and parallel execution on FPGAs. Figure 4.13 shows the correlation engine presented in Figure
4.7 connected to the respective memory interfaces.

10BRAM is dual ported, but because it provides input to the correlator, one port is connected to the host
and the other to the FPGA

43 of 121

FPGA Implementation of Correlator X Engine

Stage 1 Stage 2 Stage 3 Stage 4

data
[n+1]

data
[n]

data
[n+2]

data
[n+3]

(a)

Stage 1 Stage 2 Stage 3 Stage 4

data
[n]

(b)

Figure 4.12 – A 4 stage Dime-C processing block which has been fully pipelined in (a)
and serialized (b). (a) would have four times the throughput of (b)

Correlation X Engine

+
X

X

X

+

+

BRAM
Input

Cache

BRAM
Input

Cache

BRAM
Input

Cache

SRAM
Accumulation

Buffer

SRAM
Accumulation

Result

Figure 4.13 – Correlation X-engine and its external memory interfaces.

4.2.2 Dynamic RAM

The H101 also has 512MB DDR2 SDRAM, which has enough storage to dramatically reduce
the frequency the PCI-X bus is used by transferring data in large chunks at a rate of 400MB/s.
However, because of the indeterministic refresh cycles, the SDRAM cannot be used for DIME-
C pipelined access. In order to use the SDRAM, data transfers happen in two steps: PCI-
X to FPGA-SDRAM and then FPGA-SDRAM to BlockRam/SRAM. This added overhead
outweighed the benefit of better host communications, since we were achieving data rates of
about 300MB/s transferring directly to SRAM/BRAM.

4.3 Control - Keeping the Pipeline Full

The FPGA’s correlator X-engine’s performance is reliant on computing the correlation in par-
allel using multiple PEs, which has been discussed in Section 4.1 and Section 4.2. This section
looks at maintaining the data flow to the pipeline of a particular PE. Each PE computes the
correlation products for all baselines of a particular time-slice and frequency channel. Branch-
ing in the data flow introduces pipeline stalls, which must be avoided if possible. The penalties
for pipeline stalls are particularly severe because the correlation engine is deeply pipelined.

In this section we present three correlator designs, each with a different description of the data
flow. The first implementation has a more natural way of describing the correlation, column

44 of 121

FPGA Implementation of Correlator X Engine

by column, but introduces stalls in the correlator. The second describes a diagonal iteration of
the correlation kernel, which requires double buffering of the input, but avoids all stalls in the
pipeline. The third and final design is a modification of the second design, which removes the
need for double buffered input, but introduces a minimal number of redundant operations.

4.3.1 Design 1: Nested Loop

The original nested loop implementation of the triangular correlator kernel, as described in
Section 2.2, describes the correlation in an intuitive way, computing the kernel column by
column. ie starting with antenna 0 and multiplying it with all antenna greater than and equal
to itself and repeating for all other antennas.

The pseudo-code used to describe this kernel is shown below, with ‘i’ indexing the column
antenna, ‘j’ the row and ‘’Na’ the number of input streams:

for i = 0 to Na
for j = i to Na

c[i,j] += antenna[i] * antenna[j]

The problem with the above kernel description is that Dime-C only allows for the innermost
loop to be pipelined. Therefore for each column, the pipeline stalls, introducing Na×L bubbles
in the pipeline, where L is the pipeline latency. Figure 4.14 shows the kernel operations and
branches when there are 4 and 5 antennas in the array.

98

7

6

5

4

3

2

1

0

0 1 2 3

3
2

1
0

cij
i

j

(a) 4 antennas

1210

9

7

6

5

3

2

1

0

0 1 2 3

3
2

1
0

cij
i

j

131184 14

4

4

(b) 5 antennas

Figure 4.14 – Computation of the correlation with a nested loop PE. The stalls in the
pipeline are shown with red arrows. There will always be a pipeline latency
L even with no branches, but in (a) there is an additional 3.L stalls, giving
us a total of 10 + 3L + L clock cycles and in (b) an additional 4.L stalls,
giving us a total of 15 + 4L + L clock cycles. These pipeline stall penalties
could be avoided by using a different design.

With this nested loop description, it takes Na(Na+1)
2 cycles to compute the baselines and Na.L

cycles overhead for the pipeline stalls11. We also have to transfer the data across the the PCI-X
bus which we will denote as T . The total number of cycles taken is shown in Equation 4.4.

11This is again the baselines for a specific time slice and spectral channel.

45 of 121

FPGA Implementation of Correlator X Engine

Cycles =
(Na.(Na + 1)

2
+Na.L

)
+ T (4.4)

4.3.2 Design 2: Single Loop with Double Buffering

The previous implementation involved two loop variables to describe the triangular shape of
the correlation operations. The problem with this description is that only the inner loop can
be pipelined, affecting the performance of the correlator. What we want is a one dimensional
description of the correlators kernel which can be done by flattening or coalescing the nested
loop into a single loop. Describing the correlator as a single loop will result in a fully pipelined
solution, reaching close to peak performance.

3

2

1

0

0 1 2 3

3
2

1
0

7

6

5

4

11

10

9

8

15

14

13

12

i

j

(a)

(b)

(c)

for i = 0 to height
 for j = 0 width
 compute[i,j]

for k = 0 to height * width
 i = k div height
 j = k mod height
 compute[i,j]

Figure 4.15 – The square domain in (a) can be traversed by two loops variables, as
shown in (b) or as relation to a single loop variable, as shown in (c)

Figure 4.15 describes the traversal of a square domain using a modulo and scaled relationship
to a loop single variable. The ‘i’ and ‘j’ positions are trivial to compute because they have a
constant relation to the loop variable, specifically

i = k / height
j = k % height

In the triangular kernel’s case, we have a slightly more complicated situation, since the di-
mensions of the domain are not constant. In order to flatten the two loops into a single loop, we
need to relate a common loop variable to ‘i’ and ‘j’. The solution we used was to iterate down
the diagonal of the triangular domain. By using modulo arithmetic, the diagonal length was
constant. From this diagonal constant we could derive ‘i’ and ‘j’ from a single loop variable.
The diagonal iteration of the triangular domain is shown in Figure 4.16.

46 of 121

FPGA Implementation of Correlator X Engine

0

1

2

14

10

311

13

i
j 0 1 2 3

3

2

1

0

12 44

4

6 (1)

 5 (0)

5

6

7

8

9

Out of bound block
(will be wrapped around)Modulus value

Constant

diagonal length

(a)

0

1

2

14

10

311

13

i
j 0 1 2 3

3

2

1

0

12 44

4

5

6

7

8

9

(b)

Figure 4.16 – The traversal of the triangular domain along the diagonal. (a) showing
the traversal before modulation and (b) the result after modulating the
iteration variable.

This diagonal traversal was used to compute the correlation matrix using a single loop. This
allowed the Dime-C compiler to create a fully pipelined non-branching correlation engine. The
traversal is shown in Figure 4.17 and the pseudo code description is shown in Table 4.2.

47 of 121

FPGA Implementation of Correlator X Engine

5,10

0,5,10

1,6,11

2,7,12

3,8,13

i

j 0 1 2 3

3

2

1

0

4,9,144

4
Antenna Inputs

C
on

ju
ga

te
An

te
nn

a
In

pu
ts

(a) i = k mod Na, j = k mod Na

5

10

0

1

2

14

10

311

13

i

j (j mod NA) 0 1 2 3

3

2

1

0

12 44

4

6 (1)

 5 (0)

5

6

7

8

9

Antenna Inputs

C
on

ju
ga

te
An

te
nn

a
In

pu
ts

Constant

diagonal length

(b) i = k mod Na,j = (k + k/Na)
mod Na

0

1

2

14

10

311

13

i

j (j mod NA) 0 1 2 3

3

2

1

0

12 44

4

6 (1)

 5 (0)

5

6

7

8

9

Out of bound block
(will be wrapped around)Modulus value

Antenna Inputs

C
on

ju
ga

te
An

te
nn

a
In

pu
ts

(c)

0

1

2

14

10

311

13

i

j 0 1 2 3

3

2

1

0

12 44

4

5

6

7

8

9

Antenna Inputs

C
on

ju
ga

te
An

te
nn

a
In

pu
ts

(d) 15 + L

Figure 4.17 – In this figure we illustrate the single loop correlation engine behaviour.
Each block represents a baseline corresponding to antenna ‘i’ and ‘j’. The
number on the block records the value of the incrementing variable ‘k’ at
particular values of ‘i’ and ‘j’. The unshaded blocks and dashed borders
show which blocks will be ‘wrapped around’ using modulo arithmetic. (a)
is the result if we increment down the diagonal and modulate on the dashed
borders, which will result in repetition of the main diagonal. Instead what
we need is to increment ‘j’ twice on multiples of Na as shown in (b). This
extra incremental results in the kernel we want as shown in (c) before
modulo along the ‘j’ axis and in (d) after the ‘j’ axis modulo. More
examples are shown in Appendix E.1.

48 of 121

FPGA Implementation of Correlator X Engine

Table 4.2 – A comparison of the nested loop and single loop descriptions of the correlation kernel. Note that
the nested loop pseudo code has been slightly modified from the description in section 4.3.1, to
include an antenna buffer so that the antenna array is only read once per clock cycle. The single
loop implementation requires double buffered input because the antenna input stored in BRAM
is read twice per clock cycle, see Figure 4.17 for details.

Nested Loop Single Loop

baseline = 0
for i = 0 to num_antenna

antenna_buf = antenna[i]
for j = i to num_antenna

c[baseline++] += antenna_buf * antenna[j]

for k = 0 to num_baselines
k_mod = k % num_antenna
k_div = k / num_antenna
i = k_mod
j = (k + k_div) % num_antenna
c[k] += antenna[i] * antenna[j]

Additional Requirements on the Diagonal Description

The diagonal description requires commutative correction, more complex control and double
buffered input.

The commutative correction is a result of some correlation products being shifted to the upper
right hand corner as shown in Figure 4.17d and Figure 4.18. These correlation products have
had their inputs flipped, ie Sa,i[v]S∗a,j has become Sa,j [v]S∗a,i. Because of the conjugation of the
second input, the correlation products are not commutative. However, this is easily corrected
by applying Equation 4.5 in software12. Note that this only requires one correction for the
entire accumulation period, which has negligible performance impact.

Ci,j [v] =
A−1∑

a=0

Sa,i[v]S∗a,j [v]

=

(
A−1∑

a=0

S∗a,i[v]Sa,j [v]

)∗
(4.5)

In this implementation, more complex control is needed, as the single loop requires modulo
and division arithmetic which would have performance implications on a microprocessor, since
this would typically take more than a single cycle to compute. Fortunately, using FPGAs,
complex control only results in more logic utilisation and can still be computed in a single
cycle and so adds no major overhead.

Double buffering was required since the single loop description loads a new ‘i’ and ‘j’ value
every clock cycle, because of its diagonal iteration. Double buffering provides the means to

12See Appendix G.2 for commutative derivation details.

49 of 121

FPGA Implementation of Correlator X Engine

0

51

962

121073

i
j 0 1 2 3

3

2

1

0

131184 144

4 0 1 2 3

3

2

1

0

12 13

9 10 11

5 6 7 8

0 1 2 3 4
144

4

=

An
te

nn
a

In
pu

ts

Co
nj

ug
at

e
An

te
nn

a
In

pu
ts

Antenna Inputs
Conjugate

Antenna Inputs

Figure 4.18 – This figure shows that the correlation kernel can be computed as either
antenna[i] × antenna[j] or antenna[j] × antenna[i], as long as commutative
correlation in Equation 4.5 is applied on the mirrored outputs.

access the same memory cache twice per clock cycle. However, the repercussions are halving
the available input cache and increasing the host-device data transfers to fill the extra buffer.
Removing the double buffer is addressed in the next design.

Performance and Final Design

The performance in clock cycles of the single loop implementation can be described as:

cycles =
Na(Na + 1)

2
+ L+ 2.T , (4.6)

where Na is the number of antennas, L the pipeline latency and T the host-device transfer
delay. Therefore there are Na.(L − 1) fewer pipeline stalls than there are in the nested loop
implementation. However, in this implementation, there are twice as many host-device transfers
to fill the double buffered inputs.

4.3.3 Design 3: Single loop without double buffered input

The single loop implementation discussed above in section 4.3.2 requires double buffering of the
input, which halves the already limited BRAM and increases the host-device communication.

Removing the double buffering can be accomplished if some redundant operations are added.
By traversing down a fixed size column, we avoid the varying length columns of the nested
loop implementation and only require a single loop variable. We can also remove the double
buffering requirement in the previous single loop implementation, as we only need to load a
new ‘j’ value each clock cycle, with the ‘i’ value being copied from the ‘j’ value at the start of
each new column.

The length of the fixed column, lc, is the smallest multiple of antenna Na that includes all
the baselines Nb:

lc = dNb

Na
e

50 of 121

FPGA Implementation of Correlator X Engine

in integer arithmetic:

lc =
Nb + (Na − 1)

Na

This produces a less efficient processing kernel than the previous single loop implementation,
but halves the memory accesses. This also reduces the host-device data transfers, increases
operations per data sample and improves performance. The extra computation overhead is
always less than Na clock cycles, which is significantly less then the Na.L clock cycle overhead
caused by the pipeline stalls in the nested loop description. Figure 4.19 and Figure 4.20 show
the single loop implementation without double buffering operation. Table 4.3 is a pseudo code
comparison of the two single loop implementations.

51 of 121

FPGA Implementation of Correlator X Engine

0

3

6

14

2

95

11

i
j (j%K) 0 1 2 3

3

2

1

0

8 124

4

6 (1)

 5 (0)

1

4

7

10

13 3
Co

ns
ta

nt

co
lu

m
n

he
ig

ht

Antenna Inputs

Co
nj

ug
at

e
An

te
nn

a
In

pu
ts

(a)

0

3

6

14

2

95

11

i
j%K 0 1 2 3

3

2

1

0

8 124

4

1

4

7

10

13

Antenna Inputs

Co
nj

ug
at

e
An

te
nn

a
In

pu
ts

(b)

Figure 4.19 – Computing the correlation matrix using the single loop without requiring
double buffered input when Na = 5. Here lc = dNb

Na
e = d 155 e = 3. This

requires lc.Na + L = 15 + L clock cycles.

0

4

8

18

2

126

14

i
j (j%K) 0 1 2 3

3

2

1

0

10 164

4

6 (0)

 5

1

5

9

13

17 20

21

22

3

7

11

7 (1)

5

15

19

23

4

8 (2)

Redundant operation required
to maintain constant column height

(a)

0

4

8

18

2

126

14

0 1 2 3

3

2

1

0

10 164

4

 5

1

5

9

13

17 20

21

22

3

7

11

5

19

23

15

(b)

Figure 4.20 – Computing the correlation matrix using the single loop without requiring
double buffered input when Na = 6. Here lc = dNb

Na
e = d 216 e = 4. This

requires lc.Na + L = 24 + L clock cycles. The redundant operations are
shown as striped blocks. In this example there are 3 redundant outputs.

52 of 121

FPGA Implementation of Correlator X Engine

Table 4.3 – A comparison of the two single loop implementations. The single loop description on the left
loads a new value for ‘i’ and ‘j’ every loop iteration and thus requires double buffering. In the
right hand correlator description, ‘i’ is only changed at the start of a new column as shown in
Figure 4.19 and at this time is given the value of ‘j’. This only requires a single input buffer,
which allows for more efficient op/byte ratio. (Note that in the second last line of ‘Single Loop
- no Double Buffering’ i_val = i_val only occurs when i_val has previously been defined, so
i_val = i_val will never be an undefined state.)

Single Loop - Double Buffering Single Loop - no Double Buffering

for k = 0 to num_baselines
k_mod = k % num_antenna
k_div = k / num_antenna
i = k_mod
j = (k + k_div) % num_antenna
c[k] += antenna[i] * antenna[j]

length = (num_baselines + num_antenna - 1)/num_antenna
for k = 0 to num_baselines

k_mod = k % length
k_div = k / length
j = (k + k_div) % num_antenna
j_val = antenna[j]
i_val = (k_mod==0) ? j_val : i_val;
c[k] += i_val * j_val

4.4 Resource Utilisation

Table 4.4 below lists the FPGA resources used in the three implementations. This shows that
the majority of the FPGA resources were used in all implementations. Appendix E.3 also
contains figures of the Dime-C development environment and the final correlation firmware
interfaces.

Table 4.4 – Utilisation of Resources for the Different Correlator Implementations

Nested Loop
Resource Used Available % Used
Slices 41252 49152 83
DSPs 96 96 100
Block RAM 236 240 98
SRAM Banks 2 4 50

Single Loop - Double Buffering
Resource Used Available % Used
Slices 39812 49152 80
DSPs 96 96 100
Block RAM 203 240 84
SRAM Banks 2 4 50

Single Loop - no Double Buffering
Resource Used Available % Used
Slices 45075 49152 91
DSPs 90 96 93
Block RAM 191 240 79
SRAM Banks 2 4 50

53 of 121

FPGA Implementation of Correlator X Engine

4.5 Conclusion

The single loop implementation of the X-engine, without double buffering, managed to achieve
a 7x speedup over the single threaded 3.0GHz Xeon Harpertown implementation. The X-engine
design utilised the majority of the available resources on the FPGA, as shown in Table 4.4,
meaning our X-engine has grown to the capacity of the Virtex 4LX100 without under utilising
resources. In addition, all the pipeline hazards were removed. These two factors resulted
in a satisfactory optimised implementation. In Chapter 6, we discuss and elaborate on the
performance of the FPGA X-engine.

Having presented the FPGA X-engine in detail, we discuss the GPU implementation in the
next chapter.

54 of 121

Chapter 5

GPU Correlator Implementation

In this chapter, we discuss the GPU correlator design and implementation. The GPU CUDA
correlator design was based on work done by Harris et al. [14]. Harris’s idea is to take advantage
of CUDA’s multiple hardware threads and initialise a square domain of threads, ignoring the
triangular shaped correlation kernel. This will create dormant threads, but also create a simpli-
fied square correlation kernel. The lightweight nature of CUDA threads results in the dormant
threads adding little memory and processing overhead. The outcome is a clean description
of a square kernel, with a small overhead, and efficient linear memory addressing (coalesced
memory accesses). We were able to achieve a 12.5x speedup over the CPU implementation.

