A High Speed Data Acquisition
System

Andrew Martens

A dissertation submitted to the Department of Electrical Engineering,
University of Cape Town, in fulfilment of the requirements

for the degree of Master of Science in Engineering.

Cape Town, February 2005

Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for
the degree of Master of Science in Engineering in the University of Cape Town. It

has not been submitted before for any degree or examination in any other university.

Signature of Author

Cape Town
1 February 2005

Acknowledgements

Thanks go to the University of Cape Town for allowing me the opportunity to further
my studies. I am also grateful to Openfuel for giving me time off from real work to
finish areas of this dissertation. On a personal note, thanks are given to my family,

girlfriend and friends for their support.

il

Contents

Declaration
Acknowledgements
Nomenclature

1 Introduction

1.1 Overview.

1.1.1 System Design and Implementation

1.1.2 Testing and Results

1.1.3 Conclusions and Recommendations

1.1.4 High Speed Firmware Design Techniques

1.1.5 Analogue to Digital Converter Performance Testing

1.1.6 Buffer and Data Path Design

1.2 Accompanying CD .

1.3 Conclusion

2 System Design and Implementation

2.1 System Requirements

2.1.1 Functional Requirements

2.1.2 Structural Requirements

2.2 System Operation . .

2.2.1 Data Capture

il

ii

2.2.2 Data Format 9

2.3 Configuration Options 10
24 Hardware 10
24.1 The ADC Card 11
2.4.2 The PMC to PCI Adapter Card 11
2.4.3 The Host Computer 11
2.5 Software 12
2.5.1 The PCI Device Driver 12
2.5.2 The Data Capture Suite 13
2.6 Firmware 13
2.6.1 Challenges 14
2.6.2 Design L 16
2.6.3 Implementation, 17
2.7 Conclusion 22
Functionality Tests and Results 23
3.1 Data Format Tests 23
3.1.1 Method 24
3.1.2 Results. 25
3.2 Buffer Overflow Tests 25
3.2.1 Method 25
322 Results. 25
3.23 Discussion Lo 26
3.3 Unbroken Operation Tests 26
3.3.1 Method 27
332 Results. 27
3.4 Triggering Tests L 27
3.4.1 Software Trigger 27

v

3.4.2 Level Trigger

3.5 Conclusion

Performance Tests and Results

4.1 Block Sizes and Data Rates
4.2 Grounded Input Test
421 Method
422 Results.,
4.2.3 Discussion
4.3 Single Tone Test
4.3.1 Method
432 Results.
4.3.3 Discussion
4.4 Conclusion

Conclusions and Recommendations
5.1 System Performance

5.2 Recommendations for Similar Future Systems

High Frequency Firmware Design Techniques

A.1 Factors Affecting Clock Rates in FPGAs . . .
A1l.1l FPGAMakeUp
Al12 FanOut
A.1.3 Propagation Delay

A.2 Methods to Maximise Clock Rates.
A.2.1 Built-in Resources
A.2.2 Compiler Options
A.2.3 Pipelining
A.2.4 Duplicating Logic

29

29

29

30

30

30

33

33

33

39

43

46

46

47

48

B Analogue to Digital Converter Performance Testing 53

B.1 Spectral Analysis 53
B.1.1 Time Domain Sampling 53
B.1.2 Frequency Domain Sampling 54

B.1.3 Relationship between the Continuous Fourier Transform and

the Fast Fourier Transform 54

B.1.4 Number of Time Domain Samples 56

B.1.5 Windowing o7

B.2 Standard Performance Tests 60
B.2.1 Single Tone Test, 60

B.2.2 Grounded Input Test, 65

B.2.3 Multi-tone Test,o Lo 65

C Buffer and Data Path Design 66
C.1 Task o 66
C.2 Resources o i 66
C.3 Design 67
Bibliography 72

vi

List of Figures

2.1

2.2

2.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

B.1

B.2

B.3

B.4

C.1

C.2

Block diagram of system oL 8
Data format of captured data 10
Firmware system modules, 18
Grounded input results for channel A 31
Grounded input results for channel B 32
Captured sine wave in time domain 34
Channel A performance parameters using HP8656B 35
Channel B performance parameters using HP8656B 36
Channel A performance parameters using HP33120A 37
Channel B performance parameters using HP33120A 38
Captured spectrum from HP8656B 40
Spectrum as shown by spectrum analyser 41
Spectrum as shown by system 42
Spectrum of unfiltered 2 MHz HP33120A signal 44
Spectrum of filtered 2 MHz HP33120A signal 45
The effects of zero-padding in FFT results 58
The effects of the wrong window function size in FFT results 61
Spectrum of signal showing harmonics 63
Spectrum showing bands to be excluded from noise calculation . . . 64
ASMD chart showing synchronisation word logic 68
Complex writer process state machine 69

vil

C.3 Complex reader process state machine

C.4 Simple writer and reader process state machines

viil

List of Tables

1.1

1.2

1.3

2.1

3.1

5.1

C.1

C.2

Firmware challenges and appropriate design strategies 3
System functionality test results 4
System performance test results 4
Firmware module functionality 19
Buffer overflow test results 26
Summary of system performance 46
Data path requirements 66
Storage element resources 67

X

Nomenclature

ADC — Analogue to Digital Converter
ASCII — American Standard Code for Information Interchange

ASMD charts — Algorithmic State Machine and Data path charts. A means of

representing a design that includes a data path and a controller [12]
B — byte or bytes
b — bit or bits
CD — Compact Disk
COTS — Commercial-off-the-Shelf
DC — Direct Current

DMA — Direct Memory Access. A means of transferring data without use of the

system’s main processor
dBc — Power relative to actual carrier power
dBFS — Power relative to full-scale or the maximum theoretical carrier power
dBm — Power relative to 1 mV
ENOB — Effective Number of Bits. See subsection B.2.1
FIFO — First-in-First-Out storage structure
FPGA — Field Programmable Gate Array

G — 10° (e.g. 1 Gb/s = 10%bits per second) when referring to data rates. 23° (e.g.
250 GB = 250 x 23%bytes) when referring to data block size

GUI — Graphical User Interface
k — 210

M — 10° (e.g. 100 Mb/s = 100 x 10°bits per second) when referring to data rates.
220 (e.g. 10 MB = 10 x 2% bytes) when referring to data block size

PC — Personal Computer
PCB — Printed Circuit Board

PCI — Peripheral Component Interconnect. A standard “that specifies a computer

bus for attaching peripheral devices to a computer motherboard” [9].

PMC — PCI Mezzanine Card. “A PCB manufactured to the IEEE P1386.1 stan-
dard. This standard combines the electrical characteristics of the PCI bus

with mechanical dimensions of the Common Mezzanie Card...format” [8].

PMC to PCI adapter card — An adapter card from the PMC form factor to
PCI

PROM — Programmable Read Only Memory

Quadword — 8 bytes

RAID — Rendundant Array of Independent Disks

RAM — Random Access Memory

SNR — Signal to Noise Ratio. See subsection B.2.1

S — Samples or sample

SINAD — Signal to Noise and Distortion Ratio. See subsection B.2.1
SFDR — Spurious Free Dynamic Range. See subsection B.2.1
VHDL — VHSIC Hardware Description Language

VHSIC — Very High Speed Integrated Circuit

Word — 2 bytes

ZBT RAM — Zeros Bus Turnaround RAM. “Type of SRAM that can read or

write every clock cycle to allow 100 percent bus efficiency” [7]

xi

Chapter 1
Introduction

Digital systems pervade the world around us. The interface between analogue data
sources and these digital systems are the realm of analogue to digital converters
(ADCs) that acquire digital snap-shots of data for further processing. Some appli-
cations require high sampling rates or high resolution data (or both). In addition

to this, certain applications require the capture of large amounts of data.

A good example of an application requiring a high sampling rate and high reso-
lution data, is a digital spectrum analyser used to analyse large bands of a spec-
trum and offer precise results. Radar systems such as synthetic aperture radars use
post-processing techniques on large quantities of data!. A developing field requir-
ing versatile data capture systems is that of software defined radio (SDR). It is “a
collection of hardware and software technologies that enable reconfigurable system

architectures for wireless networks and user terminals”[10]?.

This document gives details on a project to build a high speed, high resolution
data acquisition system that is capable of performing to some of the most stringent
requirements. Specifically, this thesis documents the design, implementation and
testing of firmware implemented in an FPGA in a commercial data capture card as
part of the system. This firmware would facilitate the real-time transfer of captured
data to RAM in a host PC.

1.1 Overview

This section gives an overview of the chapters to follow in this document. A brief
description along with significant information and findings of each is given in the

following subsections.

!See http://rrsg.ee.uct.ac.za/sasar/ for an example of such a system
2 An open source Software Defined Radio project is run by the GNU foundation. Details can be
found at http://wuw.gnu.org/software/gnuradio/

1.1.1 System Design and Implementation

This chapter is split into various sections detailing the design and implementation

of the final system.

The first section of this chapter gives various functional and structural system re-
quirements. These outline a high performance data capture system capable of sam-
pling two channels of data at 100 MHz continuously for up to 5 seconds. The system
was to be composed of a commercially available data capture card plugged into a
high performance PC. Data would be captured in the data capture card and be
passed on via the PC’s PCI bus for storage in RAM. Firmware and software would

coordinate this transfer.

The following section gives information on system operation during data capture.
This process is broken into a number of steps with details on the role different system
components play in each step. Details on the format of the resultant data are also

given.

Various system configuration options are provided in the following section. These
include different data resolutions, trigger sources, clock sources and tag values to be

used when marking various events during data capture.

The following section gives detailed information on hardware chosen for the system.
Details are provided on the host PC, ADC card and PMC to PCI adapter card used.

Following this is a section giving basic information on the PCI device driver and
software application suite implemented to configure the system and coordinate data

capture.

The design of the custom firmware necessary to capture, preprocess and forward the
data to the rest of the system is then described. Challenges and the design strategies
implemented to overcome them are shown in Table 1.1. This section includes details
of the various versions of firmware produced in the prototyping design loop used to

produce the final version.

1.1.2 Testing and Results
The system was tested to check its conformance to requirements and this chapter
details the results of these tests. These results are broken into two sections.

The first section details tests to verify the basic functionality of the system. This

functionality and the results obtained from the tests are shown in Table 1.2.

The following section relates to the system performance in terms of data rates,

captured block sizes and data quality. The results of these tests are summarized in

Table 1.1: Firmware challenges and appropriate design strategies

Challenge

‘ Design strategy employed

Unknown performance of PCI firmware,
PCI bus, operating system and software
in terms of sustained data rates.

A prototype based system implementa-
tion strategy was used to design iteratively
higher performance systems.

Unknown performance of PCI firmware,
PCI bus, operating system and software
in terms of latencies.

Buffering of data to cater for periodic
stoppages was implemented. Firmware
was designed to cater for and recover from
occasional data loss. Buffer overflow was
restricted to occur only in the custom
firmware module.

Unknown capability of firmware in FPGA
to perform to required clock frequency.

Firmware was designed to include heavy
pipelining and reduced fan out from reg-
isters to increase the possible clock fre-
quency.

Time constraint.

A Prototyping strategy was used to en-
sure a working system, even if not at the
required performance level.

Table 1.3.

1.1.3 Conclusions and Recommendations

This final chapter gives conclusions reached about the project. The system is found

to conform to specifications with scope for improvement in terms of functionality

and performance.

Improvements envisioned for future systems are as follows;

e The use of FPGASs containing a larger amount of RAM or a more appropriate
ZBT RAM module to reduce the likelihood of data overflows in the custom

firmware module.

e The system should be tested with better quality signal generators and Nyquist

filters.

1.1.4 High Speed Firmware Design Techniques

During design and implementation, various techniques had to be employed to enable
the firmware to perform to the clock frequency required. Factors affecting the speed
at which firmware can operate are discussed. This appendix provides information

on methods to combat these sources of delay.

Table 1.2: System functionality test results

‘ Functionality

‘ Test Results

Data format.

Data format was found to be predictable. This included format in

respect of the following;

e The position and behaviour of synchronisation flags and the way
in which data behaved in their presence.

e The structure of data with the system operating in different data
resolution configurations

e The placement and structure of overflow markers and the way in
which data behaved in their presence.

Transfer start and
end.

Very large transfers (250 GB) of data were captured without disruption.
Multiple (800) transfers were performed successfully with a software
generated trigger.

Trigger sources.

Transfers using the various trigger sources were initiated successfully.

ture of large data
blocks.

