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Abstract

This dissertation concerns the design and implementation of a node for a hardware
reconfigurable parallel processor. The hardware that was developed allows for the
further development of a parallel processor with configurable hardware acceleration.
Each node in the system has a standard microprocessor and reconfigurable logic device
and has high speed communications channels for inter-node communication.

The design of the node provided high speed serial communications channels allow-
ing the implementation of various network topographies. The node also provided a PCI
master interface to provide an external interface and communicate with local nodes on
the bus. A high speed RISC processor provided communications and system control
functions and the reconfigurable logic device provided communication interfaces and
data processing functions.

The node was designed and implemented as a PCI card that interfaced a stan-
dard PCI bus. VHDL designs for logic devices that provided system support were
developed, VHDL designs for the reconfigurable logic FPGA and software including
drivers and system software were written for the node. The 64-bit version Linux oper-
ating system was then ported to the processor providing a UNIX environment for the
system.

The node functioned as specified and parallel and hardware accelerated process-
ing was demonstrated. The hardware acceleration was shown to provide substantial
performance benefits for the system.
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Chapter 1

Introduction

The goal of this MSc project was the design, implementation and testing of a node for
a run-time hardware reconfigurable parallel computing processor. Three major tasks
were undertaken in the completion of this project: Analysing a selection of successful
parallel computing architectures and evaluating their characteristics. Specifying, de-
signing and implementing the node hardware according to an architecture derived from
the first task with the added advantage of configurable logic. And lastly, implementing
a software environment to provide a base for further parallel processing research and
demonstrating basic proof-of-concept examples.

Configurable logic allows the logical circuitry of a specialised silicon chip, in par-
ticular FPGA’s, to be configured and changed without modifying the physical devices
in the system. FPGA devices allow for highly specialised digital designs to be im-
plemented in general purpose silicon without the cost of developing custom silicon.
Reconfigurable logic allows the logic design configured in the device to be changed at
any time, especially while the device and system are in operation.

Parallel processing is the use of multiple processing units connected together to
handle an intensive computational task. Parallel processing is most commonly em-
ployed to reduce the processing time for certain very large or complicated processing
tasks. This works because certain processing tasks can be achieved by allowing each
processing node to work on a subset of the entire problem. Some example applications
in which parallel processing is used are: Image processing, finite element simulations
and computer generated animation.

In many processing tasks, a single or small number of algorithmic functions are
used extensively on a large amount of data. In certain cases, the algorithm used can
be implemented directly in a digital logic design in hardware. When this is possible,
the hardware implementations are usually orders of magnitude faster than the same
algorithm running on a digital microprocessor. The possibility exists to implement
these hardware implementations in reconfigurable logic devices rather than custom
silicon. The use of these devices with their ability to implement arbitrary configura-
tions allows for a more general purpose hardware accelerated processing unit to be
designed. Further, by using these hardware accelerated processing functions in com-
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bination with standard microprocessors, a general purpose computing platform can be
designed. Extending this idea with the principles of parallel processing, a hardware
accelerated parallel processor can be designed which can greatly improve on the pro-
cessing speed of standard parallel processors. This is especially relevant for tasks that
employ hardware implementable processing algorithms.

The Radar Remote Sensing Group at the University of Cape Town has been using
Commercial Off The Shelf (COTS) machines for parallel processing. The GOLACH
processor is a network of standard Pentium II machines running the Beowulf parallel
processing software. The parallel processor is used primarily for the processing of data
from various radar projects. Various MSc projects have been run to develop software
and algorithms for processing on the GOLACH processor.

What is been investigated for the long term is the development of an embedded
parallel processor that will enable more flexible use of parallel processing such as
in aircraft. This thesis aims to investigate the requirements of a node for such an
embedded processor and to investigate the use of software configurable hardware to
perform application specific tasks at very high speed.

1.1 Project Objectives

This dissertation project is primarily the development of a hardware design to create a
platform that will enable reconfigurable hardware parallel processing research at UCT.
The specific objectives of the project were to:

1. Research existing parallel processing hardware and evaluate the strengths of the
various architectures. Additionally, a review of the current use of reconfigurable
logic in processing and parallel processing should be undertaken.

2. Devise a plan for developing a more general purpose hardware reconfigurable
processing node. This involves evaluating the various existing processors and
selecting core components and where possible employing original ideas.

3. Design and implement the prototype hardware of a node for an isotropic parallel
system.

4. Develop system software and firmware to enable the hardware to run application
software.

5. Demonstrate simple examples of the hardwares capabilities and verify its oper-
ation.

6. Keep the cost per node low enough for the system to be viable compared to other
systems.

Radar Remote Sensing Group, Electrical Engineering, UCT Page: 2 of 123



CHAPTER 1. INTRODUCTION

1.2 Outline of Dissertation

The following chapters of this dissertation are structured in the following manner.

Chapter 2 provides a theoretical insight into the subject matter of this dissertation. A
general overview of parallel computing is given. It provides specific emphasis on
various parallel processor architectures in existence. A review of some existing
reconfigurable parallel processing nodes is also provided. Following this is an
overview of some of the various common methods used to network nodes of a
parallel system together. Both the physical topologies and protocols used are
discussed. Finally, a section on reconfigurable logic discusses the benefits and
problems that these devices can have. A discussion of the practical limitations
for implementing algorithms in reconfigurable logic is provided.

Chapter 3 provides the requirements and specifications of the project. The user
requirements describe what the final system should be capable of delivering.
Project deliverables is a summary and interpretation of the user requirements
setting out definite goals for the project. The requirements analysis takes the re-
quirements and deliverables and discusses how each requirement can be achieved.
Lastly, an acceptance test specification is drawn up which provides a set of tests
which the project hardware and software must pass to in order to show achieve-
ment of the requirements.