5.1 Design

5.1.1 System Overview

As with the FPGA correlator chapter, we begin by presenting a system overview of the GPU
correlator. Figure 5.1 shows a hybrid system of an F-engine CPU and the GPU performing the
X-engine operations. The uncorrelated data from disk is processed by the CPU which performs
the FFT channelisation. The output of the CPU’s F-engine is passed to the GPU via the PCIe
bus. The work is divided between the GPU’s Streaming Multiprocessors(SM) where each SM
performs part of the correlation. The result is fed back and stored on disk.

5.1.2 Design Considerations

Figure 5.2 shows how Nvidia’s CUDA GPU hardware is comprised of a number of vector
processes, called Streaming Multiprocessors (SMs), which execute a program called a block.
Since the number of SMs varies between generations and models, a CUDA application is
typically written with far more blocks than SMs. Each block will then typically be responsible
for a small portion of the entire application. In our case, each block calculated a baseline for
all frequencies and time.

Each SM is composed of 8 scalar processors (SPs), which are the processing elements which
actually execute CUDA block programs. Each block program consists of up to 512 threads,

GPU Correlator Implementation

X-Engine Data SourceF-Engine

Host
DDR CPU

PCIe

PCIe

Disk

GPU

SMSMSM

Ci,j Ci−1,j Ci−2,j

Figure 5.1 – The GPU correlator system design.

with each thread describing the operation each SP must execute [2]. Although there are 8 SPs
per SM, there is only one instruction issue unit [55]. For each clock cycle, each SP has a choice
to perform the issued operation or not to. If all SPs are performing the same operation in
SIMD fashion, they operate on 8 data locations in parallel, however, if they need to perform
different operations, their execution is serialised. Therefore it is important that groups of 32
threads, called a warp, within the block program are performing the same instruction on their
unique data 1.

The SMs are all connected to global memory via a common memory bus. Linear access to
global memory greatly improves data throughput, so in addition to blocks executing in SIMD
fashion, it is important to access sequential groups of data. This required antenna data to be
packaged in the order the SMs will read to ensure high memory throughput [2].

5.1.3 X-Engine Design

With the design considerations mentioned above, the GPU X-engine needs to divide the com-
putation of the correlation kernel into blocks, which can run independently. Each block needs
to perform its section of work by accessing linear memory addresses to ensure coalesced memory
access.

Figure 5.3 (a) shows the approach suggested by Harris [14], which we used to implement
our correlator X-engine. Here, each baseline was allocated to a separate block of code. Each
thread in the block is responsible for the correlation of a specific frequency channel within
that baseline as shown in Figure 5.3 (b). Therefore we are exploiting frequency and baseline
parallelism.

1The reason that a warp is 32 and not 8 is presumably to simplify thread scheduling and to allow for the
number of SPs per SM to grow in future generations.

56 of 121

GPU Correlator Implementation

DDR
bank

DDR
bank

DDR
bank

Arbiter

SM SM SM SM SM

SP

SP

SP

SP

SP

SP

SP

SP S
h
a
r
e
d

M
e
m

I
n
s
t
r

I
s
s
u
e

Figure 5.2 – CUDA Architecture. Inspired by Thomas et. al. [46, 2].

0,0
(0,0)

0,0
(0,0)

1,4
(-,-)

0,3
(0,3)

0,2
(0,2)

0,1
(0,1)

0,0
(0,0)

0,4
(0,4)

1,3
(1,4)

1,2
(1,3)

1,1
(1,2)

1,0
(1,1)

2,2
(2,4)

2,1
(2,3)

2,0
(2,2)

3,1
(3,4)

3,0
(3,3)

4,0
(4,4)

Time Slice 0

Time Slice 1

0,0
(0,0)

0,0
(0,0)

0,3
(0,3)

0,2
(0,2)

0,1
(0,1)

0,0
(0,0)

0,4
(0,4)

Input

SMSM

Correlation Output

freq baselinesfreq

(a) Block Operation

0,0
(0,0)

0,0
(0,0)

1,4
(-,-)

0,3
(0,3)

0,2
(0,2)

0,1
(0,1)

0,0
(0,0)

0,4
(0,4)

1,3
(1,4)

1,2
(1,3)

1,1
(1,2)

1,0
(1,1)

2,2
(2,4)

2,1
(2,3)

2,0
(2,2)

3,1
(3,4)

3,0
(3,3)

4,0
(4,4)

freq baselines

Time Slice 0

Time Slice 1

10 n

Threads

(b) Thread Operation

Figure 5.3 – GPU X-engine computation. In (a) each block is responsible for a single
baseline for all frequencies and time slices. (b) shows that each thread in a
block is only responsible for a single frequency, but for all time slices.

Exploiting frequency parallelism does not require more global memory accesses than time
parallelism as in the case of the FPGA implementation, since the intermediate accumulated
result can be stored in a buffer. Since each thread is only ever responsible for one frequency
channel, it does not need to write out the accumulation result until completion, as shown in
Figure 5.4.

5.1.4 Memory Ordering

To ensure coalesced memory accesses, we need to store the correlation input in a linear fashion.
Since each subsequent thread in a block is accessing a subsequent frequency for a specific time

57 of 121

GPU Correlator Implementation

CUDA
Thread

San
[v]

Ĉan−1 [v]

Figure 5.4 – CUDA thread I/O. The accumulation output is stored in the thread register
and isn’t written to global memory.

Freq
Time major

GPUPCIe

3D
FX

Antenna 0
Antenna 1 Antenna 0Antenna 1Antenna 0Antenna 1

Time Slice 0Time Slice 1
D
D
R

Address Space

Figure 5.5 – GPU Memory Management

slice, the memory needs to be ordered accordingly, as shown in Figure 5.5.

5.1.5 Allocating Blocks to Baselines

CUDA block programs are designed to be numerous and light weight so that once they have
completed execution on a SM, they can be quickly replaced with new blocks [2]. This con-
cept was exploited by Harris, who used a square grid of blocks, with only about half the
blocks performing useful computation, as shown in Figure 5.6. The blocks that fall outside
of the correlation kernel simply exit without doing any computation, freeing up SMs to do
useful computations. The advantage of a square grid with redundant blocks, is simplifying the
correlation kernel, allowing the block IDs to represent the respective antenna, specifically:

//blocks part of the correlation kernel
if BlockID_i <= BlockID_j

corr += antenna[BlockID_i] * antenna[BlockID_j]

//blocks outside the correlation kernel
else

terminate

5.1.6 Limitations of Design

The current GPU implementation allocates one block per baseline. Current Nvidia GPUs have
between 2 and 30 SMs, therefore if there are fewer baselines than SMs on a GPU, the GPU is
not being fully utilised. This is only a problem for small array experiments.

58 of 121

GPU Correlator Implementation

0 1 2 3

3
2

1
0

Block(i,j)
i

j

Figure 5.6 – GPU correlator X-engine block allocation. Only the shaded blocks perform
the correlation, while the others just exit. The advantage of a square grid
with redundant blocks, is simplifying the correlation kernel, allowing the
block IDs to represent the respective antenna.

In addition, each thread in a block is only ever responsible for one frequency channel of a
specific baseline. Currently, CUDA supports a maximum of 512 threads per block and the
correlator implementation can therefore only compute correlations with 512 or less frequency
channels. This could easily be a problem that would limit certain correlation experiments.
However, it should be relatively straightforward to expand a threads responsibilities to more
than a single frequency. This is left for possible future work and was not addressed in this
dissertation.

Nvidia state that Cuda can theoretically support up to 216 blocks [2]. Since each baseline is
computed in a block, this means that the GPU correlator can compute up to 216 baselines -
however we never tested this limit.

5.2 Implementation on Nvidia Geforce 9800GT

The Nvidia Geforce 9800 GT2 (G92) that was used in this project has 14 SMs, each containing 8
SPs. Therefore 112 correlation products are computed simultaneously (8 different frequencies
within the 14 baselines). Since the different SMs on a GPU act independently to compute
different baselines, the same design should scale to a larger GPU or a GPU cluster with more
SMs. Memory bandwidth is always a potential bottleneck, but according to specifications,
newer GPUs’ memory bandwidth has scaled with their compute capabilities (Nvidia GTX280)
[13].

5.3 Optimisation

Harris also suggests other approaches to computing the correlation matrix, including a group
parallel approach as shown in Figure 5.7. In this design, a thread’s responsibility is extended
to more than one baseline. This reduces the global memory access required, since many of
the baselines computed by a thread have the same ‘i’ and ‘j’ antenna input. Note, however,
redundant threads are still used to describe the triangular correlation kernel.

2The Geforce 9800GT is based on the same architecture as the Geforce 8800GT, both based on the G92
Nvidia architecture.

59 of 121

GPU Correlator Implementation

0 1 2 3

3
2

1
0

Block(i,j)
i

j

Figure 5.7 – The group parallel approach suggested by Harris. In this example each
thread is responsible for 4 baselines. The redundant baseline allocations are
the hollow blocks.

Although CUDA threads contain far less context than CPU threads, there is still some over-
head to thread creation, scheduling and context switching. Because of these overheads, the
redundant thread blocks suggested by Harris [14] should have some performance impact. The
MWA GPU correlator [16] also borrowed ideas from Harris, but removed the redundant blocks,
presumably with some performance increase.

Besides these two optimisations, careful tuning of the CUDA code, using information reported
by the CUDA profiler and other 3rd party applications can make a substantial increase in SP
occupancy and memory access performance 3.

Neither of the two optimisations were implemented, nor did major code tuning take place.
The reason for this is that the GPU correlator mainly served as a means to benchmark and
justify the FPGA correlator.

5.4 Conclusions

The X-engine GPU implementation achieved a 12.5x speedup over the single threaded 3.0GHz
Xeon Harpertown implementation. This speedup has been achieved with relatively little pro-
gramming effort compared to the FPGA implementation. This demonstrates the suitability of
GPU architecture to X-engine correlation. In the next chapter, we will discuss and evaluate
the Nallatech H101s and Nvidia CUDA GPUs for radio astronomy correlation.

3PTX assembly code and Decuda help provide useful insight into a CUDA program’s performance profile
[55].

60 of 121

Chapter 6

Performance Results and Discussion

This chapter presents and discusses the performance, scaling potential and power utilisation
of the co-processor implementations1.

We compare the co-processors’ performance against the CPU correlator implementation,
which makes use of the CPUs vector SSE instructions. Both correlator implementations were
tested on a range of antenna input streams and spectral channels. Speedups of 7x and 12.5x
were achieved on the FPGA and GPU correlator implementations respectively. While the
GPU delivers consistent performance, the FPGA performs poorly with 64 and fewer antenna
streams. Ignoring the time it took to move data from host to co-processor, speedups of 10.5x
and 13.5x were achieved on the FPGA and GPU correlator implementations respectively.

Although both implementations achieved speedups and better power utilisation than the CPU
implementation, the GPU implementation produced better performance in a shorter develop-
ment time than the FPGA. The FPGA implementation was hampered by the development
tools and the slow PCI-X bus, which is used to communicate with the host2.

We begin this chapter by presenting a variety of performance results from our correlator
implementations. This is followed by an evaluation of the co-processor implementations and
a performance comparison with other existing correlators. We end the chapter by concluding
with the results of our correlator implementations and discuss the areas where they succeeded
and areas which still require work.

6.1 Benchmark Environment and Method

In this section we describe the testing environment in which the correlator results were obtained.

6.1.1 Runtime Measurement

Benchmark runtimes include the total time or wall time, which includes the overhead of trans-
ferring the input and receiving the output from the co-processors, as shown in Figure 6.1. To

1Power utilisation was not measured directly but instead power estimation tools provided by the vendors
were used.

2The bus speed is a limitation of the vendor board not inherently of the FPGA.

Performance Results and Discussion

get high resolution timing, Intel Performance Primitive Libraries were used [57]. All transfers
were done synchronously, although asynchronous transfers could hide some of the data transfer
latency, which is left for future work.

C
om

m
s

Execution Time

C
om

m
s

Figure 6.1 – Typical Execution Time Contribution

6.1.2 Correlator Input

All input to the correlator was synthetic, single polarisation, complex-valued data, represented
in floating point format. Extensions to real world data and dual polarisations can be extended
as future work. Table 6.1 summarises the correlator input details3.

Table 6.1 – Benchmark Experiment Configuration

Accumulation period Polarisation Sample Representation
1000 time-slices single complex 64bit floating point (2×32bit floats)

6.1.3 Validation

The outputs of the two co-processors, as well as the optimised CPU correlator were compared
with each other. Float rounding errors were considered and a small variation in output was
allowed, typically 10−6. Although the Nvidia 9800GT does not adhere to IEEE-754 spec, the
output never deviated outside of our allowable error range. See Appendix D for more details
on output validation.

6.1.4 Benchmark Platforms

Table 6.2 shows the platforms used to run performance benchmarks for the three correlator
implementations.

3Auto-correlations were calculated in all experiments.

62 of 121

Performance Results and Discussion

Table 6.2 – Benchmark System Configurations

CPU GPU FPGA
Processor Intel Xeon Harpertown X5450 Nvidia Geforce 9800GT Xilinx Virtex 4LX100
Clock Rate 3.0GHz 1.5GHz 100MHz
Manufacturer Dell Zotac Nallatech H101
No. of Processors 1 1 2
Cores per Processor 4 14 1
No. Cores Used 1 14 1
Maximum SP FLOPS 48 GFLOPS 504 GFLOPS 20GFLOPS
Avg. Power Usage 120W 105W 25W
Host Machine Dell Xeon Dell Core 2 Duo Dell Xeon
Host OS Ubuntu 8.04 x64 Ubuntu 8.10 x86 CentOS 5.2 x64

6.1.5 Notes on Benchmarks

The Nallatech H101 host machine was populated with two H101s which our FPGA correlator
implementation took advantage of. The workload was then divided by frequency and split
between the two cards. Therefore, if there are v frequency channels, FPGA card one calculates
channels 1 to v

2 , while FPGA card two calculates channels v
2 + 1 to v.

The CPU implementation takes advantage of SSE vector instructions, but is a single threaded
application only executing on a single core. In Section 6.2.2 we normalise the performance
results to give a fairer comparison.

6.1.6 Arithmetic Intensity

An important concept for co-processor acceleration is arithmetic intensity. Arithmetic inten-
sity is the ratio of arithmetic operations to memory operations [2]. The FPGA and GPU
co-processors have better computational performance than the CPU, but data needs to be
transferred to and from the co-processor, which is an additional overhead that doesn’t apply to
CPU correlator. Correlation experiments with a high computational density re-use the same
data in a number of different calculations, reducing the percentage of time spent in host-device
communication.

In Chapter 2.5.1 we discussed the computational requirements of the X-engine and saw how
the computation scaled linearly with frequency channels, ‘Nc’ and quadratically with antennas,
‘Na’. Table 6.3 looks at the computation and communication requirements of the X-engine:

Table 6.3 – Computation vs communication as the number of antennas and frequency
channels increase.

Computation Communication Arithmetic Intensity Comp.
Comms.

Antennas Na(Na+1)
2 Na

(Na+1)
2

Frequency Channels Nc Nc 1

63 of 121

Performance Results and Discussion

In this table we expect to see better co-processor performance for experiments with a large
number of antennas, while the number of frequency channels should have little effect on per-
formance.

6.2 Final Implementation Benchmark Results

To help us evaluate the performance of our correlator implementations, we present a variety of
results testing different aspects of performance. More specifically:

i. GFLOPS

ii. Bandwidth per antenna stream

iii. Clock cycles required

iv. Speedup vs CPU

We also look at other aspects of our correlation implementations, including:

i. Host-device communication

ii. FPGA implementation comparison

iii. Power and performance ratios

iv. Detailed analysis of the speedup

v. Performance normalisation

vi. FFT performance

6.2.1 General Performance Results

In this section, we look at four important performance criteria which demonstrate the overall
performance of the correlator implementations. The next section will investigate more specific
performance criteria.

The figures in this section are formatted such that the top row, graphs (a) and (b), are the
results obtained when running the correlation experiment with a fixed number of frequency
channels, while the bottom row, graphs (c) and (d), show the results of running the correlation
experiment with a fixed number of antennas.

64 of 121

Performance Results and Discussion

Performance in GFLOPS (GFLOP/sec)

This section explores the effect the number of frequency channels and antennas have on the
GFLOPS of the correlator implementations. The results report how fast the correlator imple-
mentations can perform off-line correlation.

The GFLOPS were calculated as follows: for ‘Nb’ baselines, ‘Nc’ frequency channels and
‘A’ time-steps, the correlator performs Nb.Nc.A/runtime complex MAC per second. With 8
FLOPS per complex MAC, the correlator’s performance is 8.Nb.Nc.A/runtime FLOPS, which
in terms of antennas is 8Na(Na+1)

2 Nc.A/runtime FLOPS.

G
Fl

op
s

0

5

10

15

20

25

Antenna
32 64 80 128 256 512

FPGA(2xH101)
GPU
CPU

(a) 32 Frequency Channels

0

5

10

15

20

25

Antenna
32 64 80 128 256 512

(b) 256 Frequency Channels

G
Fl

op
s

0

5

10

15

20

25

Frequency Channels
32 64 128 256 512

(c) 32 Antennas

0

5

10

15

20

25

Frequency Channels
32 64 128 256 512

(d) 128 Antennas

Figure 6.2 – GFLOPS obtained on the correlator implementations.

Figure 6.2 graphs the performance of the three correlator implementations, measured in
GFLOPS. The GPU outperforms the other implementations by a wide margin. Both the
GPU and FPGA’s performance improve as the number of antennas increase, which increases
the compute intensity and decreases the percentage of time spent in device-host communication
as discussed in section 6.1.6. However, the FPGA’s performance improves more significantly as
the number of antenna inputs increases and comes closer to matching the GPU’s performance.
The greater impact that the increased arithmetic intensity has on the FPGA’s performance
suggests that the FPGA has a greater communication overhead than the GPU. Increasing the
number of frequency channels in the experiment has little effect on the correlator’s performance,
since it doesn’t affect the computation to data transfer ratio.