Overflow detec- | Overflows were forced and the system reported them predictably.
tion.
Successful cap- | Large blocks (2.5 GB) of test data were captured and tested for over-

flows in the custom firmware module. The results of the capture of 200
blocks at different data resolutions were as follows:

e At 400 x 10°B/s (14 bits per sample plus two padding bits) 8
overflows occurred. The system lost a maximum of 2072 bytes in
an overflow.

e At 350 x 10°B/s (14 bits per sample) 3 overflows occurred. The
system lost a maximum of 280 bytes in an overflow.

e At 300 x 10°B/s (12 bits per sample) 1 overflow occurred and the
system lost 56 bytes.

e At 200 x 10°B/s (8 bits per sample) no overflows occurred.

Table 1.3: System performance test results

ter

Performance Parame-

Test Results

Data rates.

The system was tested at data rates up to 400 x 10°B/s. The
probability of data loss decreased significantly with reduced data
rates and, at 200 x 10B/s, was almost zero. In all cases data
capture was to RAM on the host computer and under as close to
ideal conditions as could be found.

Data block sizes.

2.5 GB data blocks were captured to the host computer’s RAM,
the maximum data block size possible with the RAM available.

ADC performance

Signal generators were used to generate data that was captured
by the system. Due to the poor quality of this data and lack of
necessary filters, these tests were not conclusive by themselves.

1.1.5 Analogue to Digital Converter Performance Testing

An important characteristic of an ADC is the quality of data captured. This involves
using standard tests to quantify the quality of the data captured. Spectral analysis
and related topics are explored in this appendix as these are crucial to how the
tests are performed and how results are interpreted. The tests themselves are then

described which include the single, multi-tone and grounded-input tests.

1.1.6 Buffer and Data Path Design

This appendix gives detailed information on the data path designed in the custom
firmware. It firstly gives the functionality the data path had to implement. The
various resources available to accomplish these requirements are then provided. A
final design is then described that attempts to cater for all requirements with the

resources supplied.

1.2 Accompanying CD

A CD is provided with this thesis. It contains the following directories as well as a

version of this thesis in electronic format.

‘irmware’ — Files containing all modules implemented in the final system are
present in this directory. Modules related to the ZBT RAM, although not used
in the final system, are included for reference. These modules are implemented
in VHDL and the final system synthesized and routed using Quartus IT version

3.0 with service pack 1 installed from Altera.

‘software’ — This directory contains the source for small C programs used in
debugging and testing the system. A program to convert binary data in 14 bit
(with padding bits) data resolution to ASCII data usable by Matlab is also

included.

‘Matlab scripts’ — Matlab was used in testing the data quality capabilities of the

system. This directory contains the scripts used.

1.3 Conclusion

This chapter has briefly introduced the system under design and given an overview
of the chapters to follow. The next chapter starts with detailed system requirements

and then details the design and implementation of the system.

Chapter 2
System Design and Implementation

This chapter begins with a set of requirements the final system was to adhere to in-
cluding a high level description of the required system structure. This is followed by
a description of system operation during data capture for the system implemented.
Included in this discussion is a description of the format of resultant data. Following
are sections giving details on hardware, software and firmware system components.

Various possible system configuration options are given in the final section.

2.1 System Requirements

This section gives the set of requirements for the system. These are taken from [14].

It also gives a description of the hardware to be used and the basic system structure.

2.1.1 Functional Requirements

Time to completion The system was to be finished as soon as possible

Data resolution The data resolution did not need to be very high for the target

application. Better resolution data would produce better results however.

Sample rate The minimum sampling rate would be 100 x 10® samples per second

per channel for two channels of data.

Time stamping Time stamping would be required to check for lost data. Data
would be produced in blocks with each block having a unique identifier. A 16

bit counter placed approximately every 1000 samples would be sufficient.

Triggering The triggering instant did not have to be exact. Data would be cap-

tured and post-processing used for synchronisation. A trigger generated by

software would be sufficient. A trigger relying on the voltage level read by the
ADCs could also be useful.

Length of capture This should be programmable. In this application, a block

representing about five seconds of continual capture was required.

Host computer This would be determined by data capture and storage require-

ments.

Software compatibility The main software requirement was that resultant data
should be available in a format for processing in a C program or Matlab. A

means of configuring the system via software would be necessary.

Mechanical The required system did not have any mechanical constraints.

2.1.2 Structural Requirements

The system was to be designed using an ADC card that had been used in a previous
project. This was the PM480 produced by Parsec (see http://www.parsec.co.za
for the latest information on this card). Figure 2.1 shows a block diagram of the
required system. The PM480 would plug into a PMC to PCI adapter card and
this would plug into a PCI slot in a host computer running Linux. The PM480
contained firmware supplied by the manufacturer to perform PCI transactions. This
firmware allowed data to be transferred between a PCI driver on the host computer,
and custom firmware on the PM480. This custom firmware would be implemented
to capture data and send it on for transfer to RAM of the host computer. The
custom firmware was the responsibility of the author and is the main focus of this
document although many aspects of the whole system are discussed. A colleague
was to implement the PCI driver as well as other software to ease the task of system

configuration and data capture.

2.2 System Operation

This section gives details on system operation. Steps taken during data capture as
well as the roles played by various system components are provided in the first sub-
section. The second subsection provides information on the format of the resultant
data.

2.2.1 Data Capture

The sequence of operations taken during the capture of data would be as follows:

7

Application software

PCI device driver

Custom firmware

PMC to PCI adapter card

A

|
o

Host PC

Figure 2.1: Block diagram of system

1. A user space application would be started that would prompt the user for
various configuration options. This application would then configure the sys-
tem for optimal performance and load the PCI device driver using appropriate
arguments. The driver would use the configuration settings passed to it to

configure parts of the system under its control.

2. The user space application would then wait for data transfer to complete
via the device driver. Data transfer would start when the custom firmware
received a trigger to start capture. The trigger source would be configurable.
(See section 2.3 for information on these options). If a time to start capture
was provided, the trigger would be generated by the application software at

the correct time.

3. When data transfer begins, the custom firmware would take a reading from
each data source every clock cycle and pass these samples on for buffering.
The data would then be read out of the buffer and passed on to a buffer in

the PCI firmware module for transfer on via the PCI subsystem.

4. The control unit controlling reads and writes to the custom firmware’s buffer
would monitor the level of this buffer and control reading from the custom
firmware’s buffer to prevent overflows. If the custom firmware’s buffer was
about to overflow, further writes would be prevented and a marker inserted

into the data to indicate the location and size of the overflow.

5. The amount of data being transferred would be monitored and a marker

inserted into the data at regular intervals before passing it on to the PCI

firmware.

6. The firmware transferring data to the host computer via the PCI subsystem
would transfer data directly into RAM.

7. Once the required amount of data had been captured, the PCI device driver
would oversee the suspension of data capture. The user space application
would then transfer the data from RAM to a file on hard disk, unload the

device driver, and return the system to its normal configuration.

2.2.2 Data Format

Data would be broken into ‘blocks’ of uniform size containing a specified number of
64 bit quadwords. A marker would be placed at the end of the specified number of
quadwords. This marker would be a quadword itself and contained a 32 bit tag, that
would help to identify the quadword as a marker, and a 32 bit counter identifying the
block’s position in the data stream. This marker is referred to as a ‘block marker’,

‘end of block marker’ or ‘synchronisation word’ in the text that follows.

Data from each channel would be interleaved so that the first sample from channel
‘A’ would be followed by the first sample from channel ‘B’ which would then, in
turn, be followed by the second sample from channel ‘A’ and so on. Data would
not be byte-aligned (except where this would be implicit i.e. in the 8 and 14 bit
(with two bits of padding) data resolution configurations). Each sample would follow
directly after the previous sample. In 14 bit (with padding) data resolution mode,
two extra ‘0’ bits would be added ‘above’ the most significant bit giving 16 bits per
data sample. This would help to distinguish data from markers (if the appropriate
bits were ‘1’ in the marker). This would also make data extraction easier by forcing

data to align to word boundaries .

In the event of an imminent overflow in the buffer in the custom firmware module,
data would be discarded and a marker placed in the data stream to mark the place
and extent of data loss. This marker would be placed so that there would be no
partial sample before or after it (i.e. it would separate complete data samples).
It would consist of the same 32 bit tag used to mark the end of a block of data,
followed by a 32 bit counter indicating how many bytes had been lost. The data
block containing the marker would not be truncated but still contained the correct

number of quadwords (one of which would be the overflow marker).

Figure 2.2 shows a data stream of example 12 bit resolution data. The first data
sample in the stream is on the left. Details of the first end of block marker and one

overflow marker are shown. The beginning and end of the data are also shown.

Last block

Fi | 2-bi i ifyi Last (whole) sample before
irst sample 32-bit tag identifying () p marker

from channel end of block marker overflow marker.

32-bit tag identifying Whole sample
Fi | | -
Irst sample Second sample 32-bit block count overflow marker following overflow
from channel from channel

0010100010001000000101100... ... 01011110000...00000000...000001010... ...010111110000...0000...000010100... ... [0[¢

/—J T [] [

Last sample Remaining fragment 32-bit count of | ast, possibly

of first block of last sample of bytes lost partial, sample
) first block or in data

May be only first

fragment. first sample of next block.

Figure 2.2: Data format of captured data

2.3 Configuration Options
Configuration options for the system were to be as follows:

e The number of quadwords in a data block could be specified.
e The insertion of a tag at the end of every data block could be suppressed.

e The unique 32 bit tag that would be used to mark the end of data blocks and

data loss could be set to any value.

e The trigger source could be configured to be from software, an external source

or when the data reached a specific level on a data channel.

e The data source could be the ADCs or a firmware module generating test

‘ramp’ data for debugging.

e The clock source for the ADCs and custom firmware could be an on-board

oscillator or an external input.

e The data resolution was to be configurable as 8, 12, 14 bits or 14 bits plus two
padding bits.

2.4 Hardware

The hardware used in the final system can be divided into three main parts:

e A high speed sampling card containing ADCs to sample the data stream and
FPGASs to contain the custom and PCI firmware.

10

e A PMC to PCI adapter card.

e A computer with a large quantity of RAM, hard drive, processor and good
quality motherboard supporting high data rate PCI busses.

2.4.1 The ADC Card

The PM480 wdata acquisition card from Parsec was chosen (see http://www.parsec.
co.za for more information on the PM480). This included a PCI firmware subsys-
tem that would allow configuration and data transfer. The version of the PM480

usfsed for this project also contained:

o Two ACEX FPGAs

Two Analog Devices AD6645 ADCs

A 4 MB ZBT RAM module

A 100 MHz oscillator and a clock multiplexer allowing the choice between the

onboard oscillator and an external input as the clock source

e An external input for supplying a trigger to the custom firmware

2.4.2 The PMC to PCI Adapter Card

An adapter card was needed as the ADC card we were using could not plug directly
into a PCI slot as it was in the PMC form-factor. A passive adapter card (the PCI
bus lines are merely extended) from another project was used in the first part of
development but this proved not up to the task. The system would work only on
certain PCs. In others, the entire operating system would lock up during transfer
forcing a hard reboot. Certain data blocks would also be ‘lost’. Many days were
spent debugging and checking firmware and software. The replacement of the passive
adapter card with an active one (which implements a PCI bridge on the card)
solved all of these problems. The final system used a PMB-P Peritek active PMC
to PCI adapter card. See http://www.peritek.com/pmb_p_main.htm for more

information on this card.

2.4.3 The Host Computer

The host computer was chosen for its ability to handle the data rates to be generated.
Hard drives did not support the data rates required (performance testing on a high-

end IBM system using a RAID system yielded a sustained data rate of just over

11

170 x 2?° B/s when writing a large file) so capture would be to RAM. A good
quality PCI chip set and the ability to support a large amount (at least 3 GB) of
system RAM was required. An above-average processor was thought to be sufficient.
The RAM had to be fast enough to support the data rate and the error-correcting
capabilities of the modules chosen was a bonus. The final system consisted of the

following:

e An Intel SE7505VB2 (Vero Beach) motherboard supporting one 64-bit, 66
MHz PCI bus.

e A single Xeon 2.4 GHz processor (512 kB cache).

e 3 GB of Transcend ECC266 DDR RAM. 500 MB of this would be allocated
for use by software and 2.5 GB made into a RAM disk for data capture.

e A 120 GB 7200 rpm Seagate Barracuda hard drive.

2.5 Software

The custom built software was developed in Linux by a colleague and consisted of

two main modules:

e A device driver to coordinate the capture of data and configure the system.

e A software suite to get configuration information from the user, load the driver,
configure the operating system, unload the driver after capture, and copy data

to a file on the hard drive after capture.

2.5.1 The PCI Device Driver

The PCI device driver was developed in parallel with the custom firmware. It
was designed to be highly configurable so that various settings could be tweaked
to improve performance. Two versions were developed starting with a basic, low
performance version and moving to a high performance version. This software was
extremely useful for testing and debugging. The final version supported the following

functions:

e Configuration of the firmware and hardware on loading the module. This
allowed the user to specify options like clock source, data resolution, trigger

source and data block size.

12

e Configuration of software resources such as the size and number of internal

buffers to allow tweaking.

e Access to status information obtained from various parts of the system at
various stages of data capture. This data was used during debugging and

tweaking.

2.5.2 The Data Capture Suite

The utility developed to aid a user during data capture served various functions:

e It allowed the user to specify a time at which capture should start if it was

not to start immediately

e It allowed the user to choose from various system configuration options in a

simple manner
e It automatically configured the system for optimum performance

e It loaded the device driver with appropriate configuration options removing

the task of learning the various options from the user

It was implemented in two parts:

1. An executable that interfaced with the device driver to start and end capture.
This executable could take arguments such as what size data block to capture

and at what time to start data capture.

2. A set of scripts that helped automate the process of configuration and data
capture. The set of scripts provided a GUI to obtain the settings from the user.
This set of scripts then loaded and configured the device driver for optimum
operating conditions. It also configured the other parts of the system for ideal
system conditions during capture by performing tasks such as shutting down
unneeded processes. It then called the executable with appropriate options
for data capture. After capture, it copied the data block to the hard drive for

further processing and returned the system to a normal configuration.

2.6 Firmware

This section details the design and implementation of the custom firmware respon-

sible for capturing data from the ADCs and sending it on to the PCI firmware.

13

The various challenges associated with this firmware are introduced first along with
the design strategy that would attempt to overcome each of these challenges. The
actual design on the various firmware modules is then described. The prototyping
process used to develop the process is described, with the various prototypes and

information used in their design being described.

2.6.1 Challenges

This section gives the various challenges to be overcome when designing the custom
firmware as well as the design strategies implemented in an attempt to overcome
them. Various smaller challenges were encountered such as designing for metastabil-
ity, debugging various error conditions, interaction between multiple state machines

and others but these are not project specific and are well discussed in other sources.

Average data rates

The system to be constructed was reasonably large consisting of many components
that were untested at the data rates concerned and whose operation was not under
the designer’s control. In addition, the entire system was not available at the time
of design for testing, portions of it arriving during implementation with low perfor-
mance substitutes being used in the interim as implementation could not be delayed
due to time constraints. This unknown average data was the largest potential chal-
lenge. Literature could not be found on reliable transmission of large blocks of data
via PCT at 400 x 10° B /s (which would be the approximate data rate required) under
any conditions. A non-trivial bottleneck at any point would be difficult to cater for,
except to attempt replacement with a new system component which would add time
and cost to the project. System components that might not perform as needed in

this regard were the following:

e The PCI system might not perform to the maximum theoretical data rate due
to non-performance of any of the components in the data path. This could be
a function of the PCI controllers concerned (it was found through testing that
some older PC’s supported a lower than theoretical maximum data rate) and
the PCI subsystem provided with the ADC card.

e The operating system and application software might not be efficient enough
to process the data at the required rate. The main contributor to this would be
the performance of the system these would run on. This would be determined
by the performance of the processor, cache, RAM and the busses interlinking
these components. Another contributor would be the efficiency of software

routines including interrupt service and PCI transaction routines. Combined

14

with these would be competition for resources from devices and processes that
would be part of the system. This competition could be reduced but not

totally controlled due to the necessary overhead of the operating system.

The design strategy employed to overcome this potential challenge was to develop
initial low performance firmware that would not require high performance from the
rest of the system. Later prototypes could add to the load placed on the rest of the
system as components of the final system became available and previous versions

where found to perform adequately.

Latencies

If the average data rate was sufficient, the next possible challenge would be if com-
ponents in the data transfer chain added large latencies during transfer. This would
cause the potential loss of data if buffers in the chain overflowed. The components

whose operation was unknown could again prove to be the undoing of the system:

e The operating system and application software could have slow turn-around
times between processing blocks of data. The non real time performance of
the Linux kernel would mean unknown delays in servicing interrupts and time

spent running application processes.

e PCI communication is non real time. A PCI controller may grant the bus
to a requesting device after an unspecified amount of time [17, page 15] and
may force the current bus master to release the bus if it is needed by another
device even if in burst mode if the bus master conforms to the recommended
PCI specification [17, page 376]. These factors could combine to introduce

latencies of an unknown size during transfer.

e The performance of the PCI firmware engine supplied with the ADC card was

unknown in terms of time taken to initiate and end transfers.

The strategy used to reduce the probability of buffer overflows was to use as large
buffers as possible to absorb occasional disruptions in data flow. The ADC card sup-
plied was not explicitly designed to transfer large blocks of data in real time however,
and support for the buffering required was implicit. Another strategy was to design
the system to ensure that the system could recover from buffer overflows and con-
tinue capturing data. The system was designed so that any overflows would occur
in buffers in the custom firmware module exclusively. The custom firmware would
ensure that an overflow was marked and that data capture could continue. Software
processing the resultant data could check for overflows and act appropriately where

they were found to occur.

15

FPGA performance

To capture the data being produced by the ADCs, the custom firmware had to
perform at 100 MHz. Parts of the system interacting with the PCI firmware had to
perform at 66 MHz. In a previous project using this ADC card, getting the firmware
to run at similar clock rates had been found to be a large source of frustration if
not planned for. Attempting to speed up a firmware design after implementation
was found to be expensive in terms of time and effort. A change in one part of the
system often caused a ripple effect of necessary changes in other logic. Each change
exposed the firmware to possible bugs and the testing process to fix these wasted a

lot of time.

The strategy used to combat this was to design the firmware with high speed in
mind. Pipelining was heavily employed and fanout from registers was reduced by
forcing redundant logic and registers. See appendix A for information on techniques

to increase the possible clock rate in firmware.

Time

The customer needed the system as soon as possible. This meant that design,
implementation and testing had to proceed as fast as possible. There would not be
very much time for redesign in case of system non-performance. Design could also

not be put off until all of the necessary components were available and fully tested.

This challenge was overcome by generating an initial low performance prototype and
increasing the performance of new prototypes based on test results from previous
prototypes and as system components became available. This would ensure that a
system would be ready for the customer, even if it performed at a standard that was
lower than optimal. This strategy also allowed core functionality to be implemented
initially and features added later when basic requirements were met in previous

prototypes.

2.6.2 Design

The custom firmware was firstly divided into various modules responsible for differ-
ent actions. In later prototypes, modules would be reused with necessary modifica-
tions restricted to modules requiring upgrading. Consistent module interfaces would
help in simulation as the same testbenches could be used to test modules from dif-
ferent prototypes. These modules are shown in Figure 2.3. This shows all modules
from all prototype systems. Some prototypes did not include all modules. Details on

the functionality provided by each module is given in Table 2.1. These modules can

16

be found on the attached CD in the ‘firmware’ directory in the file with the name
given in Table 2.1 (testbenches for each module are found in ‘<file name> th.vhd’
on the CD where ‘<file name>.vhd’ is the name of the file containing the module
in the table).

2.6.3 Implementation

The system was implemented as a series of prototypes. Each prototype used infor-
mation provided by tests on previous systems to improve on areas identified as not
performing adequately. It was implemented using Quartus IT (version 3.0, service
pack 1) software provided by Altera. This was installed on a Windows XP operating

system.

Low performance prototype

The first firmware prototype developed was one that was very conservative on what
it expected from the rest of the system so as to be almost guaranteed to operate

correctly:

e Most of the basic functionality was implemented. The level trigger module
was not needed for basic system operation and was not implemented for this

prototype.

e A single data resolution of 8 bits was available leading to a maximum required
data rate of just over 200 x 10° bytes per second with block markers inserted.
This data rate could be achieved with a PCI bus supporting 64-bit, 33 MHz
operation which was half of what the final system’s hardware supported in
terms of the maximum theoretical PCI data rate (see [17] for information on
data rates possible with a PCI bus). At the time, the sampling card and PCI
firmware in our possession only supported 33 MHz operation and the PCs
available to us mostly only had 32 bit wide PCI data busses so this firmware

was in line with the capabilities of the hardware available to us for testing.

e Buffering to cater for latencies during data flow was provided by a RAM block
in the FPGA and a ZBT RAM module. The ‘DataPathController’ module
implemented an algorithm to maximise the available buffer space while at-
tempting to match the rate at which data was written to and read from these
buffers. The ‘BufferController’ module and associated RAM block were not

implemented at that time.

Testing the system containing this prototype took a long time. Bugs were found

in the PCI device driver and in firmware. Certain problems were also found that

17

Mo14 eieq

(0

Wvd
197

MO14 1041U0)

sindut
aav

91NPOKW

%2019 Wvd
}Jod 1eng
autbhul
VWA IDd 03
ERINERTT)
<
N

N1

1043U0) uTel

J3||01uodyIedeied

J3]j0J3uodialng

AN

1onnalaz | < > | Heionuodlaz | & —

|
b

NI ENEL L NTELES

N

Jojelauanele

V

N

%2018 Wvy
140d 1eng

vV

joJ3u0)bIyu0)

P
™~
¢ > 13||0J3U0D)PIROqUQ

sJ931s1baybiyuo)

?dejaalur
sng
16007

Figure 2.3: Firmware system modules

18

Table 2.1: Firmware module functionality

Name

‘ Function

‘ File Name

ConfigRegisters

Provide memory-mapped access to configuration
registers and status information for the PCI device
driver via the PCI firmware.

Config
Registers.vhd

ConfigControl

Generation and control of configuration data for
the system. This included clock, trigger and data
sources, ensuring configuration data was updated
only when appropriate (e.g. not in the middle of
a transfer) and ensuring configuration signals were
generated at the correct times relative to one an-
other (e.g. triggering should occur predictably and
after system configuration).

Config
Control.vhd

DataGenerator

The data source for storage modules and Level-
TrigGenerator. Should generate test ramp when
appropriate and choose data format and source
from configuration inputs.

Data__
Generator.vhd

Level Trig
Generator

Generate a trigger pulse when a data sample from
the specified data channel had a value that was
higher than the threshold value specified.

Level Trigger
Generator.vhd

DataPath
Controller

The main control block for the data path. Con-
trolled the start and end of data transfer. Con-
trolled the routing of data to storage modules in
the system based on configuration and feedback
information. Inserted block markers into the data
stream.

DataPath
Control.vhd

Onboard
Controller

Implemented a FIFO interface for a dual-port
RAM module within the FPGA. Above basic
FIFO functionality, it ensured reads did not over-
take writes. In the first prototype it provided feed-
back on when to swap over to ZBT storage and,
in later prototypes, prevented writes overtaking
reads.

Onboard
Controller.vhd

BufferController

This module had similar functional requirements
to OnboardController except that it did not need
to prevent writes overtaking reads. It was not in-
cluded in the first prototype and was added to in-
crease buffer space in later prototypes.

Buffer
Controller.vhd

ZBTDriver

This module provided a simple interface to the
ZBT RAM chip. It implemented pipelining needed
to interact with the ZBT. It was only used in the
first prototype.

ZBTController

This module controlled writes and reads to the
ZBT RAM chip via the ZBTDriver firmware mod-
ule. It was to prevent writes overtaking reads and
provide feedback on when the reader should swap
over to reading from on-board storage. It was also
only used in the first prototype.

ZBT
Controller.vhd

19

ZBT Driver.vhd

could not be resolved and much time was spent attempting to debug them. These

included:

e The system would ‘lose’ the last four bytes of each data block requested from
the PCI subsystem. This only occurred on PCs with 32 bit wide PCI data

busses.

e A more serious problem was that certain PCs would completely lock up during
a transfer. Others would complete each transaction as expected. The problem

was thus PC-specific.

e During testing of this prototype, metastability was encountered in the interface
between the PCI and custom firmware FPGAs (see [13, 3, 18] for more on
metastability). It was found that various signals would be delayed relative to
others depending on how the firmware was routed. This relative delay could
vary between successive routing of the same logic. This would sometimes cause
incorrect values to be read. The trigger signal was found to be one of these
incorrect values, and a transfer would sometimes not start and the system
would stall. These errors caused a lot of confusion until debug information
was inserted to evaluate the state of the firmware. Successive compiles forced
registers to be sufficiently close to the input pins on the custom firmware

FPGA to prevent this phenomenon.