There exists a knee in the CPU performance for all graphs, except in (c). This is likely to be
attributed to the cacheing effect when the correlation dataset for a specific time slice exceeds

65 of 121

Performance Results and Discussion

the Xeon’s 3MB L2 cache per core. (c) has the smallest dataset and never more than the
CPU’s 3MB cache is required, explaining the absence of the knee.

Real-Time Bandwidth per Antenna

This section explores the effect the number of frequency channels and antennas have on the
bandwidth per antenna on the correlator implementations. The results report the maximum
bandwidth that can be processed with a live data feed. Obviously, higher antenna bandwidths
can be processed offline - but couldn’t be performed in real-time.

B
an

dw
id

th
 p

er
 S

tr
ea

m
 (

H
z)

102

103

104

105

106

107

Antenna
32 64 80 128 256 512

FPGA(2xH101)
GPU
CPU

(a) 32 Frequency Channels

102

103

104

105

106

107

Antenna
32 64 80 128 256 512

(b) 256 Frequency Channels

B
an

dw
id

th
 p

er
 S

tr
ea

m
 (

H
z)

102

103

104

105

106

107

Frequency Channels
32 64 128 256 512

(c) 32 Antennas

102

103

104

105

106

107

Frequency Channels
32 64 128 256 512

(d) 128 Antennas

Figure 6.3 – Real-Time Bandwidth per Antenna

Figure 6.3 graphs the effect the number of frequency channels and antennas have on the
real-time bandwidth per antenna, ‘B’, for the correlator implementations45. Each correlator
implementation is capable of computing roughly a constant number of CMAC/s 6. The number
of CMAC/s required for a single polarisation is B.Nb, therefore as Nb grows exponentially with
Na, we see an exponential drop in B as shown in (a) and (b).

In (c) and (d) Nb is constant, so B is also constant. This shows that the number of antennas
has little effect on the bandwidth, except for the CPU in (d), which has a drop in performance
due to cacheing effect mentioned in Figure 6.2.

4Note Figure 6.3 plots the log of bandwidth of antennas.
5The antenna input was assumed to be in analytic representation, therefore sampling occurred at half the

Nyquist rate.
6Each correlator implementation is only capable of computing roughly a constant number of CMAC/s, there

is performance variation as shown in Figure 6.2.

66 of 121

Performance Results and Discussion

Total Number of Clock Cycles Required

This section explores the effect the number of frequency channels and antennas have on the
number of clock cycles required to compute the correlation for 1000 time-slices.

The number of clock cycles required to compute the various correlation experiments was
calculated by runtime× clock-rate.

C
lo

ck
 C

yc
le

s

106

108

1010

1012

Antenna
32 64 80 128 256 512

FPGA 100MHz (2xH101)
FPGA gradient
GPU 1.5GHz
CPU 3.0GHz

(a) 32 Frequency Channels

106

108

1010

1012

Antenna
32 64 80 128 256 512

(b) 256 Frequency Channels

C
lo

ck
 C

yc
le

s

106

108

1010

1012

Frequency Channels
32 64 128 256 512

(c) 32 Antennas

106

108

1010

1012

Frequency Channels
32 64 128 256 512

(d) 128 Antennas

Figure 6.4 – Clock Cycles Required

Figure 6.4 graphs the number of clock cycles taken to compute the correlation. Larger ex-
periments have more cross products to compute, with the number of cycles required increasing
O(N) with the number of frequency channels and O(N2) with the number of antennas. The
different scaling of required cycles is reflected in the steeper gradient in (a). The FPGA re-
quires roughly an order of magnitude less cycles than the GPU, which in turn requires an order
of magnitude less than the CPU. Clock cycles can be loosely translated into power consump-
tion, and so this experiment roughly demonstrates the different power requirements across
different architectures, with the FPGA offering the best power efficiency. Power consumption
is discussed in more detail in section 6.2.2.

Achieved Speedup

This section explores the effect the number of frequency channels and antennas have on the
speedup of the correlator implementations.

67 of 121

Performance Results and Discussion

Sp
ee

du
p

0

5

10

15

Antenna
32 64 80 128 256 512

FPGA(2xH101)
GPU
CPU

(a) 32 Frequency Channels

0

5

10

15

Antenna
32 64 80 128 256 512

(b) 256 Frequency Channels

Sp
ee

du
p

0

5

10

15

Frequency Channels
32 64 128 256 512

(c) 32 Antennas

0

5

10

15

Frequency Channels
32 64 128 256 512

(d) 128 Antennas

Figure 6.5 – Achieved Speedup over the CPU.

Figure 6.5 shows the speedup over the CPU correlator, which was the ultimate goal of the
co-processor implementations. For reasons mentioned in the previous sections, the GPU and
FPGA implementations obtain the maximum speedup on large experiments. The GPU, at
best, obtained a speedup of 12.5x and the FPGA 7x over the CPU implementation.

In order to create a more detailed picture of the correlator’s profile, further experiments were
conducted. Theses are discussed in the next section.

6.2.2 Specific and Detailed Benchmarks

In this section, we present benchmarks which demonstrate specific aspects of the correlators’
performance. We will investigate: host-device communication overhead; the performance of
the different FPGA correlator designs; power and performance ratios; detailed analysis of the
speedup, performance and bandwidth results on the correlator implementations; FFT perfor-
mance; and result normalisation.

68 of 121

Performance Results and Discussion

Host-Device Transfer Impact on Performance
G

Fl
op

s

5

10

15

20

25

Antenna
32 64 80 128 256 512

FPGA communication impact
FPGA without comm. overhead
FPGA with comm. overhead
GPU communication impact
GPU without comm. overhead
GPU with comm. overhead

(a) Transfer Impact on Performance

M
ax

 T
ra

ns
fe

r
R

at
e

(M
B
/s

)

0

200

400

600

800

1000

1200

1400

FPGA's PCI-X GPU's PCIe 2.0

(b) Expansion Bus Performance

Figure 6.6 – Host-Device Transfer Impact

Host-device communication overhead can impact the performance of accelerator cards quite
significantly. The normal operating process is to transfer data to the FPGA or GPU, do the
cross correlation and then transfer the data back to the CPU (as shown in Figure 6.1). To
measure the transfer times, we ran two sets of timed experiments. Firstly, timing the entire time
to compute cross-correlation and secondly, the time taken to compute the cross-correlations
once all the relevant data had been loaded on the co-processors. These times benchmarks the
host-device bus performance, not the accelerator chip-architecture itself.

Figure 6.6 (a) shows the performance impact that the host to device transfer have on the
correlator implementations. The blue shading and the striped pattern represent the perfor-
mance lost due to host-device communication for the FPGA and GPU respectively. The larger
size of the blue shaded region compared to the striped pattern demonstrates the poor perfor-
mance of the FPGA’s PCI-X bus. Figure 6.6 (a) demonstrates that the same performance
can be achieved for correlation experiments with a small number of antenna, if host-device
communication overheads are ignored. FPGA is affected by the host-device communication
bottleneck more significantly due to the slower PCI-X bus as shown in 6.6 (b) and therefore
has the greatest improvement as the computation-communication ratio increases. The CPU
correlator does not feature since it has zero transfer overhead.

Figure 6.6 (b) details the difference in transfer rates achieved across the expansion bus on the
FPGA and GPU. Clearly, the FPGA’s expansion bus performs much worse than the GPU’s.

It is interesting that both buses perform quite significantly under spec, with the PCI-X being
advertised as having a maximum transfer rate of 1GB/s and the 8xlane PCIe 2.0 advertised as
having a maximum transfer rate of 8GB/s. From these benchmarks, it is unclear whether the
host system or the device was the cause of the worse performance. In the next section, we add
a second FPGA to the PCI-X bus and find that the overall bandwidth across the PCI-X bus
increases, indicating the FPGA’s bus performance is the cause for the bottleneck.

69 of 121

Performance Results and Discussion

FPGA Implementation Comparison
G

Fl
op

s

0

5

10

15

20

Antenna
32 64 80 128 256 512

FPGA (nested loop)
FPGA (single loop with double buffer)
FPGA (single loop no double buffer)

(a) FPGA Implementations
G

Fl
op

s

5

10

15

20

Antenna
32 64 80 128 256 512

2 x FPGAs
1 x FPGA
double 1xFPGA

(b) FPGA Scaling

Figure 6.7 – FPGA Implementation Comparison

Figure 6.7 (a) shows the performance of the three different FPGA implementations as discussed
in Chapter 4. The single loop with double buffering could only run smaller experiments due
to its larger memory requirements. The final FPGA design performed about 50% faster than
the original nested loop implementation.

Figure 6.7 (b) shows the performance scaling with the number of FPGAs used in the imple-
mentation. The performance using a single H101, using both H101s, and the linear scaling in
performance with two H101s. The blue shaded region is the difference between linear scaling
and the actual performance achieved when using two H101s. Note that we achieved close to
linear speedup when using the two FPGAs, indicating that the host’s PCI-X bus is able to
scale well with the two expansion cards. By adding an extra FPGA card, we have doubled the
required data throughput on the host PCI-X bus, but not on each device. The linear increase in
speed seems to indicate that the FPGA’s PCI-X performance is the main cause for the sub spec
performance presented in the previous section. This, however, does not mean that the PCI-X
bus delivers enough bandwidth to the FPGA correlator, rather the host-device inefficiencies in
Figure 6.6 are not related to populating two FPGAs in a single host.

70 of 121

Performance Results and Discussion

Power and Performance Ratios

W
at

ts

0

30

60

90

120

M
Fl

op
s/

W
at

t

43

210

268

Architecture
CPU GPU FPGA

Watt
MFlops/Watt

(a) Power Consumption

C
os

t
(U

SD
)

$0

$1,000

$2,000

$3,000

M
Fl

op
s/

$

2.1

26

110

Architecture
FPGA CPU GPU

Cost
MFlops/Dollar

(b) Purchase Price

Figure 6.8 – Performance Ratios

Figure 6.8 (a) shows the peak power consumption for the three architectures and the power
efficiency in MFLOPS/Watt. The GPU and CPU have similar power requirements but the
GPUs superior performance results in a higher Flop/Watt ratio. The FPGA is the architecture
which offers the best Flop/Watt performance, but is also by far the most expensive as seen in
Figure 6.8 (b). However, the price of FPGAs vary considerably depending on the quantity,
model and manufacturer. The price listed was based on the cost to equip our lab with two
Nallatech H101s. Note that these figures are excluding the cost and power consumption of the
host systems for the FPGA and GPU 7.

Speedup Details

Sp
ee

du
p

0

5

10

15

Antenna
4 8 16 32 6480 128 256 512

FPGA(2xH101)
GPU
CPU

0

2

4 8 16 32

(a) 32 Frequency Channels

>7
6
5
4

3
2
1
<1

Speed Up

Fr
eq

ue
nc

y
C

ha
nn

el
s

0

100

200

300

400

Input Antenna
0 100 200 300 400 500

(b) FPGA speedup vs. CPU

Figure 6.9 – Speedup Details

Performance figures for experiments with less than 32 antennas were not shown because of the
poor co-processor performance, as shown in Figure 6.9 (a).

7Power utilisation was not measured directly but instead power estimation tools and data sheets provided
by the vendors were used [43] [56] [58].

71 of 121

Performance Results and Discussion

Figure 6.9 (b) is a 2D speedup graph, with the x-axis representing the number of antennas,
the y-axis the number of frequency channels and the colour the speedup achieved. (b) reiterates
the poor FPGA performance for a small number of antennas as shown in (a).

GFLOPS Details

>13
12
11
10
8

5
4
3
2
<2

GFlops

Fr
eq

ue
nc

y
C

ha
nn

el
s

0

100

200

300

400

Input Antenna
0 100 200 300 400 500

(a) FPGA

>13
12
11
10
8

5
4
3
2
<2

GFlops

Fr
eq

ue
nc

y
C

ha
nn

el
s

0

100

200

300

400

Input Antenna
0 100 200 300 400 500

(b) CPU

Figure 6.10 – GFLOPS Details

Figure 6.10 (a) and (b) are 2D colour graphs for a varying number of frequency channels
and antennas. Figure 6.10 (a) shows the GFLOPS achieved on the 2 Nallatech H101s, which
illustrates that the FPGA’s performance is dependent on the number of antennas, not the
number of frequency channels. This is because the arithmetic intensity increases with the
number of antenna and is unaffected by frequency channels. The increased arithmetic intensity
results in a reduced percentage of the runtime spent in host-device communication and a greater
percentage of time is spent in computing the correlation matrix.

Figure 6.10 (b) shows the CPU sweet-spot in green, where the maximum performance of ap-
proximately 5 GFLOPS is achieved. As discussed in Figure 6.2, this is for smallish experiments,
where a time-slice can be computed entirely in CPU cache.

72 of 121

Performance Results and Discussion

Bandwidth Details
B

an
dw

id
th

 p
er

 S
tr

ea
m

 (
H

z)

104

105

106 1,222 kHz

516 kHz

143 kHz

41 kHz

12 kHz

Antenna
32 64 128 256 512

Baselines
528 2080 8256 32896 131328

FPGA
--N2

a/2

(a) 32 Frequency Channels

104

105

106

3,200 kHz

941 kHz

266 kHz

78 kHz

20 kHz

Antenna
32 64 128 256 512

Baselines
528 2080 8256 32896 131328

GPU
--N2

a/2

(b) 32 Frequency Channels

Figure 6.11 – Bandwidth Details

Figure 6.11 details the achievable bandwidth on the (a) FPGA and (b) GPU correlator with
32 frequency channels. The solid black line in both graphs is a −N2

a
2 line that intercepts the

bandwidth achievable with 32 antenna. This line shows the theoretical drop in bandwidth
as the number of baselines increase. The reason that the correlator implementations perform
above the line is because the correlator’s GFLOPS performance increases with larger array
sizes as shown and discussed in Figure 6.2.

FFT performance

The F-engine channelisation was performed by an FFT, using vendor specific libraries as dis-
cussed in Chapters 2.3.1 and 2.5.2. Since these libraries were developed independently and the
X-engine dominates the computational requirements of the correlator, as discussed in Chapter
2.5.1, there has so far been little mention of the FFT F-engine. However, the performance
of the F-engine must also be taken into consideration for software correlation acceleration.
Figure 6.12 presents the GFLOPS8 performance and speedup of the three architectures, CPU,
GPU and FPGA using the vendor libraries Intel Performance Primitives (IPP) Library v5.3.1,
Nallatech Single Core FFT [60]9 and CUFFT v2.0 [2] respectively.

8FLOPS was calculated using: 5N log2(N)/time to compute fft [59] .
9Nallatech have two FFT libraries: single butterfly and 11 butterflys. We could only get the single butterfly

version to produce the correct output. To compensate we divided the single butterfly FFT runtime by 11.
This is a reasonably accurate estimation, since the multiple butterfly version has 11 times the computational
hardware, and no additional communication overhead.

73 of 121

Performance Results and Discussion

G
Fl

op
s

2

5

10

20

50

Frequency Channels
32 64 128 256 512 1024 2048 4096

FPGA (1xH101)
GPU
CPU

(a) GFLOPS

Sp
ee

du
p

0

2

4

6

8

Frequency Channels
32 64 128 256 512 1024 2048 4096

FPGA (1xH101)
GPU
CPU

(b) Speedup

Figure 6.12 – FFT Details - (a) Reports the GFLOPS achieved on the three architec-
tures using the vendor FFT libraries. (b) Reports the speedup over the
CPU of the other architectures.

Figure 6.12 (a) reports the GFLOPS achieved on the three architectures using the vendor
FFT libraries. The graph shows that the 9800GT GPU far outpaces both the CPU and the
H101 FPGA, while the CPU and FPGA are closely match in performance10. Figure 6.12 (b)
shows the speedup of the other architectures over the CPU. As for the X-engine, the GPU is
the clearly performs best, with up to an 8x speedup11.

Both the FFT and correlation have similar processing requirement profiles, therefore if we
assume that the vendor FFT libraries are optimised, they provide a rough estimate for what
we could hope to achieve from an optimised X-engine using the different architectures. The
CPU in Figure 6.12 (a) achieved approximately 10 GFLOPS, while the CPU X-engine achieved
approximately 5 GFLOPS, which demonstrates that the CPU correlator X-engine implemen-
tation could potentially be further optimised. This is also true for our GPU implementation,
which achieves approximately 35 GFLOPS in the FFT benchmark but 23 GFLOPS in our
X-Engine correlation (excluding communication). On the other hand, using a single H101
achieves around 9.5 GFLOPS when running the FFT and our H101 X-engine achieves around
9 GFLOPS using a single FPGA. This suggests an optimised X-engine design.

10Note that Demorest [61] achieved similar performance when benchmarking the CUDA FFT library.
11These benchmarks were performed using only 1xFPGA, not both H101s as in the previous results. Addi-

tionally, no host-device communication overhead was considered in these performance results.

74 of 121

Performance Results and Discussion

Result Normalisation (4 CPU Cores)

B
an

dw
id

th
 p

er
 S

tr
ea

m
 (

H
z)

104

105

106

107

108

Antenna
32 64 128 256 512

Baselines
528 2080 8256 32896 131328

FPGA(1xH101)
FPGA(2xH101)
GPU
CPU (4 cores)

(a)

W
at

ts

0

30

60

90

120

M
Fl

op
s/

W
at

t

133

210

268

Architecture
CPU GPU FPGA

Watt
MFlops/Watt

(b)

Figure 6.13 – Normalised Performance Results – (a) Reports the normalised bandwidth
per stream using 32 frequency channels. (b) Reports the normalised power
performance ratios.

The CPU correlator implementation used the SSE vector instructions via Intel’s IPP library,
which makes use of the Harpertown Xeon’s SIMD capabilities. However, this was a single
threaded application, only utilising one of the four CPU cores, which causes the CPU perfor-
mance to be understated. On the other hand, our FPGA implementation used two FPGAs,
which causes the FPGA performance to be inflated. The results in Figure 6.13 are normalised
to show a fully utilised single processor12.

The normalised results paint a different picture compared to the previous results. The co-
processors lose the clear advantage over the CPU implementation for some of the benchmarks.
However, other factors like architecture generation should be considered for an unbiased com-
parison. Since the Virtex 4 FPGA is an older generation of technology compared to the more
recent G80 Nvidia GPU and Intel Harpertown CPU.

Result Normalisation (Improving CPU Cacheing)

The knee seen in the CPU performance is probably due to caching effects, as discussed before.
Cacheing effects can be significantly reduced if careful consideration is taken13. Therefore,
the knee in the CPU’s performance cannot be exclusively architecture related and a better
correlator implementation would probably avoid this. Additionally, if all four cores were used,
the knee would appear later, since there would be more cache available to the whole CPU.

6.3 Discussion of Benchmarks

In this section, we analyse the benchmark results above and conclude with the performance
results of our correlator implementations.

12The CPU performance was an estimate, calculated as 3.5x the single threaded implementation. The 0.5x
speedup difference is allocated to overhead.

13Eg BLAST with Matrix operations

75 of 121

Performance Results and Discussion

6.3.1 Correlator Design Efficiency

To evaluate the quality of the correlator implementations presented above, we can roughly
grade them by measuring the percentage of peak performance that they achieved. In addition,
assuming that the vendor FFT libraries are well optimised, they provide a benchmark indicating
realistic performance that can be expected from each architecture14. Table 6.4 and 6.5 show the
percentage of peak performance achieved and percentage of vendor FFT performance achieved,
with and without host-device communication on the FPGA and GPU co-processors15 16.

Table 6.4 – Performance of the FPGA Correlator Implementation.

Including Host-device Excluding Host-device
Communication Communication

Performance (GFlops) 12.5 17.2
Percentage of Peak Peformance 65% 90%
Vendor FFT Performance (GFlops) - 18
Percentage of FFT Performance - 95%

Table 6.5 – Performance of the GPU Correlator Implementation.

Including Host-device Excluding Host-device
Communication Communication

Performance (GFlops) 22 23.5
Percentage of Peak Peformance 6.5% 7%
Vendor FFT Performance (GFlops) - 35
Percentage of FFT Performance - 67%

Table 6.6 – GPU Correlator Implementation Profile.

SM Occupancy Coalesced Memory Access Warp Serialisation
67% 100% 0%

The FPGA correlator implementation delivers performance closely comparable to that of the
vendor FFT, which indicates that the FPGA implementation is reasonably well optimised.

14FFT has a similar processing profile to the correlator so we can expect similar performance.
15Together the two Virtex 4LX100 FPGAs could deliver a peak performance of 19.2 GFLOPS. Each FPGA

could implement 96 FPUs in Dime-C, giving us a total of 192 FPUs with both the H101s. The cards were
clocked at 100MHz (The clock was limited to 100MHz because of the SRAM) and therefore produce a peak
performance of 19.2 GFlops.

16The Geforce 9800GT with its 112 SP clocked at 1.5GHz could deliver 336 GFLOPS at peak performance.
Each SP can perform a MADD and MUL per clock cycle, but only the MADD operation is useful in our case.
Therefore, 336GFLOPS was quoted instead of 504GFLOPS.

76 of 121

Performance Results and Discussion

On the other hand, the GPU fairs slightly worse in terms of percentage of peak performance
reached, meaning there is room for code optimisation. Table 6.6 is a summary of the CUDA
correlator profile, which indicates that our GPU correlator is achieving linear memory access
and that each warp is executing the same branch of code. However, SM occupancy could be
improved by thinning register usage, which allows for more active warps to run simultaneously.
If more warps are scheduled, higher memory latency can be tolerated before performance dete-
riorates. Although the GPU correlator is less efficient than the FPGA implementation, there
was significantly less development effort invested in it and the GPU optimisations mentioned
in Chapter 5.3, would be a good starting point to improve the efficiency if the GPU correlator
development was continued.

6.3.2 Estimated Scaling with Future Hardware Generations

The technologies used in this thesis are no longer cutting edge. As technologies follow Moore’s
Law, older generations’ performance is quickly dwarfed by the new architecture models. As
a continuation of the discussion on performance normalisation in section 6.2.2, we attempt to
project a fair comparison between the different correlator implementations by estimating the
performance of our correlator implementations on the latest hardware.

To estimate performance on current technologies, we use a straight forward method of com-
paring the specifications of the hardware used in this thesis and that of current hardware gener-
ations. This simplistic approach overlooks some implementation factors that would be involved
in porting our correlator implementations to future hardware, but produces a rough estimate of
what could be achieved. Table 6.7 shows the peak performance difference of the different pro-
cessing technologies and Figure 6.14 graphs the performance of our correlator implementations,
assuming this theoretical difference can be translated into real world performance.

Table 6.7 – Processor Performance Growth

Xilinx Virtex 4 Xilinx Virtex 6 Resource
LX100 SX475T Growth

DSPs 96 2,016 21x
Logic Cells 110,592 476,160 4.3x
BRAM (Kbits) 4,320 38,304 9x
Release Date 2005 2009 -

FPGA Resource Growth [8, 10]

Nvidia Geforce Nvidia Geforce Performance
9800GT (G92) GTX285 (GT200) Growth

Theoretical Peak 504 1,063 2.1x
Release Date 2007 2008 -

GPU Performance Growth [56, 13]

77 of 121

Performance Results and Discussion

Intel Xeon X5450 Intel Xeon W5580 Performance
Harpertown Nehalem Growth

SPEC CPU2006 26.3 37.3 1.4
Release Date 2007 2009 -

CPU Performance Growth [62]

B
an

dw
id

th
 p

er
 S

tr
ea

m
 (

H
z)

104

105

106

107

108

Antenna
32 64 128 256 512

Baselines
528 2080 8256 32896 131328

Virtex 6 SX475T (20 x H101)
Virtex 6 SX475T (10 x H101)
Geforce GTX285 (2 x G80)
Nehalem (1.4 x Harpertown)

Figure 6.14 – Performance scaling with future hardware generations.

In the above Figure 6.14, we assume that our correlators’ performance scales linearly with
the change in peak of newer technologies.

When comparing the scaled correlators’ performances, our FPGA implementation performs
by far the best, offering 20x the Nallatech H101’s performance. The bigger jump in performance
the FPGA experienced over other architectures can be contributed to two aspects. Firstly, the
Virtex 4 is four years older than other latest corresponding technology, while the CPU is two
years older and the GPU is only one year older. Secondly, the Virtex 4LX100 is mid-range in
the Xilinx LX family. Characteristics of the LX family include large numbers of logic cells, but
only few hardwired DSPs - the DSPs are important for computationally intensive applications
like correlation and were the limiting factor in our correlator implementation. These factors
account for the 20x growth in DSPs and our 20x estimate FPGA correlator performance.

However, the 20x estimation only considers DSP resources, while other resources such as logic
cells have seen less growth. Although the logic cells were not the resource limitation, a 20x
sized H10117 would need significantly more interfaces and control logic, requiring logic cells. A
more conservative estimate of performance growth would likely be 10x the H101, which is also
shown in Figure 6.14, which would still deliver better performance than the CPU and GPU
correlator implementations.

Note that we have not considered external I/O concerns. A larger correlation element would
need larger I/O capabilities, which would likely need multiple high speed connections such as
10GbE or PCIe. The bottleneck of getting data into the correlator has not been considered in
this performance scaling.

Although Figure 6.14 is a simplistic and idealised view of the scaling of our correlator imple-
mentations, it shows that the age and family choice of the FPGA contributes to its relatively
poor performance when compared to the GPU.

17These performance figures are 20x a single H101.

78 of 121

Performance Results and Discussion

6.3.3 Result Conclusions

The following is a summary of the above performance results.

The GPU correlator implementation offered the best performance of up to a 12.5x speedup
over the CPU, as well as the best FLOP/$ ratio. The FPGA implementation, while being faster
than the CPU, is only roughly half the speed of the GPU and is 30x the cost. The FPGA does
however, offer better FLOP/Watt performance. When comparing the correlators’ GFLOPS
performance with the vendor FFT libraries, we see that the FPGA correlator achieves similar
performance, indicating that it is well optimised. In comparison, the GPU correlator achieves
2/3 of the vendor FFT performance, indicating that it is moderately optimised with room to
grow.

When the results are normalised to estimate the performance on all four cores on the CPU,
the GPU is at best 4x faster and the FPGA is 3x faster18 - making the co-processor correlators
less appealing than they previously appeared. However, if we look at the advancements in
FPGA,GPU and CPU technologies and apply the same scaling to our correlator implemen-
tations, we find that we may expect up to 30x and 6x the performance of the CPU with the
FPGA and GPU respectively19. This highlights that the age and family choice of the FPGA
contributes to its relatively poor performance when compared to the GPU.

Both correlators suffer from host-device communication overhead, which is reduced when the
arithmetic intensity increases. However, the FPGA’s performance is affected more considerably
due to its slower PCI-X bus.

6.4 Comparison with Other Correlators

Besides looking at performance and correlator efficiencies, a good benchmark is to compare
the performance of our correlators with other correlators. Unfortunately, this is extremely
difficult to do accurately. Many correlators report the bandwidth that can be processed for
a certain sized array and how many processing nodes are used. However, the functions and
capabilities20 performed by the correlator vary. Some correlators only report performance of
the F-engine, X-engine, data transfers and marshaling all as a single figure, while others report
each section separately. Some correlators, such as the CASPER project, are designed to be
hardware independent and report the number of X-engines required for a particular antenna
array. However, the number of processing nodes needed to implement the CASPER X-engines
will depend on the implementation platform.

Another large consideration is the correlator interconnect. Large correlators are almost always
built from separate processing nodes and because of this, the interconnect design and capabil-
ities influence the scaling of the correlator design considerably [63, 64]. Generally, benchmarks
for single node correlators do not consider the interconnect and packetisation involved in scaling
up correlation, such as in this dissertation.

18The FPGA correlator is 3x faster than the 4 core CPU implementation when using 2xH101s and 1.5x faster
when using only a single H101.

19The speedups are best case scenarios, and these are probably not achievable in practice.
20Capabilities include ADC sample size, whether dual or single polarisation is used, etc.

79 of 121

Performance Results and Discussion

A further consideration not taken into account is the correlator’s power consumption. Pow-
ering large correlators is expensive, especially in remote locations, so power efficiency is very
important in production correlators. However, the power requirements of the different correla-
tors are not reported here.

Taking these factors into consideration, a comparison of different correlators is shown in Table
6.8.

Table 6.8 – Performance of Other Correlators

Antenna Polarization Bandwidth Processor Correlation Bandwidth
Nodes per Node

DiFX 20 dual 64MHz Pentium 4 300 0.2MHz
GMRT 32 dual 32MHz Quad-core Itanium 16 2MHz
UWA(1)(2) 32 single 90MHz Nvidia 8800GTS 1 90MHz
MWA(1)(2) 32 dual 3.7MHz Nvidia Tesla C1060 1 3.7MHz
CASPER(1) 32 dual 250MHz ROACH V5SX95 4 62.5MHz

(1) Does not include the cost to Fourier transform the data.
(2) Does not include the cost of host-device communication.

Source: DiFX [5]; GMRT [65, 66], UWA [14, 67, 63], MWA [16, 68], CASPER [63, 64].

B
an

dw
id

th
 p

er
 S

tr
ea

m
 (

H
z)

103

104

105

106

107

108

Antenna
20 32 64 128 256 512

Baselines
528 2080 8256 32896 131328

GPU
CPU
FPGA (1xH101)
GMRTper core

DiFXper core
UWAper core
MWAper core
CASPERper core

(a)

B
an

dw
id

th
 p

er
 S

tr
ea

m
 (

H
z)

103

104

105

106

107

108

109

Antenna
20 32 64 128 256 512

Baselines
528 2080 8256 32896 131328

GPU
CPU
FPGA (1xH101)
GMRT per core

DiFX per core
UWA per core
MWA per core
Casper per core

(b)

Figure 6.15 – Performance Comparison of Various Correlators

Figure 6.15 (a) plots the points results quoted in Table 6.8, while Figure 6.15 (b) interpo-
lates the performance for different numbers of antennas by assuming a quadratic decrease in
bandwidth as the number of antennas increases.

Our software correlator performs better than the other two software correlators, the DiFX
and the GMRT software correlators, until the cacheing effect influences our CPU correlator’s
performance. However, the DiFX and the GMRT software correlators are performing all cor-
relator functions and are distributed nodes, with the interconnect overhead included in the
results, while neither of these factors are included in our results.

80 of 121

Performance Results and Discussion

Both the MWA and UWA21 GPU correlators perform better than our GPU correlator im-
plementation. The MWA uses a more capable Tesla GPU, which accounts for some of their
performance gain. In addition, we have known inefficiencies in our implementation. The UWA
seems to have unrealistically high performance results using a single 8800 GTS GPU, but our
interpretation of their results may be incorrect and we advise you to see Chris Harris’s paper
[14]. The GPU correlators only include the X-Engine performance results and do not consider
scaling to multiple nodes.

The CASPER FPGA correlator performs considerably better than our implementation. This
is due to a much more capable FPGA and some clever correlator design.

Again, it’s very difficult to compare different correlators’ performances, but Figure 6.15 shows
that we are producing realistic performance results. However, a true performance comparison
would need a far more detailed analysis than what is presented in this section.

6.5 Conclusions on the Co-processor Correlator Implementa-
tions

In this section we discuss the merits of the co-processor correlator implementations and their
suitability for simple correlator X-engine acceleration.

6.5.1 Evaluation of Nvidia CUDA GPUs for Software Correlation Acceler-
ation

The GPU implementation achieved a maximum speedup of 12.5x the CPU implementation’s
performance when including host-device communication and 13.5x when host-device commu-
nication is ignored. This speedup is encouraging given that much less time was invested in the
GPU correlator development than was spent developing the FPGA correlator. These speedup
results are promising because we achieved the speedup even though the code wasn’t fully op-
timised, as discussed in section 6.3.1.

The size and rapid growth of the active CUDA development community creates confidence
in its future support. CUDA is a well engineered and accessible development tool, with which
we became familiar without much difficulty. Additionally, online forums and tutorials are an
invaluable resource for CUDA development, which is sorely missed from Dime-C.

6.5.2 Evaluation of Nallatech H101 for Software Correlation Acceleration

The FPGA implementation achieved a maximum speedup of 7x the CPU implementation’s
performance when including host-device communication and 10.5x when host-device commu-
nication is ignored. Despite the speedup, the development effort and hardware costs do not
justify using the Nallatech H101 for our simple software correlation acceleration. However,

21Made by Chris Harris from the University of Australia (UWA).

81 of 121

Performance Results and Discussion

the smaller power requirements are attractive for large clusters and newer FPGA generations
offering far more processing resources than the Virtex 4LX100s.

The development of the FPGA correlator used Dime-C, a C-to-HDL development environ-
ment from Nallatech, as introduced in Chapter 3.2. Dime-C succeeds in providing a more
familiar environment for software developers than using HDLs, where pipelining and paral-
lel execution are not automated. This gives FPGA application development a jump starts.
However, the disadvantage is that Dime-C does not have the active user community, mature
development environment, documentation and existing library development that traditional
HDLs have. These factors became increasingly important as the FPGA correlator develop-
ment progressed, where more detailed information and examples could help highlight certain
aspects and behaviour of Dime-C.

Many of the problems encountered with the FPGA implementations, could be rectified if there
were more flexibility in the Dime-C compiler. The need to write intermediate accumulation
results back to external memory creates a memory bottleneck, and ultimately impacts the
performance (as mentioned in Section 4.1.3). In a pure VHDL/Verilog correlator, these results
could be stored in internal registers, which would greatly alleviate the memory bandwidth
problem.

As mentioned above, the cost of FPGA accelerator cards vary, but they are generally expensive
in comparison to GPU and CPU architecture. However, the power and cooling requirements
of large CPU clusters are much higher than that of FPGA clusters, offsetting the initial higher
FPGA purchase price. Nevertheless, the running expense is generally only a consideration for
large computing clusters, but we are only concerned with small scale correlation.

It should also be noted that the Virtex 4 FPGA is an older generation of technology, released
in 2005, while the G80 Nvidia GPU and Intel Harpertown CPU were released in 2007. Ad-
ditionally, the old parallel PCI-X interface is considerably slower than the PCIe interface on
the GPU. Newer Virtex 6 FPGAs offer 20x the resources than the Virtex 4LX100 used in this
project, which should translate into a significant performance increase. Furthermore, floating
point arithmetic22 was used for the FPGA correlator and the number of FPGA processing
elements and memory throughput could be increased by using fixed point arithmetic and fewer
bits per sample.

Arithmetic precision is an area that is important to mention as it can have significant perfor-
mance impact. We used 32bit floating point arithmetic as a matter of convenience to compare
accuracy across the different correlator implementations and to allow compatibility to the DiFX
correlator23. However 32bit floating point precision requires about three times the FPGA re-
sources and double the bandwidth of 16bit fixed point arithmetic. Additionally radio astronomy
correlation can be implemented with much lower precision than 32bits without sacrificing the
accuracy of the result. For these reasons, production correlators usually use 16 bit or 8 bit fix
point arithmetic. Due to time limitations lower precision solutions were not investigated, but
could significantly improve the FPGA’s performance and are worth considering.

Considerable development effort was spent optimising the FPGA correlator kernel and we
were able to achieve 90% of the peak performance. Much less time was invested in the GPU

22The choice of using floating point arithmetic was mainly due to convenience.
23This was the original intension of the implementation.

82 of 121

Performance Results and Discussion

development and it already outperforms the FPGA implementation, while not being fully
optimised.

All these factors justify using GPUs to accelerate small-scale software X-engine correlation.

83 of 121

Chapter 7

Conclusion and Future Work

This chapter discusses possible future work and finally concludes with the co-processor corre-
lator implementations.

7.1 Future Work

The correlator development in this thesis concentrated on the X-engine, but both the FPGA
and GPU have shown to have good FFT performance and are commonly used to accelerate the
F-engine. Vendor FFT libraries already exist for these platforms, therefore there should not be
major development effort to integrate the libraries into our correlator. In Addition, we could
use polyphase filter banks for F-engine channelisation as they are commonly used to provide
less spectral leakage than FFTs. The polyphase filter bank development is another possible
avenue for future work.