Apart from these problems, system performance was found to be adequate. The
system was tested with a PC incorporating a 64 bit PCI data bus and transfer rates

were found to be more than adequate over this 33 MHz, 64 bit interface.

High performance prototype

Results of testing with the initial, low performance prototype gave the following

significant results:

1. The system could support an average data rate of over 200 x 10° bytes per
second. This was over a 33 MHz, 64 bit interface indicating an efficiency of
over (200 x 10%ytes/s <+ (33M Hz x 8bytes/cycle) =) 75%. Assuming that
the final hardware and PCI subsystem could operate at 66 MHz as specified,
and, assuming that performance would scale roughly linearly with clock rate,
the final system should perform as required (see [17]| for information on data

rates possible via PCI when in ‘burst’ mode).

2. Debug data was inserted into the data to indicate data flow into and out of
custom firmware buffers. This data indicated that the ZBT RAM module was

20

unneeded at this data rate. Latencies seemed to be easily absorbed by the
FPGA RAM buffer alone.

Based on these results, the next prototype aimed to improve significantly on the

previous one:

e The ‘Level TrigGenerator’ module was implemented and included. This brought
the configuration options available up to the minimum required from the final

system.

e The data resolution in this prototype was an optional 8 or 14 bits. In 14 bit
resolution mode, the 14 bits were padded out to 16 as it was easy to extend

the first prototype’s firmware to support a 16 bit mode.

e The ‘ZBTController’ and ‘ZBTDriver’ modules were not incorporated into this
prototype. The ZBT RAM module provided was a single port entity with a
data bus width of 36 bits and it would be very difficult to incorporate it into
the data path to support the data rate for the 14 bit mode (see appendix C).
Another FIFO, consisting of the remaining on-board FPGA RAM resources,
was added to the the existing buffer along with its controller (‘BufferCon-
troller’). The ZBT RAM module had also been found to be unnecessary in
the previous prototype.

Testing of this module was helped by the arrival of an active PMC to PCI adapter
card during development. A passive one had been used previously. This solved the
two serious problems of the previous prototype (PC specific lock-ups and lost data).
This was a great relief as testing for other bugs was hampered by these problems and
much effort had been wasted in attempts to isolate their source. This also allowed
the purchase of a PC for the final system as there was no PC specific problem making
PC selection difficult. This PC arrived shortly before the final sampling card, whose
PCI firmware could perform at 66 MHz with a 64 bit bus. These two components

were also invaluable as they allowed us to test the system at high data rates.

Testing using this prototype produced the following results:

e The average data rate possible was more than sufficient. This was only under
optimal or semi-optimal conditions however, where unneeded software pro-

cesses where shut down and data path buffers optimised.

e Latencies were found to be a problem. The average data rate was sufficient
but an occasional overflow would occur when the system was operating in 14

bit (with padding) data resolution mode.

21

Intermediate data rate prototypes

Testing of the second prototype showed the occasional loss of data. More proto-
types were developed in an attempt to prevent this from occurring. The firmware
was modified so that most of the data path components were not data resolution
specific (partially completed for the high performance prototype). This allowed the
development of 14 bit (non-padded) and 12 bit prototypes.

Testing of these prototypes found that reducing the data rate did reduce the likeli-
hood of an overflow but that the firmware buffering was still not sufficient to prevent
overflows in the custom firmware completely except when in 8 bit mode (see table
3.1).

Final system

Testing of the prototypes with reduced data rate requirements indicated that all
functional requirements were fulfilled except that data was occasionally lost due to
buffer overflows. This might be remedied by various means but each would require

more time and the system was needed by the customer.

The final system used incorporated the option of choosing between 8 bit, 12 bit, 14
bit(unpadded) and 14 bit(padded) data resolutions. This would allow the user to

choose which resolution best fitted their needs.

2.7 Conclusion

This chapter gave detailed system requirements and went on to describe the design
and implementation of the system. The following chapter will describe tests used
to verify the functionality of the system in terms of system behaviour in various
configurations and under various conditions. Chapter 4 will give details of tests

used to test the performance of the system.

22

Chapter 3
Functionality Tests and Results

This section details tests used to verify the basic functionality of the system in terms
of its behaviour in various configuration modes and the ability to satisfy the required

specifications.

Many of these tests used a logic block built into the firmware that outputted a
ramp starting at zero and increasing linearly. A configuration option supplied to
the custom firmware chose this ramp as the data source instead of the ADCs. It

was then trivial to check for correct data format, alignment, corruption and loss.

3.1 Data Format Tests

These tests were used to verify that the system generated data in the expected
format under all conditions and configurations. Testing involved capturing data
under various system configurations and then analysing it using short C programs.
The accompanying CD includes these C programs in the ‘software’ directory. The

following aspects of data format were tested:

e A partial sample should never occur in data (except possibly the last sample
in 12 or 14 bit (unpadded) data formats).

e A strict relationship between the time a trigger signal was sent and the first

sample captured should be maintained.

e The alignment of data in the presence of synchronisation words and overflow
markers should be predictable. This was especially important in 12 and 14 bit
(unpadded) resolution modes where data was not implicitly aligned to byte

boundaries when overflows occurred.

23

e The placement of end of block markers and the expected behaviour of their

embedded counter values.

3.1.1 Method

The following tests were performed to check the data format under various configura-
tions. Some combinations of configurations were not tested as certain configuration
options would not influence results (e.g. the content of block markers was not de-

pendent on data resolution).

e The system was configured to use different data resolutions and no synchroni-
sation words. A 5 MB block of test data was captured for each configuration

and analysed to ensure that data started at zero and increased linearly.

e The system was configured to use different data block sizes (2048, 4096, 8192
bytes) with block markers enabled. A 5 MB block of data was transferred
and checked to ensure block markers were placed as expected and that the

embedded counter incremented as expected.

e The system was configured to use a standard block size (8192 bytes). All
permutations involving data resolution and synchronisation word were tested
(i.e 8 bit, synchronisation word enabled; 8 bit, synchronisation word disabled;
12 bit, synchronisation word enabled etc). For each configuration permutation
a block of 5 MB of data was captured and analysed with an appropriate C

program.

e The system was configured for 14 bit (padded) resolution with synchronisation
words enabled. This would result in the highest load being placed on the
system in terms of the data rate required. A block of 50 MB of data was then
captured with a buffer configuration that was forced to be below optimal via
software. The system reported overflows and analysis with the appropriate C
program verified this. Analysis showed that an appropriate overflow marker
had been correctly placed wherever there was a break in the ramp data. Four
overflows occurred and each checked by hand to ensure that the correct number

of bytes were reported missing.

e The system was configured for 14 bit (unpadded) and 12 bit resolution. As
above, a block of data was captured and overflows forced. The data was again
analysed by means of an appropriate C program for overflows. The overflow
markers were checked by hand to ensure that the correct number of bytes was
reported lost and that no partial samples occurred before or after an overflow

marker. Partial samples after an overflow marker could cause effective data

24

corruption in these modes as there would be no way of knowing where the

next data sample started.

3.1.2 Results

The results from these tests indicated correct data format under all the usual config-
uration permutations. Tests to check correct data format in the presence of overflows
were limited as they were done by hand and only a few examples checked. Many
more overflows occurred during other tests however and the data format in all of

these cases was found to be consistent.

3.2 Buffer Overflow Tests

These tests checked the performance of the system buffers under different data rate
loads. This set of tests occupied a lot of time due to the time software spent
processing the data to check for overflows. The test programs would typically take
from 4 to 5 minutes to process a block of 2.5 GB of data, leading to about 8 hours
to process 100 blocks. Tweaking was often done on one or more parameters in an
attempt to further reduce the overflows and the batch tests re-run afterwards. These
tests were valuable as they helped to test other areas as well (e.g. reliable software

triggering, unbroken operation and format and content of overflow markers).

3.2.1 Method

Each step in the batch test involved capturing a 2.5 GB block of data (the maximum
supported by the RAM in the system and 25% larger than the maximum required
by the customer) and checking for data loss or corruption with small C programs.
The results for each test were recorded in a log file for later reference. All of the tests
were performed with the system in an optimal configuration as various buffer and
system settings were found to be significant (e.g. unneeded processes should be off
and buffer sizes maximised) except when testing 8 bit resolution where non-optimal

configurations worked as well as optimal ones in many cases.

3.2.2 Results
The results for the different data resolution options are shown in Table 3.1. Note

that these are the results of capturing 200 blocks at each resolution. When the

system was capturing 12 bit resolution data, a buffer overflow only occurred once on

25

Table 3.1: Buffer overflow test results

Resolution Number overflows Max no. overflows | Max overflow size
per block (bytes)

14 (padded) 8 1 2072

14 3 1 280

12 1 1 56

8 0 0 0

the 170th block so this result may have a large variance and the other results should

also be considered rough estimates due to the (relatively) small sample space.

3.2.3 Discussion

The likelihood of an overflow in the custom firmware buffer can be seen to rapidly
decrease as the resolution is lowered. The relationship is not linear as the decrease
in data rate (linearly related to data resolution) affects the system in two crucial

ways:

e Other software processes will be less likely to need resources at the same time as
the data capture software simply because it needs resources for less time with
a lower data rate. This lowers the likelihood of latencies caused by another

process holding onto resources needed by the data capture software.

e The second way data rate affects the likelihood of an overflow is that the data
capture system can now absorb larger latencies. The buffers in the system for
storing data can store more samples if the samples get smaller. This means
that the custom firmware buffer takes a longer time to get full and overflow if
the resolution is lowered. The chance of an overflow thus decreases, assuming
that the distribution governing the magnitude of latencies generated by the

system is reasonably smooth without large local maxima.

3.3 Unbroken Operation Tests

An important part of testing was to ensure that a block of data could be captured
successfully without disruption. The system should not enter a state where capture
of a block could not complete. Even in the event of overflow in the custom firmware
buffer, data capture should continue and an effort made to recover from the event

gracefully.

26

3.3.1 Method

A large (250 GB) block of data at the highest data rate possible (just over 400 x
10°B/s) was captured. The result was discarded (redirected to /dev/null) and not
checked for data loss (although a flag would be raised indicating the occurrence and
the event reported by the device driver). The size of the block captured was roughly
one hundred times or two orders of magnitude larger than the largest data block to

be captured in normal use. It was then repeated once for lower data rates possible
with the system (350 x 10°B/s, 300 x 10°B/s, 200 x 10°B/s).

3.3.2 Results

All tests completed successfully and indicated that, once started, a block will be

successfully transferred without disruption from hardware, software or firmware.

This aspect of system operation was also verified by previous tests in subsection 3.2.
In these tests a total of 800 blocks were captured at different data rates. These all

started and completed successfully.

3.4 Triggering Tests

These tests were performed to test the operation of the various trigger configurations
available, focussing on the software trigger as this would be the one mostly used for
this application. During early development, metastability could cause the occasional
trigger signal to be ‘lost’. After sending the trigger the software driver would then

wait for data. As the firmware had not received it, the system would lock up.

3.4.1 Software Trigger

To test the software trigger functionality, a script was used to capture a small block
(10 MB) of data 1000 times. All of these blocks were captured successfully. Another
verification was provided by the testing performed in subsection 3.2. Here 800 blocks

of data under various configurations were captured using the software trigger.

3.4.2 Level Trigger

To test the level trigger functionality implemented, the system was placed in a mode
where real ADC data was exchanged for a test ramp that was generated in firmware.

This ramp started at 0x000 and increased every clock cycle, wrapping around when

27

the maximum possible value (0x3fff for 14 bits) was reached. The system was then
configured to generate a trigger when an input level of 0x1000 was exceeded on
channel A. A transfer was then initiated which occurred successfully. The data
generated started at 0x100d which showed the latency in clock cycles from the time
a trigger was generated and the first data value captured (this value was designed
top be constant regardless of trigger source). This test was repeated for channel B.
This test should also have been performed using real data that might not start at

0x000 to properly test the system under normal working conditions.

3.5 Conclusion

In this chapter, various tests have been described that test the functionality of
the system under various conditions and in various configurations to ensure that
behaviour is consistent and correct. The following chapter gives information on
tests used to quantify the performance of the system in terms of data quality, data

rates and possible data quantities.

28

Chapter 4
Performance Tests and Results

This chapter provides details of tests used to characterize the performance of the sys-
tem. The first section gives details of maximum data rates and block sizes captured
with the following sections giving data quality parameters. Data quality parameters
were obtained by performing the single-tone and grounded input tests as described

in appendix B.

4.1 Block Sizes and Data Rates

This section overlaps with chapter 3 as the results are derived from tests detailed in
that chapter.