The FPGA implementation could be improved by using smaller sample sizes and fixed-point
arithmetic, replacing the 32 bit floating point data representation. Adding asynchronous trans-
fers will help combat the slow PCI-X interface on the Nallatech H101s. It would also be inter-
esting to measure our FPGA correlator’s performance on current generation technologies, such
as Xilinx’s Virtex 6 with a PCIe 2.0 interface. This should theoretically provide roughly 20x
more computation and significantly better host-device memory bandwidth.

The GPU implementation is currently not fully optimised and there are still opportunities
to implement some of the optimisations mentioned in Chapter 5.3. Using GPU development
tools1 to more thoroughly profile the GPU execution, we could identify further optimisations.
However, there are currently more complete GPU correlators available, such as the MWA GPU
correlator, which would serve as a better starting platform for future correlation development.

7.2 Conclusion

Both the co-processor correlators have successfully achieved speedups over the CPU correlator,
are more power efficient, and in the case of the GPU, provide more performance/$. The

1The GPU tools we refer to include: tools available from Nvidia (Profiler and PTX assembly code) and from
other 3rd parties (eg. decuda).

Conclusion and Future Work

increased compute density of the co-processor correlators mean that fewer processing nodes
are needed, bringing down other infrastructure cost, such as space and network interconnect
requirements.

Although both the GPU and FPGA correlator implementations do offer better performance
over the CPU, the GPU correlator development was considerably less time-consuming and
the hardware more affordable. However, the FPGA implementation does offer better power
utilisation, which does bring down the running costs if large correlator implementations are
needed. In conclusion, GPUs do offer an inviting platform for software correlation acceleration
but it is difficult to justify the H101 for correlation acceleration for small to medium compute
clusters.

85 of 121

Appendix A

Source Code and Project Directory

Please find the DVD attached to this dissertation. All source code and related files to this MSc
can be found on the DVD.

Appendix B

Astronomy Background

B.1 Angular Resolution

Angular resolution describes the angular distance between two point sources that can be dif-
ferentiated by an aperture. Because of the diffraction effect, an antenna beam has side lobes,
which are sensitive to sources outside the main antenna beam, limiting resolution, as shown in
Figure B.1.

When a planar electromagnetic wave enters an aperture, the electromagnetic wave is distorted
in what is called a diffraction pattern. Therefore a finite sized aperture cannot correctly record
the radio brightness without some distortion of the original signal, as shown in Figure B.1.

(a) (b)

Figure B.1 – (a) The original point source. (b) The diffracted recording of a point
source through a finite sized aperture

The diffraction distortion is due to the interaction of the original EM wave with the edges
of a finite sized aperture, which creates the fringe pattern of destructive and constructive
interference. Diffraction effects all types of EM waves when entering an aperture, but is more
severe for longer wavelengths. The diffraction fringe in Figure B.2 can be described as a
function of sinc(θ), where θ is the angular offset from the pointing direction of the aperture.
The distance to the first zero of the diffraction pattern of a circular aperture is given by
Equation B.1 [69]:

sin(θ) = 1.22
λ

D
, (B.1)

where λ is the wavelength of the EM wave and D the diameter of the aperture.

Astronomy Background

0

0.25π

0.5π

0.75π

π

1.25π

1.5π

1.75π

(a) Log Polar Plot

-0,5π -0,25π 0 0,25π 0,5π

(b) Linear Plot

Figure B.2 – Response to an aperture at a given angular offset from the pointing direc-
tion. In this example the angular resolution is π/10

If two objects are closer than the first minima, in Figure B.2 this is π
10 , for a particular

aperture, they cannot be distinguished. Therefore the first minima, determines the resolving
capabilities of an aperture and is called the angular resolution, see Figure B.3. The angular
resolution, represented in the right-hand side of Equation B.1, depends on both wavelength
and aperture diameter. As a consequence of dealing with radio waves, which have a long
wave length, radio astronomy requires large telescopes in order to improve the resolution and
produce detailed radio brightness readings.1 2 3

1An example of diffraction, is a television or computer monitor - which consists of many individual pixels
that cannot be resolved by the human eye at a distance and appear as single picture.

2The dimensions of a single radio aperture needed to meet the angular resolution requirements are extremely
impractical. For example, to achieve the same angular resolution as the naked human eye, a radio antenna’s
aperture observing a source at 1.4GHz must be 750m in diameter. [70]

3By knowing the impulse response of an aperture, a closer reconstruction of the original source can be made
by performing a deconvolution.

88 of 121

Astronomy Background

(a) (b) (c)

Figure B.3 – The diffraction response of a circular aperture to a distant point source. Instead of detecting a single
point, a broad band is detected with concentric rings, forming an airy disc. (a) two unresolved point
sources (b) two just resolved point sources and (c) two completely resolved point sources. Figure
inspired by [69]

B.2 Correlation

Correlator

τg { Plane Wave

θ

τg ∝ θ

Delay
Correction

X

�

Figure B.4 – Diagrammatic Representation of an Interferometric Telescope. The spac-
ing between the antenna introduces a delay τg into the system, which is
corrected before correlation.

In Figure B.4 we have two antennas, both pointing at the same source and producing two
continuous voltage signals, which we will call f(t) and g(t). The cross-correlation function,
Rfg(τ) can be defined directly as [71]:

Rfg(τ) = lim
T→∞

1
T

∫ T

0
f(t)g∗(t− τ)dt, (B.2)

89 of 121

Astronomy Background

where τ is the time lag between the two signals. Equation B.2 also could be represented as
the product of the two Fourier transformed inputs,

F {Rfg(τ)}︸ ︷︷ ︸
XF

= Sf (ω)S∗g (ω)
︸ ︷︷ ︸

FX

(B.3)

where Sx(ω) is the Fourier transform of x(t)

Sx(ω) =
1
T

∫ T

0
x(t)e−jωtdt (B.4)

Equation B.3 represents the cross power spectrum and the two methods of computing it: the
left hand side of Equation B.3 computes the cross power spectrum by taking the transform
of two correlated time signals, performed by an XF correlator, while the right hand side of
Equation B.3 computes the cross power spectrum from the product of two transformed signals,
performed by an FX correlator. Recently FX correlation has become the preferred method,
as when there a large number of baselines FX correlators require less computation than XF
correlators - and FX correlation was the method implemented in this dissertation.

Typically after the cross power spectrum has been computed, it is integrated for a period τint
to reduce bandwidth and storage requirements and improve SNR, as shown in Equation B.54:

Cx,y(ω) =
∫ τint/τ

a=0
Sa,f (ω)S∗a,g(ω) (B.5)

where a is the particular transforms position in the accumulation.

4where τint > τ .

90 of 121

Astronomy Background

B.3 KAT Correlator Prototype

Disk

RF Front-End

Disk

Fast Transient
Detection

Pulsar
Timing

Pulsar
Search

VLBI

Offline Transient
Detection

Crossbar Switch

Correlator

< x >
Tied-Array

Beamformer

< + >

Crossbar Switch Crossbar Switch

Pencil Beam
Spectroscopy

ADC - DDC - Channelization

Continuum

Spectral Line

Imaging

SYSTEM OVERVIEW

Figure B.5 – Radio Astronomy Processing Pipeline, courtesy of Lord and van der Merwe
[21]

91 of 121

Appendix C

Co-Processor Design Considerations

C.1 SIMD/Streaming Processors for Data-Parallel Application

SIMD or vector processors are a type of processor that is designed specifically to take advantage
of data-parallelism. This focus influences their processing architecture.

SIMD Processing Element

Unlike conventional processors, SIMD processors use a single instruction to describe an op-
eration for multiple data locations, as shown in Figure C.1a. This minimises the number of
instructions, thereby reducing the number of instruction decodes and instruction bandwidth.

Single
instruction stream

Parallel
Data stream

Output stream

(a) SIMD Processing

Instruction streams Data streams

Output streams

(b) Scalar Processing

Figure C.1 – The above figure shows parallel computation either on (a) a vector proces-
sor or (b) the data-parallelism being exploited by multiple scalar proces-
sors. However (b) requires an instruction stream for each scalar processor
and synchronisation of data. Inspired by Arstechnica [33]

SIMD Memory Architecture

Desktop applications are generally I/O centric, requiring fast random access to different parts
of program memory. Because processor performance has grown faster than off-chip memory
access speeds, CPUs are forced to hide latencies by using large on-chip caches and more complex

Co-Processor Design Considerations

prefetching techniques. Figure C.2b shows a typical program flow of a desktop application and
the need for large data caching.

Instruction Cache

Data Cache

(a) Streaming Applications

Instruction Cache

Data Cache

(b) Static Applications

Figure C.2 – The different data flows of (a) a streaming application on a SIMD proces-
sor, with little need for caches and (b) a desktop application with large
cache to provide low memory latency. Inspired by Arstechnica [33].

Data-parallel applications, are processing intensive and perform repetitive operations on a
predictable flow of data. Since there is little data reuse, cache size has little effect on per-
formance and repetitive operations mean that there is little need for out of order processing.
Because of this, most of the processor die is used to make many simple computation units that
lack the complexity and cache of modern microprocessor design. Figure C.2a shows a typical
program flow of a streaming application and the need for only small data cache.

C.1.1 SIMD Co-Processors in HPC

SIMD/vector processing has recently been revitalised by the number of high performance soft-
ware co-processors available.1 Generally GPUs and FPGAs are used to accelerate only a
portion of the code, called a hot-spot, that consumes most of the compute time and exhibits a
high degree of data-parallelism, as shown in Figure C.3. Scientific applications have success-
fully utilised the vector processing abilities of both graphics cards and FPGA in a number of
domains.

1In the 70’s and 80’s, custom vector/SIMD computers were built and used specifically for scientific computing.
Examples include the famous Cray-1 and Cray X-MP machines, which were optimised for vector processing.
However, in the 90’s, with the success of the personal computer, and the increasing cost and complexity
of semiconductor fabrication, custom vector processors could not compete with the now commodity desktop
microprocessors. Today, most scientific computers are built or derived from processor technology originally
intended for other computing domains like personal or transactional computing.

93 of 121

Co-Processor Design Considerations

Pure Software Code Co-Processor Code

Software Code

Hot Spot

Communication

(a) (b)

Figure C.3 – (a) original software design (b) co-processor accelerated software with com-
munication overhead

C.2 Deep and Wide Parallelism

High level languages for FPGAs hide many of the complexities of FPGA development and can
create parallel pipelined processing engines. However, the user still needs to write HLL code
in a way that can be parallelised by the Dime-C compiler. The types of parallelism and the
restrictions are presented below:

Pipelining (Deep or Temperal Parallelism) also Systolic Array

Pipelining is an important concept to microprocessors and this is no different for RC [72, 73].
Pipelining allows instructions to be issued before the previous instruction has been completed.

Typically instuctions take more than one clock cycle to be computed and the amount of time
it takes is often refered to as the instruction latency, L (measured in clock cycles). In an
unpipelined execution unit running a program with N instructions, it would take L×N cycles
to complete [72]. However in a pipelined execution unit, the same program would only take
L+N cycles 2 3.

Figure C.4 shows an ‘L’ staged pipeline engine computing ‘n’ instructions. Building pipelined
execution units is a key concept for RC. Pipelining coupled with parallel computation is what
creates speedups.

Simultaneous Execution (Wide or spacial Parallelism)

Apart from pipelining, it is important to identify where instructions can be executed in par-
allel. For the correlator this happens in two cases: when the same instruction is executed on
different independent data (SIMD); and when a single output is created from a series of simple
instructions in a reduction operation.

2A cycle is the time to complete a single stage of a pipeline, which might not necessarily be equivalent to
one clock tick.

3ignoring all pipelined hazards

94 of 121

Co-Processor Design Considerations

Stage 1

Stage 0

Stage L

Instru
ction
 n -1

Instru
ction

 n

Instru
ction
n - L

Figure C.4 – A processing pipeline with ‘L’ stages. If no pipeline hazards occur, ‘n’
instructions can be computed in n+L clock cycles.

C.2.1 SIMD Execution

The first case is the classical SIMD (Single Instruction Multiple Data) case. Here we have the
same instruction applied to an array of independent data. For example:

for(i=0;i<100;i++)
A[i] = B[i] + C[i];

In the above example we are free to compute each element of array A in parallel, since
each operation is independent. Now we can divide the work between the different processing
elements. This type of parallelism is fundamental to SSE, GPUs and FPGAs. Thus in a
pipelined processor, with P different processing elements, our program is able to execute in
L+N
P cycles. Figure C.5 shows two pipelined engines computing in SIMD fashion.

Execution
Unit 0

Execution
Unit 1

Stage 1

Stage 0

Stage L

Instru
ction
 n -2

Instru
ction

 n

Instru
ction
n - 2L

Instru
ction
 n -1

Instru
ction
 n+1

Instru
ction
n - 2L

+1

Figure C.5 – 2 pipelined engines computing interleaved instruction. In a true SIMD pro-
cessor, only one instruction would describe the operation of both processing
elements.

95 of 121

Co-Processor Design Considerations

C.2.2 Reduction

In the second case of parallel instructions, is identifying output that is computed from a series
of instructions. Again, an example of this is:

for(i=0;i<100;i++)
A[i] = (B[i] + C[i]) + (D[i] - E[i]);

Above a complex expression involves three separate operations. On a traditional micropro-
cessor, to calculate ‘A’, the expression must be decomposed into three simple operations, and
take three passes through the pipeline before the result can be computed, ie:

for(i=0;i<100;i++) {
temp_reg0 = B[i] + C[i];
temp_reg1 = D[i] - E[i];
A[i] = temp_reg0 + temp_reg1;
}

However in this case, since the FPGA has a reconfigurable pipeline, it is not limited to
computing a single operation per pass, as a microprocessor is. Therefore, the above can be
computed in a single pass through a custom pipeline. Complex expressions as shown above,
with ‘N ’ operations can be decomposed into log2N stages. Thus, in the best case scenario,
a pipelined engine, with decomposed operations and ‘P ’ processing elements, can is able to
execute a program in log2 (N + L)/P cycles.

Figure C.6 shows how 3 additions can be performed in two stages.

Stage 1

Stage 2

+

-

+

B

C

D

E

A

Stage 0

mem

Figure C.6 – 3 adders are used in a reduction operation to compute A = B + C + D +
E. By computing B + C and D + E independently and in parallel, ‘A’ can
be computed in only two stages. In general ‘N ’ elements can be computed
in ‘log2N ’ stages.

96 of 121

Co-Processor Design Considerations

C.3 Memory and I/O Limitations in GPUs and FPGAs

In section C.2, we describe the ideal case of parallelism, or the extent we aim for. However it
comes to implementation, we run into problems which limit the extent of parallelism that we
can achieve.

Memory technologies have improved at a slower rate than processor technologies, and building
a computationally dense multi-core processor exaggerates this problem. Commonly a computa-
tional unit waists cycles waiting for data and actual application performance can be significantly
less than theoretical performance.4 The ideal is to create an application that runs as close to
theoretical peak performance as possible. What limits this is often the memory constraint of
an architecture. Apart from the speed and size limitations the following memory two issues
surfaced during our correlator implementation:

Addressing Multiple Global Memory Addresses

Different execution units operate on different memory locations simultaneously. This involves
moving data from external memory into the processing elements. Multiple accesses puts a huge
burden on memory, greatly increasing the bandwidth needed. Both GPUs and FPGAs address
this issue differently:

Coalesced Access (GPUs): Ideally we would like to be able for each PE to address any
location in global memory independently of other PE. Unfortuantley this would require that
each PE has a separate address and data bus, which would be unreasonably expensive. Instead,
as a compromise, GPUs are able to fetch 16 adjacent memory locations per memory access,
requiring only a single address location and a larger data bus. 5 The different PEs appear to
the user as separate threads and these threads are grouped together in groups called warps [2].
If warps access sequential memory addresses, the GPU coalesces the memory requests into a
single linear memory accesses and we get much better memory performance.

Memory Striping (FPGA): The Xillix FPGA that was used had 240 of individually con-
figurable block rams available. The block rams can be stringed together to create a single
addressable memory space, which would be ideal. Unfortunately in this configuration, only
one memory address can be accessed per clock, which is not sufficient. Instead of one large
address space, the block ram can be configured in many separate and independent memory
banks, with each bank addressable per clock. This provides the bandwidth desired, but re-
quires the user manually separate data into the respective banks. This is known as memory
striping as shown in Figure C.7.

Communication Bus Speed

The GPU and FPGA are both connected to the host machine via a communication expansion
bus. The communication bus is the co-processors interface to the host machine, which holds

4The theoretical performance of different architectures is shown in Figure 1.3a.
5Different Nvidia GPUs have different sized busses. The smaller buses found in the low end cards would

need to make multiple fetches from memory

97 of 121

Co-Processor Design Considerations

N Addresses

0 1

n-1 n

N/2
Addresses

N/2
Addresses

0 1

n/2-1n/2n/2-1n/2

0 1

(a) (b)

Figure C.7 – Striped Memory

the data for processing. So before computation can begin, there is the overhead of transfering
data from host to co-processor. The speed of the bus is important to minimize the overhead.
The busses used by each co-processor were:

PCI-X (FPGA): The Nallatech FPGA uses a PCI eXtended interface to communicate to the
host. PCI-X is a revision to the popular PCI bus. Like PCI, PCI-X is a parallel bus, but
supports double the clock rate. The Nallatech FPGA was able to achieve data rates in the
region of 400MB/s in half-duplex mode and 100MB/s full duplex mode 6. These data rates
are relatively slow by today’s standards and the limitations caused by the bus influenced the
FPGA correlator’s performance.

PCIe (GPU): The Nvidia GPU uses a PCI Express bus, the successor to PCI-X. The serial
PCIe bus is able to achieve much higher data rates than PCI-X and we were able to get transfers
in the region of 1.4GB/s in both full and half duplex.

6Theoretical data rates according to the PCI-X spec are 1064MB/s

98 of 121

Appendix D

Testing

This section describes the testing procedure. The two objectives of the testing were to verify
that our correlation algorithm was valid and record the data precision of the various architec-
tures. Secondly since the G80 CUDA GPU is not 100% IEEE754 floating point compliant, we
set out to measure the difference between the CPU and GPU correlator implementations1.

D.1 Output Validation

Comparing our different correlator implementations does not validate the correlation output
as it will not detect if the correlation algorithm implemented is correct. We validated the CPU
correlator implementation in two tests:

i. compare the power spectral-density output produced by our CPU correlator and simu-
lated in Python.

ii. ensure the power spectral-density function computed by our correlator implementa-
tions, produces the same result as the Fourier transform of the autocorrelation (Wiener-
Khinchin theorem) as shown in Equation D.1.

F {Rf (τ)} = Sf (ω) (D.1)

D.2 Data Precision Impact

The G80 CUDA GPU is not 100% IEEE754 floating point compliant and to measure the impact
we compared the correlation of two random noise signals on the GPU and CPU. Table D.1
compares the results of the cross-product spectrum with different number of spectral points
and accumulation length. All random signals were generated from the same initial seed.

1All testing was performed on synthetic data.

Testing

Table D.1 – CPU vs. GPU output

FFT length Accumulation Average Normalised Average σ Normalised σ

Period Correlation Output Error
32 10 6.92 8.89e-8 6.64e-7 8.79e-8

100 68.17 2.42e-7 2.02e-5 2.47e-7
1,000 663.43 7.32e-7 5.75e-4 8.44e-7
10,000 6667.28 1.78e-6 1.52e-2 2.80e-6

256 10 6.77 7.66e-8 5.95e-7 9.59e-8
100 66.42 2.10e-7 1.64e-5 2.96e-7
1,000 666.45 6.87e-7 5.63e-4 8.67e-7
10,000 6666.05 2.23e-6 1.86e-2 2.28e-6

Table 6.8 shows that there is very little difference in the GPU and CPU output. The nor-
malised standard deviation value grows in proportion to the average correlation output, likely
due to the fact that more of the mantisa is required to represent the integer part of large
numbers and limits the accuracy of the fractional part. However, even at worst case, the error
is small enough to not raise any concern.

The Dime-C uses IEEE754 floating point representation, so the differences between the CPU
and FPGA were only related to float round errors.

100 of 121

Testing

(aprox 1.5pgs. [ex. pics])

i. Correlation FPGA and GPU output agrees with:

• mathematical description of sinusoidal correlation

• pre and post correlation power conservation (autocorrelation)

• Testing Data

– Synthetic

– Real from PED data

ii. Data Precision Impact

• Associative effect on output

• Nallatech Floating point arithmetic is IEEE compliant

• G80 GPUs used are not true IEEE compliant, effects analysed.

iii. additional assumptions:

(a) Assumed single polarisation.

(b) not IQ data see polar pg 38 - Assume real data input, with no DC offset.

(c) Total band is divided up into a number of subband frequencies which is then divided
up into channels - just assume one global freqency block.

(d) Basically this is arranged so that all data is pre-formatted - no need for corner
turning in FFT - in the ideal format inorder to test the correlator, this is not a
complete correlation design - but will try reference to articles where the specific
simplifications are dealt with.

(e) Assuming the data is all sampled with the same global clock, so phase information
is coherent across all inputs.

(f) All input is arrange by a number of time samples for a certain antenna before
FFT. ie the FFT input has been corner turned already to allow for linear memory
addressing.

(g) input to F engine - real data, input to X engine complex

101 of 121

Appendix E

Correlation on FPGAs

E.1 FPGA correlation examples

Figures E.1 and E.2 are more examples of the single loop with double buffered input referenced
from Chapter 4.

0

1

2

16

12

313

15

i
j (j%K) 0 1 2 3

3

2

1

0

14 44

4

6 (0)

 5

6

7

8

9

10 5

11

17

18

19

20

7 (1)

5

(a)

0

1

2

16

12

313

15

0 1 2 3

3

2

1

0

14 44

4

 5

6

7

8

9

10 5

11

17

18

19

20

5

(b) 21 + L

Figure E.1 – Example Single loop diagonal width 6 and K = 6

Correlation on FPGAs

0

1

2

18

14

315

17

i
j (j%K) 0 1 2 3

3

2

1

0

16 44

4

6

 5

7

8

9

10

11 5

12

19

21

22

23

7 (0)

6

13

20

25

26

27

24

8 (1)

9 (2)

10 (3)

5 6

(a)

0

1

2

18

14

315

17

i
j (j%K) 0 1 2 3

3

2

1

0

16 44

4

6

 5

7

8

9

10

11 5

12

21

22

23

624

19 13

20

25

26

27

5 6

(b) 28 + L

Figure E.2 – Example Single loop diagonal width 7 and K = 7

E.2 Rotating both i and j axes to i’ and j’

In Chapter 4.3.2 we saw by incrementing ‘i’ on the diagonal of the correlation kernel we could
iterate the entire triangular domain with a single loop variable ‘k’. Figure E.3, shows the
correlator operation when we increment both ‘i’ and ‘j’ twice every diagonal length. Although
it is not necessary to iterate both ‘i’ and ‘j’ to coalesce the nested loop description of the
correlation kernel into a single loop variable, incrementing both has the effect of rotating both
axes in the domain, creating new axes, ‘i′’ and ‘j‘’ as shown in Figure E.3 (a).

103 of 121

Correlation on FPGAs

4

3

2

1

0

8

7

6

5

13

12

11

10

9

14

i '
0

1

2

3

4

j '

2

1

0

i (i%5)
0 1 2 3 4-4(1) -3(2) -2(3) -1(4)

0

1

2

3

4

5(0)

6(1)

7(2)

8(3)

j(j%5)

(a) diagonal increment on rotated axis no
mod

0

1

13

2

14

6

3

10

7

9

i (i%5)
j (j%5) 0 1 2 3

3

2

1

0

11

8

5

12 44

4-2 (3) -1 (4)

6 (1)

 5 (0)

(b) diagonal increment on normal axis, no
mod

0

51

962

121073

i
j 0 1 2 3

3

2

1

0

131184 144

4

(c) column increment

0

1

13

2

14

6

3

10

7

9

i
j 0 1 2 3

3

2

1

0

11

8

5

12 44

4

(d) result with mod

Figure E.3 – Rotation of both ‘i’ and ‘j’ axes by incrementing on both ‘i’ and ‘j’ on
the diagonal to create rotated axes ‘i′’ and ‘j‘’. This is one such method
to describe the triangular correlation kernel with a single loop variable ‘k’,
from which ‘i’ and ‘j’ can be derived. The value of the incrementing ‘k’ is
drawn inside each block. See Chapter 4.3.2

104 of 121

Correlation on FPGAs

E.3 Implementation Pictures

Register Access

Figure E.4 – Nested Loop Implementation - Visualisation produced by Dime-C. The
close-up showing one of the correlator inputs being read from a register
(dotted line) and the other from BRAM (orange solid line), so no double
buffering of input is needed. See Chapter 4 for details.

105 of 121

Correlation on FPGAs

Figure E.5 – Single Loop Implementation with Double Buffering Visualisation
produced by Dime-C. The close-up showing both inputs being read from
BRAM (orange solid line), therefore double buffering of input is needed.
See Chapter 4 for details.

106 of 121

Correlation on FPGAs

Real Data

Imag Data
Time Slice 0

Time Slice 1

Time Slice 2

Time Slice 3

Time Slice 4

Time Slice 5

Time Slice 6

Time Slice 7

Time Slice 8

Time Slice 9

Time Slice 10

Dime-C module

Manual labour

Component Router

2KB Block
RAM interface

4MB SRAM Output

SRAM Double Buffer

Figure E.6 – Dime-Talk network used to construct the desired firmware interfaces to the
H101 board and connect them to the Dime-C block. This must be done
manually by the user.

107 of 121

Appendix F

Equipment Used

Below is a list of all the specific hardware and software tools used in this thesis:

Table F.1 – Nallatech H101-PCIXM Correlator

FPGA Correlator

Xilinx FPGA

Processor Type Virtex-4 LX100
Block Ram 240 x 18Kbits
DSPs 96
Slices 49,152

Nallatech H101

Internal Memory 0.5MB @ 0.5 TBytes/sec bandwidth
External Memory 16MB DDR-II SRAM @ 6.4GB/sec

512MB DDR2 SDRAM @ 3.2GB/sec
Inter FPGA Comm. 4x 2.5 Gbit/sec serial links
Host Communication Bus PCI-X @ 400MB/s
Clock rate 100-200MHz
Maximum SP FLOPS 20GFLOPS
Typical Power Consumption 25W

Software Tools Dime-C Version 1.3
Dime-Talk Version 3.1.7

Host System

Processor Intel Xeon Harpertown X5450
Memory 8GB
System Clock 3.0GHz
Manufacturer Dell
Operating System CentOS 5.2

Equipment Used

Table F.2 – Nvidia 9800GT Correlator.

GPU Correlator

Nvidia GPU

Processor 9800 GT GPU (G92)
112 SPs (14 MPs) @ 1.5GHz

Internal Memory 8192 32bit Registers/MP
16KB Shared Memory/MP

Memory interface 256bit
Host Communication Bus 16 lane PCI-E 2.0 @ 8GB/s
Maximum SP FLOPS 504 GFLOPS

Zotac Board Onboard Memory 512MB GDDR3@ 57.6GB/sec
Maximum Power Consumption 105W

Software Tools CUDA Version 2.0

Host System

Processor Intel Core 2 Duo E6750
Memory 3GB
System Clock 2.67GHz
Manufacturer Dell
Operating System Ubuntu 8.10

Table F.3 – Intel Harpertown Correlator.

CPU Correlator

Intel CPU

Processor 3.0Ghz Xeon Harpertown X5450
Quad Core

Internal Memory 12MB L2 Cache
Onboard Memory 8GB DDR2
Memory interface Dual Channel 2x64bit
Maximum Power Consumption 120W
Manufacturer Dell
Operating System Ubuntu 8.04 x64

Software Tools Intel Performance Primitives Version 5.3.1

109 of 121

Appendix G

Derivations

G.1 Computing Complex Input

Si[v]S∗j [v]

= (a+ jb)(c+ jd)∗

= (a+ jb)(c− jd)
= (ac+ bd) + j(bc− ad) (G.1)

G.2 Commutative Conjugate Multiplication Derivation

(a+ jb)(c+ jd)∗

= (a+ jb)(c− jd)
= (ac+ bd) + j(bc− ad)

(
(a+ jb)∗(c+ jd)

)∗

=
(
(a− jb)(c+ jd)

)∗

=
(
(ac+ bd)− j(bc− ad)

)∗

= (ac+ bd) + j(bc− ad)

∴ (a+ jb)(c+ jd)∗ =
(
(a+ jb)∗(c+ jd)

)∗
(G.2)

Derivations

G.3 Correlator Output Derivation

C(an+1,i,j) = C(an,i,j) + S(an,i)[vn]S
∗
(an,j)

[vn]

= R{C(an+1,i,j)}+ j Im{C(an+1,i,j)}

R{C(an+1,i,j)} = R{C(an,i,j) + S(an,i)[vn]S
∗
(an,j)

[vn]}
= R{C(an,i,j)}︸ ︷︷ ︸

Pan

+ Pij

Im{C(an+1,i,j)} = Im{C(an,i,j) + S(an,i)[vn]S
∗
(an,j)

[vn]}
= Im{C(an,i,j)}︸ ︷︷ ︸

Qan

+ Qij

∴ C(an+1,i,j) = Pan + Pij + j
(
Qan +Qij

)
(G.3)

111 of 121

Appendix H

DiFX

The Distributed FX1 (DiFX) correlator is a popular software correlator implementation. The
DiFX correlator was developed at Swinburne University by Adam Deller, and is a parallel, open-
source, software implementation of a fully functional radio astronomy correlator [5]. Designed
to work with the less processor intensive, very long baseline interferometry (VLBI)2, the DiFX
is an attractive correlator solution for smaller correlator arrays. The DiFX correlator has
had a positive response in both astronomy and HPC communities, allowing research to be
carried out on standard Linux compute clusters, without sharing or endangering production
correlators. The National Radio Astronomy Observatory (NRAO) and Max Plank Institute
fur Radioastonomie (MPIfR) have adopted the DiFX correlator for the correlation of their
Very Long Baseline Array (VLBA) data [30] [31] and have released their own NRAO-DiFX
modification [32].

The original plan for this thesis was to accelerate the DiFX correlator directly using FPGA
and GPU co-processors. This would have the potential to create an accelerated correlator to
an already existent user base.

By profiling the DiFX we identified hot-spots suitable for acceleration. The profiling uncov-
ered that the DiFX correlator makes many short calls to its software correlation engine. This
is not problematic in software, where there is negligible function call over head, however if im-
plemented directly on a co-processor would cause large co-processor call overheads, nullifying
any achievable speedup. This could potentially be addressed by buffering the small frequent
correlation function calls and transform them into larger, but less frequent co-processor func-
tion calls. However, the DiFX correlator is a large software project, and it was easier to first
extract the DiFX’s core correlation engine and work on it independently, which would avoid the
interfacing issues and simplify validation. Although this removes the existing DiFX user base,
it provided the simplified platform to investigate the suitability of FPGA and GPU correlation
acceleration.

Integrating an accelerated DiFX correlation core is left for future work, however the profile
summaries of the DiFX are presented below in Figures H.1, H.2, H.3 and H.4.

1FX here refers to how the correlation is performed. FX correlators do a multiplication in the Fourier
domain, while XF correlators perform a convolution in the time domain.

2VLBI typically uses smaller arrays (<10) with baselines that can span 1000s of kilometers. Since there
is relatively small number of data sources, produced at distributed sites it is practical to perform off-line
correlation.

DiFX

W
hi

le
 D

at
a

to
 P

ro
ce

ss

Re
ad

 a
nd

 s
en

d

Pr
oc

es
s

Da
ta

Pr
oc

es
s

Re
su

lts

Re
ad

 P
re

-
co

rre
la

te
d

da
ta

 fr
om

 fi
le

an

d
se

nd
 to

Co

re

St
ar

t/S
to

p

St
ar

t/S
to

p

St
ar

t/S
to

p

In
itia

lis
e

In
itia

lis
e

FX
M

an
ag

er

Da
ta

St
re

am

Co
re

Co
ns

tu
ct

or

Co
ns

tu
ct

or

Cr
ea

te

lo
ok

up
 ta

bl
e

fo
r d

at
a

In
itia

lis
e

Sh
ut

do
wn

Sh
ut

do
wn

Sh
ut

do
wn

De
st

uc
to

r

De
st

uc
to

r

De
st

uc
to

r

O
nl

y
1.

Sp

en
ds

 th
e

m
aj

or
ity

 o
f

th
e

tim
e

wa
itii

ng
 fo

r
re

su
lts

 fr
om

Co

re
 N

od
es

O
ne

 N
od

e
pe

r
Da

ta
st

re
am

1
to

 a
s

m
an

y
as

 p
os

sib
le

.
Al

m
os

t
ex

clu
siv

ly
pr

oc
es

sin
g

bo
un

d

Ti
m

e
sp

en
t i

n
CP

U:
~4

%

Ti
m

e
sp

en
t i

n
CP

U:
 ~

8%

Ti
m

e
sp

en
t i

n
CP

U:
~9

5%

W
ai

t f
or

 d
at

a
to

 b
e

pr
oc

es
se

d

W
ai

t f
or

 d
at

a
to

 b
e

pr
oc

es
se

d

Ke
y

Co
m

m
un

ica
tio

n

Ne
xt

 S
ta

ge
/F

un
ct

io
n

Ex
te

rn
al

 F
un

ct
io

n
Ca

ll

Fu
nc

tio
n

Fu
nc

tio
n

CP
U

in
te

nt
ive

IO
 In

te
nt

ive

%
 o

f t
im

e
sp

en
t i

n
fu

nc
tio

n

of
 c

al
ls

m
ad

e

Ta
rg

et
ed

 C
la

ss

Figure H.1 – DiFX Overview [74, 75].

113 of 121

DiFX

St
ar

t/S
to

p

co
re

::
la

nc
hN

ew
Pr

oc
es

s

Co
re

::P
ro

ce
ss

Da
ta

Co
re

Th
re

ad
 1

Co
re

::
up

da
te

co
nfi

g

Co
re

 T
hr

ea
d

0

La
un

ch
es

 a
 n

ew
 p

ro
ce

ss
in

g
th

re
ad

, w
hi

ch
 w

ill
w

or
k

on
 a

po

rt
io

n
of

 t
he

 t
im

e
sli

ce
 e

ve
ry

tim

e
an

 e
le

m
en

t
in

 t
he

 c
irc

ul
ar

bu

ff
er

 is
 p

ro
ce

ss
ed

.

M
od

e:
:F

un
ct

io
ns

Co
re

::l
oo

pP
ro

ce
ss

Te
rm

in
at

e

No

Te
rm

in
at

e
Si

gn
al

 fr
om

FX
M

an
ge

r

Pr
oc

es
sD

at
a

is
th

e
fu

nc
tio

n
th

at
 is

re

sp
on

sib
le

 fo
r 9

5%
 o

f t
he

 p
ro

ce
ss

in
g

fo
r

ea
ch

 C
or

e
No

de
. I

t i
s

th
e

bo
ttl

en
ec

k
of

 th
e

Di
FX

 c
or

re
la

to
r a

nd
 th

e
Da

ta
st

re
am

 a
nd

FX

M
an

ge
r N

od
es

 s
pe

nd
 a

 la
rg

e
po

rp
ot

io
n

of
 th

ei
r t

im
e

wa
itin

g
fo

r t
hi

s
fu

nc
tio

n
to

co

m
pl

et
e.

Pr
oc

es
sD

at
a

pe
rfo

rm
s

th
e

co
rr

el
at

io
n

an
d

ot
he

r p
ro

ce
ss

 re
la

te
d

fu
nc

tio
ns

.
Pr

oc
es

sD
at

a
pe

rf
or

m
s

ve
ry

 li
tt

le
 o

f t
he

pr

oc
es

sin
g

its
el

f a
nd

 ra
th

er
 in

te
rf

ac
es

w

ith
 t

he
 M

od
e

cl
as

s,
 w

hi
ch

 c
on

ta
in

s
m

os
t

of
 t

he
 V

ec
to

r f
un

ct
io

ns
.