The largest block that could be captured was restricted by the amount of RAM
available. This had to be shared with the operating system and other applications
and could not all be used. Up to 2.5 GB of data was captured successfully and

larger blocks would have been possible if the amount of RAM were to be increased.

The highest data rate tested was just over 400 x 10°B/s at a clock rate of 100 MHz
using a 66 MHz, 64 bit PCI bus. The maximum theoretical data rate using this PCI
configuration is approximately 528 x 10°B/s [17]. However, the firmware compiler
produced results showing that the custom firmware could only run reliably up to 105
MHz so testing up to the maximum theoretical data rate limit of the PCI subsystem

was not possible.

4.2 Grounded Input Test

This test was used to test the maximum theoretical data resolution the system was

capable of capturing. It would show the amount of noise present in the system with-

29

out an input signal being present. This test is described in appendices in subsection
B.2.2.

4.2.1 Method

A grounded input test was performed as follows:

e The system was configured to capture data at 14 bit (padded) resolution.

e The analogue inputs to the ADCs were grounded through appropriate loads
(in this case 50 Ohm) and data captured on both channels.

e The binary data captured was converted to text with the program ‘pm480toascii 16’
located on the attached CD in the file ‘pm480toascii_16.c’ in the ‘software’

directory.

e The data was then analysed in Matlab to determine the maximum theoretical
resolution possible when using the system. The Matlab script used is in the
file ‘load500hm.m’ in the ‘Matlab scripts’ directory on the attached CD.

4.2.2 Results

Figure 4.1 shows the power spectrum of the signal captured with the channel A ADC
and Figure 4.2 the power spectrum for data captured with the channel B ADC. The
power is normalised relative to the power in the maximum amplitude sinusoid the
ADCs could capture. The total noise power (excluding DC) represented by each
figure is -76 dB for channel A and -77 dB for channel B. This means that the

maximum ENOB was approximately 12.5 bits for this system.

4.2.3 Discussion

Documentation supplied by the manufacturer for the ADC used in the system indi-
cates a peak SNR of 75 dB [6]. The noise level found using the grounded input test
thus compares favourably with that found by the manufacturer. The manufacturer’s
parameter was for a single tone test though and thus included noise generated by
inserting a signal into the system. Also, the noise power was calculated relative to
full-scale and the manufacturer’s SNR was calculated relative to the signal’s power
which would be at around 1 dB below full-scale giving it a 1 dB disadvantage relative

to the results of the grounded input test.

30

Power (dBFS into 1 Ohm)

50k Point Power Spectrum of Data Captured
O T T T T T T T T T

=20

-60

-80

-100 |- .

-120

-140

-160 I 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Frequency (Mhz)

Figure 4.1: Power spectrum of data captured on channel A

31

Power (dBFS into 1 Ohm

50k Point Power Spectrum of Data Captured
O T T T T T T T T T

=20

-60

-80

-100 |- .

-120

-140

-160 I 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Frequency (Mhz)

Figure 4.2: Power spectrum of data captured on channel B

32

4.3 Single Tone Test

This test is used by many ADC manufacturers to quantify the dynamic performance

of their products. This test is described in the appendices in B.2.1.

4.3.1 Method

The single tone test was performed as follows:

The system was configured to capture maximum resolution (14 bits) data from both
channels. An HP8656B signal generator was attached to the ADC of channel A and
then to the ADC of channel B. Each time it was configured to output a sinusoid
with an amplitude of 750 mV (this value was found by trial and error to ensure no
clipping). The sinusoid frequency from the HP8656B was varied from 7.5 to 205
MHz through the bandwidth supported by the ADCs (200 MHz for IF sampling|6]).

An HP33120A was also later used when significant harmonics were seen in the data
captured using the HP8656B. When using the HP33120A the frequency was swept
from 2 to 15 MHz (the bandwidth supported by the signal generator).

A large block of data (20 MB) was captured for each frequency. No Nyquist filters
were used to remove spurious signals from the output of the signal generators as

none suitable were available during testing.

The binary data blocks were then converted to text for input to Matlab. The Matlab
environment was used to calculate parameters based on this data. Figure 4.3 shows
a 2 MHz signal from the HP33120A captured by the system.

4.3.2 Results

The results of this test when using the HP8656B are shown in Figure 4.4 for channel
A, and Figure 4.5 for channel B. These results were obtained by using the Mat-
lab script ‘doHP8656B.m’ to analyse captured data. This script is located in the
‘Matlab scripts’ directory on the CD included with this thesis. Results for the var-
ious parameters when using the HP33120A are shown in Figure 4.6 for channel A
and Figure 4.7 for channel B. The analysis of the data from the HP33120A was
performed by the Matlab script ‘doHP33120A.m’ found on the attached CD.

33

Magnitude

8000

6000

4000

2000

-2000

-4000

-6000

-8000

A sampled 2 MHz waveform

20 40 60 80 100 120 140
Sample Number

Figure 4.3: Time domain view of data captured by the system

34

160

180

200

Parameters versus Frequency for channel A

70
T ool ,
5 % '©' THD
o | | | | | | | -~ SNR
Q 10 O SINAD
.;:; ‘ : : : : : : =0~ SFDR
T ofF S
g
0?—10-
20
30
o-o0- -'©~- O,
~40F S Se e
-~ ‘o_.—o-‘—' /~,
. "0"“—‘9" . —G, o , - g . .
50 ,N’n—,‘ . ﬁ,ﬂ‘f,e‘, ~o
-60 | | | | | | | | | |
20 40 60 80 100 120 140 160 180 200

Frequency (MHz)

Figure 4.4: Performance parameters for channel A using the HP8656B signal gen-
erator

35

Parameters versus Frequency for channel B

70
T ool ,
5 % '©' THD
o | | | | | | | -~ SNR
Q 10 O SINAD
.;:; ‘ : : : : : : =0~ SFDR
T ofF S
g
0?—10-
20
30
o-o0- -'©~- O,
~40F S Se e
-~ ‘o_.—o-‘—' /~,
. "0"“—‘9" . —G, o , - g . .
50 ,N’n—,‘ . ﬁ,ﬂ‘f,e‘, ~o
-60 | | | | | | | | | |
20 40 60 80 100 120 140 160 180 200

Frequency (MHz)

Figure 4.5: Performance parameters for channel B using the HP8656B signal gener-
ator

36

Parameters versus Frequency for channel A

70

60

50

40

30

@' THD
-©- SNR
Q' SINAD
=0~ SFDR

20

10

Power (dB into 1 Ohm)

| | | |
B w N =
o o o o

I I I I

&
o
T
\
\

0 2 4 6 8 10 12 14 16
Frequency (MHz)

Figure 4.6: Performance parameters for channel A when using the HP33120A signal
generator

37

18

Parameters versus Frequency for channel B

70

60

50

40

30

@' THD
-©- SNR
Q' SINAD
=0~ SFDR

20

10

Power (dB into 1 Ohm)

| | | |
B w N =
o o o o

I I I I

&
o
T
\
\

0 2 4 6 8 10 12 14 16
Frequency (MHz)

Figure 4.7: Performance parameters for channel B when using the HP33120A signal
generator

38

18

4.3.3 Discussion

As can be seen from the figures, the results of these tests are far below those ex-
pected from a system producing 14 bit resolution data. Tests performed in the
previous section were repeated as it was thought that data loss or corruption could
be causing harmonics and noise but the same results were obtained. Test ramp data
was generated using built in firmware logic and the resulting ramp tested for lost
data. Visual inspection of data captured also showed no obvious missing data or

corruption.

The results from the HP33120A signal generator can be seen to be much better
in terms of nonlinearities than for the HP8656B where the frequencies overlap (in
this case both were used to test the system at around 7 MHz). The THD, SFDR
and SINAD parameters are around 10 dB better in this region for the HP33120A
compared to the HP8656B. However, the SNR is about 4 dB better for the HP8656B.
This indicates good linearity properties in the HP33120A compared to the HP8656B

but poor on average in terms of other noise sources.

Various factors could be responsible for the worse than expected results of these

tests. These are discussed in the following sub-sections.

Low performance of signal generators

The low performance of the signal generators was thought to be the largest contribu-

tor to the low performance parameters found during testing. The poor performance
of the HP8656B is discussed first and thereafter that of the HP33120A.

The data sheet for the HP8656B specifies that generated harmonics should always
be below -30 dBc and other noise components below -60 dBc. This seems to be
consistent with data produced by the data capture system as seen in Figure 4.8
that shows a captured 205 MHz signal with harmonics marked (note how the signal
appears at 5 MHz due to aliasing). Even though the noise is less than the maximum
expected in the data sheet, it is far from being near the theoretical minimum noise
floor for the system under test (around -86 dBFS for a 14 bit ADC [4]). Testing

using this signal generator can not provide conclusive results.

Figure 4.9 shows the output of a spectrum analyser (Agilent E4407B) for a signal
produced by the HP33120A and Figure 4.10 shows the same signal captured by the
system. Note that the figure showing the data captured by the system has the same

axis scaling and offsets as that of the spectrum analyser for easy comparison.

The magnitude and relative size of low order harmonics is similar in both figures

indicating that most of the harmonic power in the signal captured by the system

39

Power (dBFS into 1 Ohm)

-10

=20

-30

-50

-60

=70

-80

-90

-100 g

-110

-120

-130f

-140

-150

-160
0

50k Point Power Spectrum of Data Captured

10

15

20

25
Frequency (MHz)

30

35

40

Figure 4.8: Captured spectrum of 205 MHz signal generated by HP8656B

40

45

50

Agilent 14:41:21 May 28, 2084

Atten 160 dB

VBW 1 kHz

Figure 4.9: Spectrum of signal as given by Agilent E4407B

41

Power (dBm into 1 Ohm)

50k Point Power Spectrum of Data Captured
_20 T T T T T T T T T

_70 =

-90

—-100 §

-110
-120
-130 |

-140

-150 : .
0 5 10 15 20 25 30 35 40 45 50
Frequency (MHz)

Figure 4.10: Spectrum of signal captured by system

42

under test is not due to non-linearities in the ADCs but due to non-linearities in
the signal generator. Harmonics after the third seem to be greater in magnitude
than those captured by the spectrum analyser. This is likely due to aliasing as the
sampling frequency (100 MHz) in the test system was an integer multiple of the
input frequency (2 MHz) so aliased harmonics above 100 MHz would add to their
lower order compatriots making them seem larger which would not happen in the

spectrum analyser.

The noise floor in both cases can also be seen to be similar. The spectrum analyser
shows it to start at around -105 dBm at DC, decreasing and levelling off at just
above -110 dBm. The spectrum of the data captured with the system under test

shows a similar trend.

Another test used to check the quality of the HP33120A was to pass the output
of the HP33120A through a band-pass filter before capturing it. The pass band in
the filter is centred at 2 MHz. The spectrum of the captured, unfiltered signal is
shown in Figure 4.11 which also shows the location of harmonics. This is shown
in contrast to the spectrum of the captured, filtered signal shown in Figure 4.12.
The parameters used to generate each signal were identical. As can be seen, the
amplitude of harmonics is significantly reduced due to filtering although some are
still evident. Many other noise sources not including harmonics have also been

removed (miscellaneous noise sources from DC to 17 MHz have been reduced by at
least 10 dBs).

Lack of Nyquist filters

Suitable low-pass and band-pass filters to remove spurious signals outside the Nyquist
Zone under consideration were not available. Ideally a low-pass (used when sam-
pling frequencies in the first Nyquist Zone) or band-pass (for sub-sampling in higher
Nyquist Zones) filter should be used to remove noise outside the band of interest
that could be aliased into the band under test. No suitable filters were available
during testing and insufficient time was available to acquire any when testing started

before the system was shipped to the customer.

4.4 Conclusion

This chapter has detailed the testing of the performance of the system in terms
of possible data rates, data block sizes and data quality. The following chapter
gives conclusions and recommendations for improvements for the system and similar

future systems.

43

Power (dBFS into 1 Ohm)

50k Point Power Spectrum of Data Captured

-10

=20

-30

|
N
o

T

-50

-60

=70

-80

-90

-100

~110}
~120
~130
~140]

-150

-160
0

10 15 20 25 30 35
Frequency (MHz)

Figure 4.11: Spectrum of unfiltered 2 MHz HP33120A signal

44

40

45

50

Power (dBFS into 1 Ohm)

50k Point Power Spectrum of Data Captured

0 : : . ; ; : : . :
T R PR
o0l
30l i
a0l i
ol
60l i
_70l N R R SR
—ool i

~100} i T

ET S B P P9 ® [o 2

~120

~130

140

~150 ‘wl

ju i A ko
%% 5 10 15 20 25 30 35 40 !5 50

Frequency (MHz)

Figure 4.12: Spectrum of filtered 2 MHz HP33120A signal

45

Chapter 5
Conclusions and Recommendations

This chapter begins with a summary of how well the final system performed during

testing. It also recommends avenues of improvement for future systems.

5.1 System Performance

The system met all of the basic functional requirements. Data format and operation
under various operating conditions is predictable and correct. The performance of
the system is summarized in Table 5.1. It shows performance parameters obtained
in various tests.! The system performs to specification although there is room for

improvement and more rigorous testing should be performed.

1Some of the data quality test results are likely to be significantly influenced by the use of signal
generators of a lower standard than required. Parameters quoted are those found when using the
HP8656B signal generator.

Table 5.1: Summary of system performance

‘ Performance Parameter ‘ Performance ‘ Notes ‘
SNR (best) 65 dB With 7.5 MHz sinusoid
SNR (worst) 42 dB With 205 MHz sinusoid
THD (best) -51 dB With 135 MHz sinusoid
THD (worst) -35 dB With 30 MHz sinusoid
SFDR (best) 48 dB With 105 MHz sinusoid
SFDR (worst) 36 With 30 MHz sinusoid
SINAD (best) 50 dB With 135 MHz sinusoid
SINAD (worst) 36 dB With 30 MHz sinusoid
Number overflows 8 In 500 GB of data at 400 x 10°B/s
Number overflows 3 In 500 GB of data at 350 x 10°B/s
Number overflows 1 In 500 GB of data at 300 x 10°B/s
Number overflows 0 In 500 GB of data at 200 x 10°B/s

46

5.2 Recommendations for Similar Future Systems

e Future hardware’s inclusion of more RAM resources in the FPGA or a more
appropriate external RAM module would reduce the probability of overflow

significantly.

e Testing of ADCs should be done using good quality signal signal sources to
help isolate noise sources to the system under test. Anti-aliasing filters should

also be used to get more accurate results.

47

Appendix A

High Frequency Firmware Design

Techniques

This chapter gives information on various techniques used when designing with FP-
GAs to maximise the clock frequency the system can operate at. The first section
gives information on various factors affecting possible clock frequencies in config-
urable logic. Following is a section outlining methods to maximise clock frequencies

when designing and implementing systems using FPGAs.

A.1 Factors Affecting Clock Rates in FPGAs

FPGAs generally consist of basic computational units joined by a configurable data
interconnect and a clock distribution network. Various RAM and specialist compu-
tational units are also often included. Parameters associated with these components
affect the maximum frequency a certain synchronous circuit constructed from these
basic units can operate at. (See data sheets for the make up of Altera FPGAs on

their website at http://www.altera.com).

A.1.1 FPGA Make Up

FPGA manufacturers have various families of FPGAs targeting different application
areas. Various parameters are optimised, sometimes at the expense of others, de-
pending on the application at which they are aimed. Some FPGAs are meant to be
used in cost-sensitive applications so that expensive manufacturing techniques must
be minimised (examples here include the ACEX 1K family from Altera and Spartan-
3 family from Xilinx). Others are targeted at applications requiring very high clock

frequencies (examples include the Stratix II family from Altera and the Virtex-4

48

family from Xilinx). Within the various families, devices are sold with a variation
in certain parameters such as the amount of configurable logic, pin-count and speed
grade. Technology to increase possible clock rates is applied within families to pro-
duce high speed versions of generic chips (for information on the Altera family of
FPGAs see http://www.altera.com/products/devices and for the Xilinx family
see http://www.xilinx.com/x1nx/xil_prodcat_landingpage.jsp).

A.1.2 Fan Out

Consider a digital pulse starting at a single source and propagating to multiple loads.
The signal travels down a path with occasional connections off this main path to
different destinations. At each path off to a destination, a small reflection of signal
occurs. The first edge of the pulse is distorted slightly leading to a longer rise time
at targets further down the pulse’s path. This leads to signal skew. High fan out
can lead to violation of set up times for data signals and clock skew in clock signals
[15, page 349]. Corruption of data and clock signals leads to lower possible clock

frequencies.

If the output of a certain flip flop has many destination loads it can be assumed
that the compiler may find it difficult to place all the destinations in positions within
the FPGA to equalise the length of the signal paths to the destination loads. This
could be exacerbated if the resources of the target device are heavily used. The
propagation delay can thus be expected to be different for the different signals.
This could lead to skew between the signals at the loads and a lower maximum

possible clock frequency for the logic.

A.1.3 Propagation Delay

The path a data signal must traverse to get from the output of one flip flop to
the input of another consists of some time spent in the following components of an
FPGA’s architecture:

e Asynchronous logic

e Interconnect
Both of these components delay the signal by a certain amount of time that is
dependent on the logic used. Due to the limited amount of interconnect available,
it can be theorised that some signals may not be routed by the shortest path to

their destination. The limited amount of logic resources also means that it can be

assumed that the signal destination may be placed far from the signal source. This

49

sub-optimal placement of logic and use of interconnect seems to become more likely
as more of the resources in the FPGA are used as the possible clock frequencies
reported by synthesizers decreases rapidly as designs become large. The maximum
possible clock frequency is related to this propagation delay and decreases as this

delay increases.

A.2 Methods to Maximise Clock Rates

A.2.1 Built-in Resources

FPGA manufacturers invariably include resources in FPGAs to optimise possible
clock rates. See sections in the introductory data sheet for the Stratix IT family
(http://www.altera.com/literature/hb/stx2/stx2_sii51001.pdf) for more in-

formation on resources implemented for this family.

e Clock domain logic is generally separate from other logic with special purpose
multiplexers and clock signal processing components. This ensures minimal,

and predictable, clock signal skew and degradation.

e Dedicated signal paths are provided for certain signals (e.g. carry bits for use
when implementing adders) so that they do not need to be routed via general
interconnect resources thus allowing the adder to operate at a higher clock

frequency.

e FPGASs often include built-in components such as multipliers so that these,
potentially slow due to being highly coupled, systems do not have to be con-
structed out of normal logic and interconnect. These components can operate
at a higher clock frequency than if they were constructed from configurable

logic.

A.2.2 Compiler Options

The performance of a configurable logic design is largely the compiler’s responsibility.
Very good compilers exist that can do a good job of fitting a complex design to a
particular FPGA while maximising the clock rate possible. The task can be time
consuming and computationally intensive however, with large designs taking hours
to place and route. (Note that this discussion is limited to the compiler included
with version 3.0 of the Quartus IT software package and some of the options may
not be available for other compilers. The way in which the options increase possible

clock rates are deduced by the author from the results produced when using them

50

and from software descriptions). The ways in which the compiler can be used to

increase possible clock rates are as follows:

e Specify which signals are to be used (usually deduced automatically) as clock
signals and at what speed they are to run. The place and route algorithm
can then choose where to position logic so that the required clock rate is
achieved. The compiler will often redo place and routing if adequate timing
is not achieved as many configurations of logic to achieve the same result are

often possible.

e Specify that the compiler should maximise the possible clock rate over other
parameters during compilation. This may influence other factors such as caus-
ing the amount of logic to increase and should only be done if the possible clock

rate is a problem.

e Force certain registers to be placed close together by specifying a maximum
signal propagation time between them. This can be tried if certain registers
are found to consistently cause problems. This could be assumed cause other
registers not be optimally placed however, especially if registers are ‘hand
placed’ by the designer within the FPGA.

e The Quartus IT compiler allows signals to be grouped together by the designer
into a ‘clique’ and then attempts to place these physically near each other to
optimise timing. This is useful if the design is made of blocks of logic connected

by few signals.

A.2.3 Pipelining

Pipelining is a popular means of increasing the possible clock frequency a digital
design can run at. The basic idea is to take a data path and divide it into stages
that each produce intermediate results. These results are fed to registers that feed
the inputs of the next stage. Each stage is designed so that has a similar propagation
delay for data being processed as the others. The delay for each stage per clock cycle
is a lot lower than if the data had to pass through the whole data path in one clock
cycle. This allows the clock rate for the data path to be increased. (See http:

//en.wikipedia.org/wiki/Pipeline for a good discussion on this technique).

Advantages of this technique are the following:

e It increases the clock frequency possible.

e It increases the possible effective data rate.

51

e If planned for during system design, it can be accommodated with minimum

difficulty during implementation.

When considering this technique, the following possible disadvantages must be re-

membered:

e The added registers can use significant resources. If resources in the FPGA are
scarce, this can reduce the clock rate possible as logic is not placed optimally

due to lack of space.

e Pipelining is often unneeded. Using compiler options may be just as effective.

Many compilers perform pipelining automatically is enabled.

e Data paths become more complex if pipelining is added. This will add to

design, implementation and debugging time.

e Adding pipelining to a data path after design and implementation, especially
within a complex system, often causes unanticipated effects in the rest of the

design and may be very hard to implement successfully.

A.2.4 Duplicating Logic

Logic with a high fan out can reduce the possible clock frequency in a design as
previously described in subsection A.1.2. In this case, duplicating the logic sup-
plying the signal to destinations could reduce the fan out and ease the pressure on
where logic is placed. This is often done by the compiler automatically if necessary
but may need to be enabled. It may also need to be forced as many compilers
optimise away duplicate logic automatically. (The compiler in Quartus II seems
to automatically optimise away duplicate logic unless it affects the possible clock
rate). A disadvantage of this technique is that extra resources are used which may
actually cause a reduction of possible clock rate as routing becomes more difficult

as previously described.

52

Appendix B

Analogue to Digital Converter

Performance Testing

No analogue to digital converter (ADC) system can represent an arbitrary input
analogue signal with perfect accuracy. This chapter gives details on tests performed
to quantify the performance of ADC systems in this respect. All of these tests involve
spectral analysis and this topic is explored before details on the tests themselves is

provided.

B.1 Spectral Analysis

This section gives information on spectral analysis that relates to the testing of
ADCs. A proper understanding of this topic is necessary when attempting to un-
derstand the tests used to quantify an ADC’s performance. The effects of time and
frequency-domain sampling are first explored, which leads on to the relationship
between the discrete, finite-length Fast Fourier Transform (FFT) (used by most
computer Digital Signal Processing packages) and the continuous, infinite length
Continuous Fourier Transform (CFT) that is, ideally, what the FFT hopes to rep-

resent.

B.1.1 Time Domain Sampling

An ADC generates a discrete version of the input analogue signal. We would like
to know to what extent this discrete version of the analogue signal accurately rep-
resents the original signal. In [11, chapter 3] this process of time domain sampling

is analysed. The results of this analysis are summarized below.

Sampling an analogue signal in the time domain produces a periodic Fourier Trans-

53

form consisting of an infinite number of scaled and shifted copies of the Fourier
Transform of the original, unsampled signal summed together. The shift and scal-
ing factor is determined by the sampling rate in the time domain. If the sampling
rate is too low relative to the original signal’s bandwidth or the bandwidth is infinite,
then copies overlap and information about the original signal is lost. This is known
as aliasing and can be solved by band-limiting the input analogue signal and/or by

increasing the sampling rate.

B.1.2 Frequency Domain Sampling

In a similar manner to time domain sampling, frequency domain sampling of a Con-
tinuous Fourier Transform (CEFT) produces a scaled periodic time domain signal
when the the result is represented in the time domain. This time domain signal con-
sists of scaled, shifted copies of the original unsampled time domain signal summed
together. The scaling and shifting factor is again determined by the sampling rate
in the frequency domain. If the sampling rate is not sufficiently high or the original
time domain signal not finite in length, aliasing in the time domain will occur [16,

section 9.5].

This finding provides hope that a discrete series (as present in digital systems) can
accurately represent a continuous time domain signal given appropriate conditions.

The next section shows that this is indeed possible and shows such a relationship.

B.1.3 Relationship between the Continuous Fourier Trans-

form and the Fast Fourier Transform

When performing spectral analysis one ideally would like to obtain the infinite-
length, analogue CFT of the digital signal. Due to the discrete nature of digital

signals and the limited storage resources in a PC, this is not possible.

Some implementation of the FFT is generally used to transform the discrete, time
domain samples to a discrete frequency domain representation. The FFT is an
optimised algorithm used to calculate the Discrete Fourier Transform (DFT) of
a time domain series. Information on the FFT can be found in[11, chapter 9.
The following subsections show that the discrete frequency domain representation
produced by the FFT can accurately represent the original signal under certain

conditions.

54

Relationship between the CFT and FFT for time limited signals

The relationship between the FFT and the CFT of a sampled time-limited wave-
form is derived in [16, section 12.4]. The following is a summary of the relationship

derived.