St
ar

t/S
to

p#5
00

95
%

#3
75

kTa
rg

et
ed

 F
un

ct
io

ns

IP
P

ve
ct

or
 lib

ra
rti

es

#m
ill

io
ns

Sp
ee

d
up

: (
M

od
e

Fu
nc

tio
n

tim
e

+
la

te
nc

y)
*n

o.
ca

lls
(0

+7
.5

*E
-5

)*3
75

E3
 =

 2
8

se
co

nd
s

VS
.

~1
6s

ec
on

ds

M
od

e:
Pr

oc
es

s
Pe

rfo
rm

s
th

e
FF

T,
 fr

in
ge

ro

ta
tio

n,
 a

ut
oc

or
re

la
tio

n
fr

ac
tio

n
sa

m
pl

e
co

rr
ec

tio
n

et
c

Al
so

 c
al

cu
la

te
s

th
e

co
nj

ug
at

e
fr

eq
ue

nc
ie

s
fo

r
xc

or
r i

n
Co

re
:P

ro
ce

ss
Da

ta

(N
OT

E
co

rr
el

at
io

n
do

ne
 in

Co

de
:P

ro
ce

ss
Da

ta
)

Ye
s

St
ar

t/S
to

p

Co
ns

tru
ct

or

Co
re

::e
xe

cu
te

Un
til

 t
ol

d
to

 t
er

m
in

at
e,

 s
its

 in

a
lo

op
 re

ce
iv

in
g

ra
w

 d
at

a
fr

om

th
e

Da
ta

st
re

am
s

in
to

 t
he

ci

rc
ul

ar
 b

uf
fe

r a
nd

 p
ro

ce
ss

in
g

it.

W
rit

es
 d

at
a

in
to

pr

oc
slo

ts
[in

de
x]

.d
at

ab
uf

fe
r

Co
re

Th
re

ad
 0

M
PI

 T
hr

ea
d

M
pi

fx
co

rr

Co
ns

tr
uc

to
r:

Al
lo

ca
te

s
th

e
re

qu
ire

d
ar

ra
ys

, c
re

at
es

 t
he

 c
irc

ul
ar

 b
uf

fe
r

us
ed

 fo
r s

en
di

ng
 a

nd
 re

ce
iv

in
g,

 a
nd

se

ts
 u

p
th

e
M

PI
 c

om
m

s.

Ac
ce

pt
s

m
es

sa
ge

s
co

nt
ai

ni
ng

 ra
w

 d
at

a,
 d

oe
s

th
e

co
rr

el
at

io
n,

 a
nd

 s
en

ds
 o

ff
 v

isi
bi

lit
ie

s.
Th

is
cl

as
s

pr
ov

id
es

 t
he

 fr
am

ew
or

k
fo

r d
oi

ng
 t

he
 a

ct
ua

l c
or

re
la

tio
n,

 a
cc

ep
tin

g
ba

se
ba

nd
 d

at
a

fr
om

 a
ll

te
le

sc
op

es
, u

sin
g

M
od

e
ob

je
ct

s
to

 d
o

th
e

st
at

io
n-

ba
se

d
pr

oc
es

sin
g

an
d

th
en

 p
er

fo
rm

in
g

th
e

cr
os

s-
m

ul
tip

lic
at

io
n

an
d

ac
cu

m
ul

at
io

n.
 T

he
 a

cc
um

ul
at

ed
 v

isi
bi

lit
ie

s
ar

e
th

en
 s

en
t

ba
ck

 t
o

th
e

Fx
M

an
ag

er
. A

n
al

lo
ca

ta
bl

e
nu

m
be

r o
f p

ro
ce

ss
in

g

St
ru
ct

Pr
oc
Sl
ot
s

St
ru
ct

pr
oc
es
st
hr
ea
di
n

fo

St
ru

ct
ur

e
co

nt
ai

ni
ng

 a
ll

th
e

in
fo

rm
at

io
n

ne
ce

ss
ar

y
to

de

sc
rib

e
on

e
el

em
en

t
in

 t
he

ci

rc
ul

ar
 s

en
d/

re
ce

iv
e

bu
ff

er
, a

nd

al
l t

he
 n

ec
es

sa
ry

 s
pa

ce
 t

o
st

or
e

da
ta

 a
nd

 re
su

lts
.

St
ru

ct
ur

e
co

nt
ai

ni
ng

 a
 p

oi
nt

er

to
 t

he
 c

ur
re

nt
 C

or
e

an
d

th
e

se
qu

en
ce

 id
 o

f t
he

 t
hr

ea
d

th
at

w

ill
be

 la
un

ch
ed

, s
o

it
kn

ow
s

w
hi

ch
 p

ar
t

of
 t

he
 t

im
e

sli
ce

 t
o

pr
oc

es
s.

St
ar

t/S
to

p

Cl
as

s
M

em
be

rs

De
sc

rip
tio

n

Co
re

::
la

nc
hN

ew
Pr

oc
es

s

Co
re

::l
an

ch
Ne

w
 P

ro
ce

ss
La

un
ch

es
 a

 n
ew

pr

oc
es

sin
g

th
re

ad
, w

hi
ch

w

ill
w

or
k

on
 a

 p
or

tio
n

of

th
e

tim
e

sli
ce

 e
ve

ry
 t

im
e

an
 e

le
m

en
t

in
 t

he
 c

irc
ul

ar

bu
ff

er
 is

 p
ro

ce
ss

ed
.

Co
re

::E
xe

cu
te

Co
re

::R
ec

ei
ve

Da
ta

Re
ce

iv
es

 d
at

a
fr

om

Da
ta

 s
tr

ea
m

 n
od

es

to
 p

ro
ce

ss
. N

ot
e

th
e

da
ta

 c
om

e
fr

om
 t

he
 M

PI

W
ai

ta
ll

co
m

m
an

d.

Th
e

of
fs

et
 fr

om
 t

he

st
ar

t
of

 t
he

 c
or

re
la

tio
n

in
 s

ec
on

ds

Co
re

::R
ec

ei
ve

Da
ta

In
sid

e
Fu

nc
tio

n90
%

M
PI

M
PI

 W
ai

ta
ll

M
PI

 Ir
ec

v<1
0%

>9
0%10

%

lo
ck

 t
h

e
n

ex
t

sl
ot

,
u

n
lo

ck
 t

h
e

on
e

w
e

ju
st

 f
in

is
h

ed
 w

it
h

Co
nfi

gu
ra

tio
n:

ge
tC

on
fig

In
de

x

Te
rm

in
at

e
Te

rm
in

at
e

Si
gn

al

fro
m

FX
M

an
ge

r

No

M
pi

fx
co

rr

~8
5%

Ke
y

Co
m

m
un

ica
tio

n

Ne
xt

 S
ta

ge
/F

un
ct

io
n

Ex
te

rn
al

 F
un

ct
io

n
Ca

ll

Fu
nc

tio
n

Fu
nc

tio
n

CP
U

in
te

nt
ive

IO
 In

te
nt

ive

%
 o

f t
im

e
sp

en
t i

n
fu

nc
tio

n

of
 c

al
ls

m
ad

e

#5
01

#195
%

Figure H.2 – DiFX Core Classes [74, 75].

114 of 121

DiFX

FX
M

an
ag

er
Th

re
ad

 1

St
ar

t/S
to

p

FX
:la

nc
hN

ew
W

rit
eT

hr
ea

d
G

et
s

La
un

ch
ed

 b
y

th
re

ad
 0

 o
f F

X
M

an
ag

er

FX
::w

rie
th

ea
de

r

St
ar

t/S
to

p

Cl
ea

rs
 t

he

ac
cu

m
ul

at
io

n
ve

ct
or

s
an

d
m

ov
es

 t
o

th
e

ne
xt

 t
im

e
pe

rio
d

th
is

Vi
sib

ilit
y

w
ill

be
 re

sp
on

sib
le

fo

r.

W
rit

es
 t

hi
s

Vi
sib

ilit
y'

s
in

te
gr

at
ed

re

su
lts

 t
o

di
sk

,
af

te
r

am
pl

itu
de

ca

lib
ra

tio
n.

Vi
sib

ilit
y:

:
In

cr
em

en
t

Vi
sib

ilit
y:

:W
rit

ed
at

a

Fx
M

an
ag

er
::L

oo
pW

rit
e

Co
nfi

gu
ra

tio
n

M
or

e
Da

ta

Vi
sib

ilit
y:

:
In

cr
em

en
t

Vi
sib

ilit
y:

:W
rit

ed
at

a
Ye

s

St
or

es
 a

ll
in

fo
rm

at
io

n
pr

ov
id

ed
 in

 t
he

 in
pu

t
fil

e
th

at
 c

on
tr

ol
s

th
e

co
rr

el
at

io
n.

95
%

Vi
sib

ilit
y:

:W
rit

ed
at

a

FX
::F

in
al

ise
 o

ut
pu

t

FX
M

an
ag

er

#1

In
sid

e
lo

op
W

rit
e95
%

FX
:E

xe
cu

te

Te
rm

in
at

e

FX
::s

en
dD

at
a

FX
::r

ec
ie

ve
Da

ta

M
or

e
Da

ta

Vi
sib

ilit
y:

:a
dd

Da
ta

St
ar

t/S
to

p

Co
ns

tru
ct

or

FX
M

an
ag

er
Th

re
ad

 0
M

PI
 T

hr
ea

d

Co
ns

tu
ct

or
::C

on
st

ru
ct

or
: A

llo
ca

te
s

th
e

re
qu

ire
d

ar
ra

ys
, c

re
at

es
 t

he
 V

isi
bi

lit
y

ob
je

ct
s

an
d

in
iti

al
ise

s
th

e
w

rit
in

g
th

re
ad

.

On
e

ob
je

ct
 o

f t
hi

s
cl

as
s

m
an

ag
es

 t
he

 c
or

re
la

tio
n.

Th
is

cl
as

s
pr

ov
id

es
 t

he
 fu

nc
tio

na
lit

y
to

 c
on

tr
ol

 a
 c

or
re

la
tio

n,
 b

y
se

nd
in

g
re

qu
es

ts
 t

o
Da

ta
st

re
am

s
fo

r d
at

a
m

es
sa

ge
s

to
 b

e
se

nt
 t

o
sp

ec
ifi

ed

Co
re

s
fo

r c
or

re
la

tio
n,

 a
nd

 re
ce

iv
in

g
th

e
co

rr
el

at
ed

 v
isi

bi
lit

ie
s

fr
om

 C
or

es
.

Af
te

r r
ec

ei
vi

ng
 t

he
 s

ho
rt

-t
er

m
 a

cc
um

ul
at

ed
 v

isi
bi

lit
ie

s
fr

om
 C

or
es

, i
t

pe
rf

or
m

s
lo

ng
-t

er
m

 a
cc

um
ul

at
io

n
in

 a
n

ar
ra

y
of

 V
isi

bi
lit

y
ob

je
ct

s
an

d
w

rit
es

 re
su

lts
 t

o
di

sk
.

Te
ll t

he
 D

at
as

tre
am

 N
od

es
 w

hi
ch

 c
or

e
No

de
s

to
 s

en
d

to
.

Da
ta

st
re

am
 a

nd
 C

or
e

Ye
s

Co
re

Te
ll t

he
 D

at
as

tre
am

 N
od

es
 a

nd
 C

or
e

no
de

s
to

 C
lo

se
 d

ow
n

FX
::l

oc
at

eV
isI

nd
ex

Da
ta

st
re

am
 a

nd
 C

or
e

M
PI

::F
in

al
ise

St
ar

t/S
to

p

vis
ib

ilit
y:

:
Co

ns
tru

ct
or

Ad
ds

 o
ne

 s
ub

-in
te

gr
at

io
n

to
 t

he

ac
cu

m
ul

at
or

.

0.
1%97
%

M
PI

 In
itia

lis
e

O
nl

y
1.

Sp

en
ds

 th
e

m
aj

or
ity

 o
f

th
e

tim
e

wa
itii

ng
 fo

r
re

su
lts

 fr
om

Co

re
 N

od
es

M
pi

fx
co

rr

95
%

#1

M
pi

fx
co

rr

Ke
y

Co
m

m
un

ica
tio

n

Ne
xt

 S
ta

ge
/F

un
ct

io
n

Ex
te

rn
al

 F
un

ct
io

n
Ca

ll

Fu
nc

tio
n

Fu
nc

tio
n

CP
U

in
te

nt
ive

IO
 In

te
nt

ive

%
 o

f t
im

e
sp

en
t i

n
fu

nc
tio

n

of
 c

al
ls

m
ad

e

Figure H.3 – DiFX FX Manager Class [74, 75].

115 of 121

DiFX

St
ar

t/S
to

p

Da
ta

st
re

am
::

La
nc

hN
ew

Fi
le

Re
ad

Th
re

ad

Da
ta

st
re

am
Th

re
ad

 1
Da

ta
st

re
am

 T
hr

ea
d

1
ap

pa
ea

rs
 t

o
be

re

sp
on

sib
le

 fo
r r

ea
di

ng
 t

he
 d

at
a

fr
om

di

sk
 t

o
m

em
or

y,
 w

hi
ch

 is
 s

en
t

to
 t

he

di
ff

er
en

t
Co

re
 n

od
es

 v
ia

 T
hr

ea
d

0

Th
re

ad
 0

Da
ta

st
re

am
::

op
en

file

Da
ta

st
re

am
::

in
itia

lis
eF

ile

Co
nfi

gu
ra

tio
n:

:
ge

tM
JD

#1 #1 #1 #1

~9
8%

Da
ta

st
re

am
::l

oo
pF

ile
Re

ad

Da
ta

st
re

am
::

Di
sk

To
M

em
or

y

Co
nfi

gu
ra

tio
n:

:
G

et
Co

nfi
gI

nd
ex

Da
ta

st
re

am
::

W
ai

tF
or

Bu
ffe

r

M
or

e
Da

ta

Ye
s

~9
5%#1

Do
 b

uf
fe

r h
ou

se

ke
ep

in
g,

 b
y

en
su

rin
g

al
l

se
nd

s
ha

ve
 a

ct
ua

lly

be
en

 m
ad

e.
 I

gu
es

s
th

e
da

ta
st

re
am

 o
nl

y
se

nd
s

on
ce

 t
he

 c
or

e
no

de
 is

fin

ish
ed

 p
ro

ce
ss

in
g

a
ch

un
k

of
 d

at
a.

St
ar

t/S
to

p

Ke
y

Co
m

m
un

ica
tio

n

Ne
xt

 S
ta

ge
/F

un
ct

io
n

Ex
te

rn
al

 F
un

ct
io

n
Ca

ll

Fu
nc

tio
n

Fu
nc

tio
n

CP
U

in
te

nt
ive

IO
 In

te
nt

ive

%
 o

f t
im

e
sp

en
t i

n
fu

nc
tio

n

of
 c

al
ls

m
ad

e

#1
25

#1
25

#1
25

Da
ta

St
re

am
::E

xe
cu

te

Da
ta

st
re

am
::

in
itia

lis
eM

em
or

yB
uf

fe
r

Te
rm

in
at

e
Te

rm
in

at
e

Si
gn

al
 fr

om
FX

M
an

ge
r

No

M
PI

::W
ai

t

95
%

Da
ta

st
re

am
::

ca
lcu

la
te

Co
nt

ro
lP

ar
am

s

2%

Da
ta

st
re

am
::

qu
ad

in
te

op
er

la
te

De
la

y2%

M
PI

::I
ss

en
d

<1
%

St
ar

t/S
to

p

Co
ns

tru
ct

or

Da
ta

st
re

am
Th

re
ad

 0
M

PI
 T

hr
ea

d M
pi

fx
co

rr

Co
ns

tr
uc

to
r:

Co
pi

es
 t

he
 in

fo
rm

at
io

n
pa

ss
ed

 t
o

it
- d

oe
s

no
t

do

ot
he

r i
ni

tia
lis

at
io

n
as

 it
 c

an
 b

e
su

bc
la

ss
ed

 a
nd

 d
iff

er
en

t
fu

nc
tio

na
lit

y
is

ne
ed

ed
.

Lo
ad

s
da

ta
 in

to
 m

em
or

y
fr

om
 a

 d
isk

 o
r n

et
w

or
k

co
nn

ec
tio

n,
 c

al
cu

la
te

s
ge

om
et

ric
 d

el
ay

s
an

d
se

nd
s

da
ta

to

 C
or

es
.

Th
is

cl
as

s
m

an
ag

es
 a

 s
tr

ea
m

 o
f d

at
a

fr
om

 a
 d

isk
 o

r m
em

or
y,

 c
oa

rs
el

y
al

ig
ni

ng
 it

 w
ith

 t
he

 g
eo

ce
nt

re
 a

nd

se
nd

in
g

se
gm

en
ts

 o
f d

at
a

to
 C

or
e

no
de

s
fo

r p
ro

ce
ss

in
g

as
 d

ire
ct

ed
 b

y
th

e
Fx

M
an

ag
er

. D
ef

au
lts

 a
re

 fo
r

LB
A-

st
yl

e
fil

e
an

d
fr

am
e

he
ad

er
s

- t
he

 a
pp

ro
pr

ia
te

 m
et

ho
ds

 a
re

 v
irt

ua
l s

o
Da

ta
st

re
am

 c
an

 b
e

su
bc

la
ss

ed

to
 g

iv
e

al
te

re
d

fu
nc

tio
na

lit
y

fo
r d

iff
er

en
t

da
ta

 fo
rm

at
s

In
itia

lis
e

Cr
ea

te
s

al
l a

rr
ay

s,
 in

iti
al

ise
s

th
e

re
ad

in
g

th
re

ad
 a

nd
 lo

ad
s

de
la

ys
 fr

om
 t

he
 p

re
co

m
pu

te
d

de
la

y
fil

e.