1. The waveform x(¢), having CFT X(w), under consideration is non-zero be-
tween time 0 and T and zero otherwise. Further, it is sampled with period T

giving exactly N samples between 0 and 7.

2. A relationship between the DFT performed on the time domain signal formed
and the CFT of the original time domain signal can be found. This relationship

is shown in equation B.1.

3. The sum on the right can be seen to be the DFT of the sampled z(¢) multiplied
by T/N. The sum on the left is a periodic function constructed from copies
of the CFT of the original analogue signal shifted by multiples of wy (where
ws = 21/Ts) and summed together (a result of time domain sampling). This
periodic function is evaluated at multiples of wy (where wy = 27/T). If one
period from pws to (p 4+ 1)ws of this sampled waveform is taken, the result is
the FFT.

4. The result of performing an FFT on samples of a time limited waveform is
thus identical to taking one period of the waveform obtained by adding scaled,
shifted copies of the CF'T of the original analogue signal and sampling the
result. The magnitude of the shifting and scaling depends on the time domain
sampling rate, ws and number of samples taken, N. The various parameters
are related as follows Ty = T/N = 27 /ws = 27/ Nwy

=

Z X (nwy — mwy) = % z(kT,)e 7™k N (v, € 7) (B.1)
0

i

m=—0oQ

Relationship between the CFT and FFT for periodic time domain signals

Another useful relation is derived in [16, section 12.4]. Tt is very similar to, and
follows from, the relation found above. This relation is between the FFT and the
CFT of a sampled periodic function made from copies of the time limited pulse

considered previously. The following relationship is found:

1. Create a periodic function y(¢) from the time limited pulse z(¢) considered in
the previous subsection. This is done by placing an infinite number of copies of

x(t) next to each other in the time domain. Sample the result as before giving

%)

N samples per copy. This new function has a Fourier Series Y (n) consisting
of a series of discrete values equivalent to scaling X (w) and evaluating it at

nwo.

2. The relationship between the CFT line spectrum of y(¢) and the FFT taken
over one copy of z(t) that created the time domain signal is shown in equation
B.2.

3. Tt can be seen that the FFT representation of the function is again equivalent

to a scaled, shifted sum of copies of y(t)’s Fourier Series.

=z

e}

> Y(n-mN)= % y(KT,)e 7™ /N (vn € 7) (B.2)

0

b
Il

m=—00

B.1.4 Number of Time Domain Samples

Assuming that the sampling period is kept constant, the number of time domain

samples captured can be significant when performing an FFT.

Periodic components of signals are often of interest when spectral analysis is used,
as they show the products of system non-linearities such as harmonics and inter-
modulation distortion products. It is easy to tell the difference between periodic
and time limited components if the FFT is used. As can be seen from equation B.2,
the magnitude of an FFT sample representing a periodic signal is proportional to
the number of samples N. If the number of time domain samples used doubles, the
FFT component corresponding to the periodic signal components should double in
size as well. If the signal component is not periodic, doubling the number of time
domain samples also doubles the time 7" over which the FFT is evaluated and equa-
tion B.1 shows that the FFT is proportional to N/T giving no amplitude change
for non-periodic components. Periodic FFT components can thus be ‘lifted’ above
non-periodic components by increasing N, making it easy to distinguish the former

from the latter when viewing the magnitude spectrum of the resultant FFT.

Another case where the number of samples is significant is the number of samples
chosen for analysis when the signal contains a periodic component to be analysed.
If the samples chosen for analysis do not contain an integer number of periods of
the periodic signal component, the resultant FF'T will not represent the CFT of the
component accurately. Referring to the discussion leading to equation B.2 it can
be seen that the resultant time domain periodic waveform y(t) constructed will not
accurately represent the original periodic signal in this case. This is because x(t)
does not contain a full periodic component of the signal as required. See subsection

B.1.5 for related information.

56

A useful technique when using the FFT is known as ‘zero-padding’. The discussion
on this technique is taken from [11, section 11.2]. This involves padding the time
domain samples of the captured waveform with zeros. The resulting FFT will have
the corresponding number of extra data points allowing more detail of the CFT the
FFT represents to be seen. If this process is viewed with relation to the discussion
in B.1.3 it can be seen that adding the zeros does not change the CF'T of the original
time limited pulse (as the time-limited signal is assumed to be zero where the zeros
are added) but increases the rate at which the resulting periodic CFT is sampled

giving a higher FFT resolution.

The top left waveform in Figure B.1 shows 32 samples representing exactly 5 cycles
of a sinusoid in the time domain. The corresponding magnitude spectrum of the
FFT is shown in the waveform to its right. The waveform on the left in the line
below shows the same 32 samples but with 32 extra points of zero-padding. The
corresponding magnitude spectrum of the FFT is shown to its right. This new
spectrum can be seen to contain all of the points contained in the spectrum of the
unpadded waveform but also extra points that give more information on the CF'T
of the time limited signal the FFT is constructed from. The bottom line in this
figure shows an extreme version of this phenomenon, with the padding now being
increased to a ratio of ninety percent of the time domain samples. The spectrum to
the right of this time domain sequence seems a lot different from the spectrum of
the unpadded waveform but the only difference is the higher sampling rate of the
CFT represented by the larger number of samples. The shape of this waveform is

explained in subsection B.1.5.

B.1.5 Windowing

The following discussion is taken from [11, chapter 11]. Additions are made to relate

it to previous subsections.

e In subsection B.1.3 it is shown that the FF'T of a sampled, time limited signal
z(t) is equivalent to the sum of shifted, scaled versions of the CFT of the
original time limited signal y(¢) evaluated periodically. If a periodic waveform
x(t) is constructed from this waveform, the FFT can be shown to be related
to the Fourier Series of the resulting waveform in a similar manner as shown
in subsection B.1.3. The Fourier Series is a scaled sampled version of the CFT
Y (w) of the original time limited signal y(¢) from which the periodic signal

was constructed.

e The time limited, sampled signal z(¢) can be seen to be equivalent to taking

the entire unsampled, infinite length signal z(¢) in the time domain, obtaining

57

32 time domain samples of sinusoid

1 ° d ° hd v
° °
° °

| o o
= ° °
c Oe °
2 ° °
E _05' * * N)

° °
° °
_1 'Y L9 LN P []
0 10 20 30

Sample Number
Time domain samples plus 32 samples of zero—padding

1 [} ® ® i \d T T
Q)
° °

| oo
% 0.5 o o
= ° °
c Oe °
2 ° °
2 _05 B °° o0

° °
1Le o “© <

0.5}*®

ml. e

Magnitude

_05 [@

0 100 200 300
Sample Number

Magnitude of FFT of unpadded time—domain signal

15}

Magnitude
[
(63} o

Oil....,.........,...... ..,.-

0 10 20 30
Sample Number

Magnitude of FFT of padded time—domain signal

151 ° °
)
510' % ®
=
g
=5 ., . e
o0 ® ®ee o® ®eo
O¢eecee ooooQ’o’o’o’o‘o‘o‘o‘o’o’g’o’ooooo XXXE
0 20 40 60

Sample Number

of 8 :
[) o®
5 10+ ®e ®
c ®e o®
§ 5l o, .® |
£ 2
L —
0 oo o : : o ood
0 100 200 300

Sample Number

Figure B.1: Time domain and FFT magnitude representation of various degrees of

zero-padding

58

y(t) by multiplying it by a window function w(t), that leaves a band from 0 to
T and removes the rest, and sampling the result to give exactly /N samples over
the period 0 to 7. In the frequency domain, Y (w) can be seen as convolution
of the CFT of the infinite, unsampled time domain signal X (w) with the CFT
of the window W(w). Z(w) is then the sum of scaled shifted copies of Y (w).

If no weighting is applied to the input samples, the window can be seen as the
following function w(t) = 1 for (0 < ¢ < T) else 0. The CFT of this function
is W(w) = e*j“’T/2%%2) whose magnitude is a sinusoidal waveform whose
amplitude decays rapidly and which has zero crossings at multiples of 27 /T

(see [11, page 446]) .

If the signal z(t) is periodic, convolution of W(w) with X (w) will thus give
a waveform Y (w) that consists of the sum of scaled, shifted copies of W (w)

centred at positions where the Fourier Series X (w) is non-zero.

If y(t) is sampled with period 7'/N, this leads to a CFT Z(w) that is periodic
with period 27 N/T and consists of scaled, shifted copies of Y (w) as discussed
in subsection B.1.1 on time domain sampling. If Z(w) is compared to the FFT
of z(t) as shown in equation B.2 it can be seen that the FFT is a sampled,

scaled version of one period of Z(w).

If the Fourier Series X (w) has elements located at multiples of 27 /T (implying
an integer number of cycles in period T'), the structure of W (w) ensures that
the copies of W (w) from which Y (w) is constructed will not interfere with each
other at multiples of 27 /T as W (w) is zero at multiples of 27 /7. If, in addition,
the resulting Z(w) is scaled and evaluated at multiples of 27 /T (which would
be the case when performing an FFT as the FFT represents /N scaled samples
of one period of Z(w)), the resulting waveform will accurately represent the
Fourier Series of x(t) (assuming z(t) is sufficiently band-limited and periodic

so that aliasing does not occur).

If the above conditions do not exist, then W (w) can be seen to be distorting
the correct Fourier Series representation of x(t). If the copies of W(w) are
not centred at multiples of 27 /T, the samples of Z(w) will have remnants of
W (w) and side-lobes of W (w) will affect signals at multiples of 27/7. Figure
B.1 illustrates this phenomenon when y(¢) contains an integral number of
periods of a sinusoid. The top row shows the time domain sequence and its
corresponding FFT magnitude spectrum and lower rows show more detail on
how the samples in the FFT magnitude spectrum come from samples of the
shifted window functions W (w) summed together. As y(¢) contains an integral
number of periods of the original z(¢), sampling the transform here results in

the top FFT which is a correct representation of the original z(¢) (bar scaling

59

of course). This is to be contrasted with Figure B.2 where y(t) does not
contain an integral number of cycles (in this case 4.5) of the original z(t).
As can be seen in the bottom FFT, which is shown next to the time domain
samples that generated it, the FF'T is far from an accurate representation of
the Fourier Series of x(¢). It can be seen that the CFT of the windowing
function has been sampled incorrectly with significant distortion as a result.
If this is the case, other windowing functions W (w) should be used that have

properties that make the distortion less, depending on the application.

e These, alternative, windowing functions and their properties are discussed
in [11, section 7.4] and the following results given. The rectangular window
consists of the narrowest main lobe but largest amplitude side lobes in the
frequency domain. This leads to it being best when individual frequency com-
ponents are to be represented, especially when close to one another as leakage
between the two is minimal due to the narrowness of the main lobe. The
large side lobes mean significant noise addition to a signal from distant signals
though. Windows like the Blackman window have very low magnitude side
lobes which minimise the distortion from distant signals but a very wide main
lobe, causing significant distortion of individual frequency components due to
those around them and difficulty in discerning between signals that are close

to one another.

B.2 Standard Performance Tests

Various parameters have been devised to help quantify the performance of a specific
ADC. These parameters are calculated by spectral analysis of data captured under

standard test conditions.

B.2.1 Single Tone Test

In this test, a signal generator is attached to the system inputs and a sinusoid
generated. This signal should be as spectrally pure as possible and should be as close
to the maximum power level supported by the ADC as possible so that as much of
the dynamic range of the system can be tested as possible. This test is repeated at
various frequencies through the bandwidth of interest. Although differing in detail,
most manufacturers use some variation of this test so that customers can easily
compare products using parameters garnered from this test. A brief description of

the parameters that can be calculated using this test are given below:

60

Time domain samples of sinusoid plus massive zero—padding Magnitude of FFT of massively padded time—-domain signal

1 peces
o_o°
o 05p"%
3
§ O ...—
E ...
-0.5
N | |
0 100 200 300

Sample Number

Time domain samples plus 32 samples of zero—padding

lre—eo—o—o—
® ° ° [)
[05 [) e °e -® []
e]
2
% 1 ° o o °
= . ° (] .
-0.5
gl e % % A A
0 20 40 60
Sample Number
32 time domain samples of sinusoid
1. L . —e .
[) ° ° [)
[05 [) ® °° e []
e]
2
= 0¢
% [) . ° ° . [)
2 _05 [) [)
-1 o. L o® ®e .o R
0 10 20 30

Sample Number

Ay
a1

Magnitude
=
(6] o

0 100 200 300
Sample Number
Magnitude of FFT of padded time—-domain signal

15! ° °

[

:5 10 ®e o*

c

g

= 5 I Y []
¢e®° o

Olecee eee o’ofo’o’o‘o’o’o’o’o'o‘ofo’o’o’o XX

0 20 40 60

Sample Number
Magnitude of FFT of unpadded time—domain signal

15}
()
510- ®e o*
=5 ., . e
°® e
Of ..’00000000000000°.
0 10 20 30

Sample Number

Figure B.2: Sequence illustrating distortion due to unfortunate choice of window

function size

61

SNR Signal to Noise Ratio. The ratio of signal to noise power, excluding DC and

a number of harmonics.