W
hi

le
 t

he
 c

or
re

la
tio

n
co

nt
in

ue
s,

 k
ee

p
ac

ce
pt

in
g

co
nt

ro
l

in
fo

rm
at

io
n

fr
om

 t
he

Fx

M
an

ag
er

 a
nd

se

nd
in

g
da

ta
 t

o
th

e
ap

pr
op

ria
te

 C
or

es
,

w
hi

le
 m

ai
nt

ai
ni

ng

fr
es

h
da

ta
 in

 t
he

bu

ff
er

.

Da
ta

st
re

am
::

pr
oc

es
sD

el
ay

Fi
le Ca

lc
ul

at
es

 t
he

 c
or

re
ct

 o
ff

se
t

fr
om

 t
he

st

ar
t

of
 t

he
 d

at
ab

uf
fe

r f
or

 a
 g

iv
en

 t
im

e
in

th

e
co

rr
el

at
io

n,
 a

nd
 c

al
cu

la
te

s
th

e
ge

om
et

ric
 d

el
ay

s
at

 t
he

 s
ta

rt
 a

nd
 e

nd
 o

f
ea

ch
 F

FT
 b

lo
ck

 a
s

co
nt

ro
l i

nf
or

m
at

io
n

to

pa
ss

 t
o

th
e

Co
re

s.

M
PI

:B
ar

rie
r

Sy
nc

hr
on

ise
 w

ith
 o

th
er

Da

ta
st

re
am

s.
 W

ai
t

fo
r

M
PI

FX
co

rr
 c

al
l f

or
 e

xe
cu

te

M
PI

FX
co

rr

Da
ta

st
re

am
::

La
nc

hN
ew

Fi
le

Re
ad

Th
re

ad

St
ar

t/S
to

p

W
ai

t
fo

r t
he

 C
or

e
No

de
s

to

fin
ish

 P
ro

ce
ss

in
g

Da
ta

 c
hu

nk

Se
nd

 d
at

a
ch

un
k

to
 C

or
e

No
de

s

Figure H.4 – DiFX Data-stream Class [74, 75].

116 of 121

Bibliography

[1] Wikipedia, “Used for Glossary Definitions.” Online http://www.wikipedia.org.

[2] Nvidia Corp., CUDA Guide 2.0. Nvidia Corp., 2008.

[3] OS X Oxford American Dictionary, “Used for Glossary Definitions,” 2009.

[4] Andrew Faulkner, “Personal communications - via thesis corrections,” April 2010.

[5] A. Deller, S. Tingay, M. Bailes, and C. West, “DiFX: A Software Correlator for Very
Long Baseline Interferometry Using Multiprocessor Computing Environments,” The Pub-
lications of the Astronomical Society of the Pacific, vol. 119, pp. 318–336, 2007.

[6] F. Stefani and A. Moschitta, “FFT Benchmarking for Digital Signal Processing Technolo-
gies,” 2005.

[7] P. L. McMahon, “High Performance Reconfigurable Computing for Science and Enginner-
ing Applications,” Bachelor’s Thesis, University of Cape Town, 2006.

[8] Xilinx Inc., “Virtex-4 Family Overview.” Online, 2007 September.

[9] Xilinx Inc., “Virtex-5 Family Overview.” Online, 2008 September.

[10] Xilinx Inc., “Virtex-6 Family Overview.” Online, 2009.

[11] Xilinx Inc., “Floating-Point Operator v4.0.” Online, 2008 April.

[12] A. Cantle, “Leveraging FPGAs for Performance.” Online, 2007.

[13] Nvidia Corp., “Nvidia GeForce GTX285.” Online http://www.nvidia.com/object/

product_geforce_gtx_285_us.html.

[14] C. Harris, K. Haines, and L. Staveley-Smith, “GPU accelerated radio astronomy signal
convolution,” Experimental Astronomy, vol. 22, pp. 129–141, 2008.

[15] J. Wagner and J. Ritakari, “Software Correlation on the Cell processor,” in 6th Interna-
tional e-VLBI Workshop, 2007.

[16] R. Wayth, L. Greenhill, and F. Briggs, “A GPU-based Real-time Software Correlation
System for the Murchison Widefield Array Prototype,” The Astronomical Society of the
Pacific, vol. August, no. 121, pp. 857–865, 2009.

[17] A. Thompson, J. Moran, and G. Swenson, Interferometry and Synthesis in Radio Astron-
omy. Wiley-VCH, 2nd ed., 2004.

http://www.wikipedia.org
http://www.nvidia.com/object/product_geforce_gtx_285_us.html
http://www.nvidia.com/object/product_geforce_gtx_285_us.html

BIBLIOGRAPHY

[18] B. F. Burke and F. Graham-Smith, An Introduction to Radio Astronomy. Cambridge
University Press, second ed., 2002.

[19] J. L. Jonas, The 2326 MHz Radio Continuum Emission of the Milky Way. PhD thesis,
Rhodes University, 1998.

[20] R. Perley, “10th Synthesis Imaging Summer School,” June 2006. University of New Mexico.

[21] R. van der Merwe and R. Lord, “Correlator Flow Diagram,” Members of KAT Computing
Team, Pinelands, Cape Town.

[22] A. L. Varbanescu, A. S. van Amesfoort, T. Cornwell, A. Mattingly, B. G. Elmegreen,
R. van Nieuwpoort, G. van Diepen, and H. Sips, “Radioastronomy Image Synthesis on the
Cell/B.E.,” in Euro-Par, pp. 749–762, 2008.

[23] David Brodrick, “Fringe Dwellers.” Online http://fringes.org/.

[24] R. Wayth, “Correlation for Radio Astronomy with GPUs: Mostly worth it.,” tech. rep.,
ICRAR.

[25] W. Brisken, “10th Synthesis Imaging Summer School,” 2006.

[26] M. P. Rupen, “11th Synthesis Imaging Summer School,” 2008.

[27] C. Chang, J. Wawrzynek, and R. Brodersen, “BEE2: A High-End Reconfigurable Com-
puting Systems,” IEEE Design and Test of Computer, vol. 22, pp. 114–125, 2005.

[28] A. Parsons, D. Backer, C. Chang, D. Chapman, H. Chen, P. Crescini, C. de Jesus, C. Dick,
P. Droz, D. MacMahon, K. Meder, J. Mock, V. Nagpal, B. Nikolic, A. Parsa, B. Richards,
A. Siemion, J. Wawrzynek, D. Werthimer, and M. Wright, “PetaOp/Second FPGA Signal
Processing for SETI and Radio Astronomy,” Asilomar Conference on Signals, Systems,
and Computers, vol. Oct-Nov, pp. 2031–2035, 2006.

[29] L. de Souza, J. D. Bunton, D. Campbell-Wilson, R. J. Cappallo, and B. Kincaid, “A Radio
Astronomy Correlator Optimized for the Xilinx Virtex-4 SX FPGA,” Field Programmable
Logic and Applications, vol. Aug, pp. 62–67, 2007.

[30] J. Romney, “A VLBA Upgrade Conforming to VSOP-2 Specifications,” in VSOP-2, Dec,
2007.

[31] W. Alef, D. Graham, H. Rottmann, and A. Roy, “Software Correlator at MPIfR: Status
report,” in European VLBI Group for Geodesy and Astrometry Meeting, 2007.

[32] W. Brisken, “A Guide to Software Correlation Using NRAO-DiFX Version 1.0.” Online,
Feb 2008.

[33] Arstechnica. Online http://arstechnica.com/old/content/2000/04/ps2vspc.ars/5.

[34] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Landscape of
Parallel Computing Research: A View from Berkeley,” tech. rep., Electrical Engineering
and Computer Sciences University of California at Berkeley, Dec, 2006.

118 of 121

http://fringes.org/
http://arstechnica.com/old/content/2000/04/ps2vspc.ars/5

BIBLIOGRAPHY

[35] Xilinx Inc., “Xilinx History.” Online.

[36] B. de Ruijsscher, G. N. Gaydadjiev, J. Lichtenauer, and E. Hendriks, “Fpga accelerator
for real-time skin segmentation,” in Proceedings of the 2006 IEEE/ACM/IFIP Workshop
on Embedded Systems for Real Time Multimedia, pp. 93–97, 2006.

[37] Z. K. Baker and V. K. Prasanna, “Efficient hardware data mining with the Apriori algo-
rithm on FPGAs,” in Proceedings of the 13th IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 2–12, 2005.

[38] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Chamberlain, “A banded
Smith-Waterman FPGA accelerator for Mercury BLASTP,” in Proceedings of the 2007
International Conference on Field Programmable Logic and Applications, pp. 765–769,
2007.

[39] “Accelerating Compute-Intensive Applications with GPUs and FPGAs,” Application Spe-
cific Processors, vol. June, pp. 101–107, 2008.

[40] M. Herbordt, B. Sukhwani, M. Chiu, and M. A. Khan, “Production Floating Point Appli-
cations on FPGAs,” in 2009 Symposium on Application Accelerators in High Performance
Computing (SAAHPC’09), 2009.

[41] G. Genest, R. Chamberlain, and R. Bruce, “Programming an FPGA-based Super Com-
puter Using a C-to-VHDL Compiler: DIME-C,” Adaptive Hardware and Systems, vol. Aug,
pp. 280–286, 2007.

[42] Nallatech, Dime-C User Guide 1.3. Nallatech.

[43] Nallatech, “H100 Series FPGA Application Accelerators: Product Brochure.” Online
http://www.nallatech.com.

[44] Xilinx Inc., “The Virtex-4 Power Play,” Xcell Journal Online, vol. 52, pp. 30–33, Septem-
ber 2005.

[45] W. Wong, “FPGAs Move To 40 nm,” Embedded in Electronic Design, vol. February, 2009.

[46] D. Thomas, L. Howes, and W. Luk, “A Comparison of CPUs, GPUs, FPGAs, and Mas-
sively Parallel Processor Arrays for Random Number Generation,” in FPGA, 2009.

[47] The Entertainment Software Association, “Essential Fatcs.” Online http://www.theesa.

com/facts/index.asp.

[48] D. Luebke and G. Humphreys, “How GPUs Work,” IEEE Computer, vol. Feburary, pp. 96–
100, 2007.

[49] M. Macedonia, “The GPU Enters Computing’s Mainstream,” IEEE Computer, vol. 36,
pp. 106–108, 2003.

[50] J. K. Ìger and R. Westermann, “Linear algebra operators for GPU im- plementation of
numerical algorithms,” in ACM Transactions on Graphics, pp. 908–916, 2003.

119 of 121

http://www.nallatech.com
http://www.theesa.com/facts/index.asp
http://www.theesa.com/facts/index.asp

BIBLIOGRAPHY

[51] N. K. Govindaraju, B. Lloyd, M. L. W. Wang, and D. Manocha, “Fast computation of
database operations using graphics processors,” in Proceedings of the 2004 International
Conference on Management of Data, pp. 215–226, 2004.

[52] S.Che, J.Meng, J.W.Sheaffer, and K.Skadron, “A performancestudy of general purpose
applications on graphics processors,” in First Workshop on General Purpose Processing
on Graphics Processing Units, 2007.

[53] T. Yamanouchi., “AES encryption and decryption on the GPU,” GPU Gems 3, 2007.

[54] L.Nyland, M.Harris, and J.Prins, “Fast N-Body simulation with CUDA,” GPU Gems 3,
2007.

[55] V. Volkov and J. W. Demmel, “Benchmarking GPUs to Tune Dense Linear Algebra,” in
SC’08, 2008.

[56] Nvidia Corp., “Nvidia Geforce 8800GT.” Online http://www.nvidia.com/object/

product_geforce_8800_gt_us.html.

[57] Intel Corp., “Intel performance primitives software library.”

[58] Intel Corp., “Intel Xeon Processor X5450.” Online http://ark.intel.com/Product.

aspx?id=34446.

[59] FFTW, “FFT Benchmark Methodology.” Online http://www.fftw.org/speed/method.

html.

[60] Nallatech, “Benchmarking an FFT Complex Multiply IFFT function in DIME C,” Appli-
cation Note.

[61] P. Demorest, “National Radio Astronomy Observatory (NRAO) GPU Benchmarking.”
Online http://www.cv.nrao.edu/~pdemores/gpu/.

[62] Standard Performance Evaluation Corporation (SPEC), “SPEC CPU2006 Results.” Online
http://www.spec.org/benchmarks.html.

[63] A. Parsons, D. Backer, A. Siemion, H. Chen, D. Werthimer, P. Droz, T. Filiba, J. Manley,
P. McMahon, A. Parsa, D. MacMahon, and M. Wright, “A Scalable Correlator Archi-
tecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetiza-
tion,” The Publications of the Astronomical Society of the Pacific, vol. 120, pp. 1207–1221,
November 2008.

[64] Jason Manley, “Personal communications,” Jan 2010.

[65] J. Roy, “The GMRT Software Back-end : GSB,” in HPC in Observational Astronomy,
2009.

[66] J. Roy, Y. Gupta, U.-L. Pen, J. Peterson, J. Kodilkar, and S. Kudale, “A real-time software
backend for the GMRT : towards hybrid backends,” in CASPER Meeting Cape Town,
September 2009.

[67] C. Harris, K. Haines, and L. Staveley-Smith, “GPU FX Spectrometer using CUDA,”
AstroGPU, 2007.

120 of 121

http://www.nvidia.com/object/product_geforce_8800_gt_us.html
http://www.nvidia.com/object/product_geforce_8800_gt_us.html
http://ark.intel.com/Product.aspx?id=34446
http://ark.intel.com/Product.aspx?id=34446
http://www.fftw.org/speed/method.html
http://www.fftw.org/speed/method.html
http://www.cv.nrao.edu/~pdemores/gpu/
http://www.spec.org/benchmarks.html

BIBLIOGRAPHY

[68] R. Wayth, L. Greenhill, and F. Briggs, eds., A GPU based Realtime Software Correlation
System for the Murchison Widefield Array Prototype, 2006.

[69] D. Halliday, R. Resnick, and J. Walker., Fundamentals of Physics. John Wiley and John
Wiley and Sons, 6th ed., 2001.

[70] W. Brisken, “10th Synthesis Imaging Summer School,” June 2006. University of New
Mexico.

[71] F. G. Stremler, Introduction to Communication Systems. Addison-Wesley, third ed., 1992.

[72] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 4th ed., 2006.

[73] P. L. McMahon, “Accelerating Genomic Sequence Alignment using High Performance
Reconfigurable Computers,” Master’s thesis, Department of Computer Science, University
of Cape Town, 2008.

[74] Adam Deller, “The DiFX homepage.” Online http://astronomy.swin.edu.au/

~adeller/software/difx/.

[75] “DiFX Wiki Developer Pages.” Online http://cira.ivec.org/dokuwiki/doku.php/

difx/start.

121 of 121

http://astronomy.swin.edu.au/~adeller/software/difx/
http://astronomy.swin.edu.au/~adeller/software/difx/
http://cira.ivec.org/dokuwiki/doku.php/difx/start
http://cira.ivec.org/dokuwiki/doku.php/difx/start

	Abstract
	Acknowledgements
	Glossary
	List of Figures
	List of Tables
	Introduction
	Background
	Software Correlation
	Co-processor Software Correlator Acceleration
	Project Objectives and Scope
	Scope
	Related Work

	Document Outline

	Radio Astronomy Concepts and Correlation Principles
	Background
	Simplified Correlation Operation
	Computing the Correlation
	Computing the Correlation Numerically
	Triangular Kernel

	Correlation Focus and Simplifications
	Software Correlation and Skeleton Design
	X Engine Focus
	Correlator Skeleton Design
	Real World Correlator Requirements

	Contributions from Other Software Radio Astronomy
	Conclusion

	Software Co-Processor Acceleration
	Code Acceleration
	Reconfigurable Computing (RC)
	Advantages of RC
	Programming FPGAs
	Dime-C and its Development Environment
	The Nallatech H101-PCIXM Virtex 4 LX100 FPGA Board

	General Purpose Graphics Processing
	Advantages of GPUs
	Programming GPUs
	CUDA Architecture and its Development Environment
	Zotac 9800 GT GPU Board

	Conclusion

	FPGA Implementation of Correlator X Engine
	Correlation Engine - Creating the pipeline
	System Overview
	Single Correlator Engine
	Parallel Correlator Engine and Reducing Memory Accesses
	Correlator Block Implementation Results

	I/O Management - Feeding the pipeline
	Memory Use in the Correlation Engine
	Dynamic RAM

	Control - Keeping the Pipeline Full
	Design 1: Nested Loop
	Design 2: Single Loop with Double Buffering
	Design 3: Single loop without double buffered input

	Resource Utilisation
	Conclusion

	GPU Correlator Implementation
	Design
	System Overview
	Design Considerations
	X-Engine Design
	Memory Ordering
	Allocating Blocks to Baselines
	Limitations of Design

	Implementation on Nvidia Geforce 9800GT
	Optimisation
	Conclusions

	Performance Results and Discussion
	Benchmark Environment and Method
	Runtime Measurement
	Correlator Input
	Validation
	Benchmark Platforms
	Notes on Benchmarks
	Arithmetic Intensity

	Final Implementation Benchmark Results
	General Performance Results
	Specific and Detailed Benchmarks

	Discussion of Benchmarks
	Correlator Design Efficiency
	Estimated Scaling with Future Hardware Generations
	Result Conclusions

	Comparison with Other Correlators
	Conclusions on the Co-processor Correlator Implementations
	Evaluation of Nvidia CUDA GPUs for Software Correlation Acceleration
	Evaluation of Nallatech H101 for Software Correlation Acceleration

	Conclusion and Future Work
	Future Work
	Conclusion

	Source Code and Project Directory
	Astronomy Background
	Angular Resolution
	Correlation
	KAT Correlator Prototype

	Co-Processor Design Considerations
	SIMD/Streaming Processors for Data-Parallel Application
	SIMD Co-Processors in HPC

	Deep and Wide Parallelism
	SIMD Execution
	Reduction

	Memory and I/O Limitations in GPUs and FPGAs

	Testing
	Output Validation
	Data Precision Impact

	Correlation on FPGAs
	FPGA correlation examples
	Rotating both i and j axes to i' and j'
	Implementation Pictures

	Equipment Used
	Derivations
	Computing Complex Input
	Commutative Conjugate Multiplication Derivation
	Correlator Output Derivation

	DiFX
	Bibliography