ENOB Effective Number of Bits. This takes the SNR and calculates the resolu-
tion of the ideal ADC that would produce the same data quality with only

quantisation noise effects.

SINAD Signal to Noise and Distortion (Ratio). The ratio of signal power to all

noise sources except DC.

SFDR Spurious Free Dynamic Range. The ratio of the largest noise signal, gener-

ally assumed to be a harmonic, and peak signal power.

THD Total Harmonic Distortion (Ratio). The ratio of power in a number of har-

monics relative to the signal power.

The information on these parameters and the algorithm used to calculate them

below is from [4] and [5]. The algorithm used to calculate the various parameters is:

1. Extract a number of samples from the waveform captured. Windowing can be
avoided if the frequency of the sinusoidal input and the number of samples are

chosen carefully (see subsection B.1.5 for more information).

2. Apply a window function to the time domain samples to reduce spectral leak-

age if necessary.
3. Perform an FFT on the data to obtain a frequency domain version of the data.
4. Use the FF'T results obtained to construct the power spectrum of the signal.

5. Normalise the power spectrum so that power in frequencies are relative to
the maximum possible signal power. (See Figure B.3 for the normalised power

spectrum obtained from a captured 2 MHz sine wave with harmonics marked).

6. Obtain the indices of the bins containing most of the sinusoid signal’s power.
This normally includes a number of spectral bins around the fundamental due
to distortion from the main lobe of the windowing function used (see section
B.1.5). In a similar manner, obtain the indices of the bins containing most
of DC power and a number of harmonics. (See Figure B.4 for the normalised
power spectrum of the captured 2 MHz sine wave showing all these bands
of indices). The signal, harmonics and DC bins shall be excluded from the

original power spectrum when calculating the noise power.

7. The indices found can be used to calculate the power in the signal, harmonics,

noise and their related parameters.

62

50k Point Power Spectrum of Data Captured
o T T T T T T T T T

-10

=20

-30

-50

-60

=70

-80

-90

-100

Power (dBFS into 1 Ohm)

-110§

~120
~130
~140]

-150

-160 ' '
0 5 10 15 20 25 30 35 40 45 50

Frequency (MHz)

Figure B.3: Power spectrum of captured 2 MHz sine wave with harmonics marked

63

50k Point Power Spectrum Showing Bands to be Removed

0 T T T T T T T T

-10

=20

-30

-50

-60

=70

Power (dBFS into 1 Ohm)

10 15 20 25 30 35 40
Frequency (MHz)

Figure B.4: Power spectrum showing bands to be excluded from noise calculation

64

45

50

B.2.2 Grounded Input Test

A similar test to the one above involves connecting the analogue input of the system
to ground via a load that matches the impedance expected by the sampling circuit.
Data is then captured and the results analysed. This test shows the noise to be
expected from non data related sources (thermal, coupling from power supplies). A
signal to noise ratio can be generated by comparing the noise power to a theoretical
full-scale sinusoid. This ratio gives the maximum possible data resolution the system
could obtain assuming no other noise sources. The algorithm to obtain this ratio is

as follows:
e Acquire a large number of data samples.
e Perform an FFT on the samples.

e Generate a power spectrum using the FFT data.

e Normalise the power spectrum by dividing each value by the maximum theo-

retical power value.
e Remove DC and some of the adjoining bins.

e Sum up the remaining noise components from half a Nyquist Zone. This gives
the total noise that would be the SNR if a spectrally pure, full-scale tone had
been the input to the system.

B.2.3 Multi-tone Test

A further test described in [4] is often used to test nonlinearities in an ADC. This
is identical to the single tone test except that the input analogue signal consists
of two frequencies. The results are analysed to test the effects of intermodulation
distortion. This test was not performed for this system due to time constraints and

the fact that the effects of nonlinearities are tested in single tone tests.

65

Appendix C

Buffer and Data Path Design

This Appendix details the design of the firmware data path for this project. Various
tasks to be performed and their priorities in the system are provided first. Following
is a description of resources available to accomplish the tasks. The design of the

final system is provided in the final section.

C.1 Task

The data path to be constructed had to conform to the requirements specified in
Table C.1. This gives a list of requirements for the data path and extent to which

the design had to enforce each of them.

C.2 Resources

The storage elements available to use in the design of the data path are given in Table
C.2. Various parameters relevant to the tasks to be accomplished are also given.

There proved to be a more than adequate supply of logic resources to implement

Table C.1: Data path requirements

‘ Requirement, ‘ Importance
Maximise buffer space available to compensate for stalls High but only as much as
necessary

Allow recovery from stalls in data flow due to latencies in | Imperative
other parts of system

Ensure space is always available for new data Imperative

Configurable resolution Nice to have

Detection of overflow in buffer and a means of communicating | Imperative if needed
the location and extent of overflow.

66

Table C.2: Storage element resources

Description Storage Dual Port | Output Data | Input Data
Capacity Capable Bus Width | Bus Width
(bits) (bits)
On-board RAM resources 6 kB Yes Configurable ‘ Configurable
ZBT RAM integrated circuit | 4 MB No 36 (combined in/out)

the pipelining and logic necessary for the data path in the FPGAs provided.

C.3 Design

At the highest level, the data path can be seen to consist of two processes operating
in parallel. The one coordinates the writing of ADC data to the buffer and the other
coordinates the reading of data from the buffer and outputting it to the PCI DMA
firmware. The buffer thus acts as a large FIFO with the writing process pushing
data into it and the reading process pulling data out of it. These processes run
independently of each other except for a variable that keeps track of what part of
the buffer each process is operating in relative to the other and prevents the processes

‘overtaking’ each other causing data loss and corruption.

The logic needed to insert a synchronisation word into data at the end of a block
proved reasonably simple at the expense of some resources. Figure C.1 shows a
modified ASMD chart describing logic used to insert a synchronisation word (see
[12, page 195] for more on ASMD charts). This algorithm is implemented in ‘Data-

Path Control.vhd’ on the accompanying CD in the ‘firmware’ directory.

The design of the buffer, given the storage resources available, was difficult due to

the many trade-offs and unknowns involved.

e The use of the ZBT RAM would increase the size of the buffer by a large
factor. This would maximise the number and size of latencies that could be
‘absorbed’ by the system. The ZBT RAM was not a dual-port module. This
would mean that reads and writes could not happen simultaneously and would
have to be interleaved. The data bus width was also not sufficient to allow
reading at the same rate or higher than writing for data resolutions above
9 bits. This meant that the reading process would always fall behind the
writing process when using this module if higher data resolutions were used.
Occasional latencies introduced by the rest of the system would exacerbate

this and lead to inevitable overflows if this module were used exclusively.

e The onboard RAM resources were ideal for use in this application. FIFOs

would be easy to construct and allow simultaneous reading and writing. With

67

64 reset

—>
®

Dataln(63 downto 0) short_nExtended <= '1' Trigger

data_nSync <="1"

\l/ (Short Data Path)
64

Dataln_d1
(63 downto 0) A

64 Break in data
data_nSync g="0'

- End of block

short_nExtended

64
(Extended Data Path)
Dataln_d1_d2 Sync_Word
(63 downto 0) (63 downto 0)
short_nExtended <= '0'
64 64 data_nSync <='"1'

/

data_nSync

64

Figure C.1: ASMD chart showing synchronisation word logic

68

—@
Reset
Trigger

Reader finished onboard and data aligned in ZBT
(Writing to onboard RAM) -

Written to last address

(Writing to ZBT RAM)

Overflow lfkely Reader out of range

Mark Overflow

Figure C.2: Complex writer process state machine

the appropriate choice of data bus width, this would allow for the reading
process to read at the same or higher rate than the writing process as the PCI
DMA firmware would accept data in 64-bit words per clock cycle and data
would be produced at a maximum of 32-bits per clock cycle for 14-bit (padded)
resolution. However, the amount of RAM resources available was extremely
small (6 kB) so that the use of these for buffering alone would decrease the

buffer size significantly compared to buffering using the ZBT RAM.

e Using a buffer that combined the use of ZBT and onboard RAM would in-
crease the complexity and size of the system (and thus implementation, testing
and debugging time). The ZBT RAM needed a driver to compensate for the
pipelining in its use as well as logic to swap between the two RAMs or to
produce the view of a large generic RAM block. Inclusion of the ZBT module
would mean an algorithm based on careful study of data flow through the PCI

subsystem.

The initial 8 bit resolution prototype used both the onboard and ZBT RAM modules.
Figure C.2 shows the writing process’ state machine and Figure C.3 shows the
reading process’ state machine. This prototype was the most rugged in terms of the
the number and size of latencies it could absorb. It was the most time consuming to
implement and test however due to the added complexity, and did not scale easily

to higher data resolutions.

Later prototypes were a lot less complex. During testing of the first prototype

69

Reset

Onboard RAM not empty

Writer clear or latency end

-
(Reading from onboard RAM) (Pausing)
o

A About to catch writer or latency

Read lasf address
Read last adqress of block

Writer clear or latency end

v

\.

-
Reading from ZBT RAM) (Pausing)
-

About to catch writer or latency

Figure C.3: Complex reader process state machine

it was found that the ZBT RAM was very lightly used and basically unnecessary
and it was hoped that this trend would continue in later prototypes. The ZBT
RAM was discarded along with the complex logic to control swapping between
storage modules and modifications were made to ensure easy scalability between
data resolutions. The state machines for the simpler reader and writer processes are
shown in Figure C.4. This algorithm was implemented in ‘DataPath _Control.vhd’

on the accompanying CD in the ‘firmware’ directory.

70

Reader Process

—l
Reset .
Onboard RAM not empty
Writer clear or latency end
-
(Reading from onboard RAM) (Pausing)
|

About to catch writer or latency

Writer Process

Reset
Trigger

(Writing to onboard RAM)

Figure C.4: Simple writer and reader process state machines

71

Bibliography

[1] PMC to PCI Adapter Board with On-board PCI Bridge.
http://www.peritek.com/pmb_p main.htm.

[2] Operation and Calibration Manual, HP 8656B Synthesized Signal Generator,

1984. Electronic copy obtained from unknown Internet site.

[3] Metastability in Altera Devices ver 4. Technical report, Altera Corporation,
1999.

[4] Defining and Testing Dynamic Parameters in High-Speed ADCs, Part 1.
http://www.maxim-ic.com/appnotes.cfm /appnotenumber /728, 2001.

[5] Dynamic Testing of High-Speed ADCs, Part 2. http://www.maxim-
ic.com /appnotes.cfm /appnote number /729, 2001.

[6] AD6645 data sheet. http://www.analog.com /productSelection/pdf/AD6645 _a.pdf,
2003.

[7] Glossary. http://www.xilinx.com /esp/glossary/z.htm, 2004.

[8] PCI mezzanine card. http://www.wikipedia.org/wiki/PCI _mezzanine card,
2004.

[9] Peripheral Component Interconnect. http://www.wikipedia.org/wiki/PCI,
2004.

[10] SDR Forum FAQs. http://www.sdrforum.irg/faq.html, 2004.

[11] R. W. S. Alan V. Oppenheim et al. Discrete-Time Signal Processing. Prentice
Hall, Inc, Engelwood Cliffs, New Jersey 07632, 1989.

[12] M. D. Ciletti. Advanced Digital Design with the Verilog HDL. Prentice Hall,
Upper Saddle River, New Jersey 07458, 2003.

[13] J. Ganssle. Metastability and Firmware. 2001.

[14] M. Inggs and A. Whitewood. Requirements Review and Specification for High
Speed Data Acquisition System. Technical report, Radar and Remote Sensing
Group, University of Cape Town, February 2004.

72

[15] H. Johnson and M. Graham. High-Speed Digital Design. A Handbook of Black
Magic. Prentice Hall, Inc, Upper Saddle River, New Jersey 07458, 1993.

[16] N. Morrison. Introduction to Fourier Analysis. John Wiley & Sons, Inc, New
York, 1994.

[17] T. Shanley and D. Anderson. PCT System Architecture. 1999.

[18] D. K. Tala. What is Metastability? http://www.deeps.org/tidbits/meta.html,
2001.

73