Chapter 4 describes the concept study performed before the commencement of the
project design and implementation. It begins with a study of the requirements
of a node for a parallel processor. This looks at the core elements required of
a processing node to perform calculations as well as communicate with other
nodes. Following this is a requirements review for the processor to be chosen is
described. Various available commercial off the shelf (COTS) processors were
investigated. A processor device was selected that was the most suitable and
practical choice for the project. A study of the requirements of the reconfig-
urable logic described the various available choices and selects the one most
suitable. A high level system design is then formulated specifying the basic
modules and their interconnections from which the design would consist. The
choice of networking topology is then discussed and the various methods avail-
able were analysed to decide on the most suitable networking configuration for
this project. Finally, the software and firmware requirements are discussed start-
ing from low level logic requirement up to parallel system software.

Chapter 5 describes the hardware design and implementation processes. This in-
cludes high level conceptual designs and low level system design diagrams and
choices, component research and selection, as well as the implementation pro-
cess. The implementation of every module of hardware is and their interaction
with each other is described.
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1.2. OUTLINE OF DISSERTATION

Chapter 6 shows the steps taken to verify the functionality of the system. Each indi-
vidual component in the system is tested according to the acceptance test spec-
ification and requirements. A description of the results of the various firmware
codes written in VHDL and schematic entry as well as software written in pre-
dominantly assembly and C as part of the acceptance test procedures is provided.

Chapter 7 describes the process of development of the firmware for the various con-
figurable logic devices employed in the project. Each firmware design is pre-
sented with high level overviews, detailed design specifications and discusses
implementation details. Details of particular problems and their solutions are
provided.

Chapter 8 discusses the design, development and implementation of software for the
node microprocessor and host systems. The chapter firstly describes the design
of software for the host system that interfaces with the project hardware. The
various development tools that were used are discussed and the implementation
of various utility software programs is described. Secondly, the design and im-
plementation of software for use on the thesis hardware it self described. This
shows the development cycle of software for the project, starting with utility
programs needed to initialise, control and test the system. This is followed by
the implementation of an operating system to manage the hardware environment
which allows the development and use of application software to execute with-
out modification on the node hardware.

Chapter 9 describes the testing procedures, verification and results from the final im-
plemented system. The algorithms and software used to benchmark the perfor-
mance of the system are laid out. The benchmarks are compared with other
standard processors to evaluate the relative performance of the hardware. Verifi-
cation procedures for testing the validity of the results is also provided to prove
the correct operation of the hardware. The results are compared to theoreti-
cal predictions of the hardware performance and a discussion of the analysis is
given.

Chapter 10 gives the conclusions as to the success of the project. Recommendations
for further work and suggestions for future hardware designs are provided.

Appendix A

Appendix B
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Chapter 2

Theoretical Background

2.1 Parallel Computing

This section gives a brief background introduction to parallel processing and the core
components required in any successful system. It will also highlight various techniques
used especially in embedded parallel processing which is the focus of this project.

2.1.1 Introduction to Parallel Processing

There are two main types of multiple processor configurations used today [1,sec1.2]:
Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD).
SIMD processors are usually highly customised and difficult to design and are not
widely used. They perform operations in parallel by performing the same instruction
on a number of parallel data inputs producing a set of parallel outputs. MIMD pro-
cessors are more common. They typically consist of multiple processing units each
running separate instructions on separate data. MIMD processors are further divided
into two areas, Shared Memory systems and Distributed Memory systems.

Shared memory processors exist when multiple processors are linked together on
a local memory bus and all have access to the same memory space taking care not
to simultaneously access regions of memory in such a way that errors would occur.
Distributed memory parallel processors have individual processors each with their own
memory. Each processor has its own program to execute and the processors are linked
by a communications channel. For one processor to access the memory of another,
messages must be passed between the two processors.

Distributed Memory Parallel processing is essentially the use of more than one
processing unit linked via a communications network to perform processing tasks that
would otherwise not be possible with a single processing unit. The advantage of this
over a shared memory system is that tens, hundreds, or even thousands of these pro-
cessors can be connected to communicate and compute together. Each processor in
a distributed system is called a node and is capable of running independently of the

5



2.1. PARALLEL COMPUTING

others. These nodes may also run their own operating system with multi-threading
allowing multiple programs to run on each node.

On a distributed Memory Parallel processor, the communication between nodes
is normally done by a set of libraries that work together to create a parallel virtual
machine. The processing power of the system is dependent on the communications
interconnects on the system as well as the parallel algorithm used. A good algorithm
will keep message passing to a minimum as the processor can be kept waiting unnec-
essarily for data to be moved. Also, for a system with a relatively large amount of
nodes, a 100% parallelizable algorithm needs to be used according to Amdahl’s law
[1,sec1.4.1]. Amdahl’s law states that the maximum speedup is limited to the serial
fraction of the program.

2.1.2 Parallel Software

There are two major types of software for parallel processing, Shared memory models
for shared memory computers and message passing libraries for distributed memory
system which are however also used commonly on large shared memory machines
like the Cray T3D. The message passing paradigm is the dominant form of software
currently in use and matches the architectural design of a distributed computer.

The parallel computing libraries make the task of writing software for a parallel
processor more focused on the algorithm so the user does not need to worry and the
system topology or architecture. There are three industry standard libraries for paral-
lel computing, MPI (Message Passing Interface), PVM (Parallel Virtual Machine) and
SHMEM which is run on Cray supercomputers. Software such as PVM can be modi-
fied for a particular parallel processor simply by implementing the necessary low-level
message passing mechanisms. The application software will be unaware of these im-
plementation details.

When building a parallel computer, the systems programmers need to provide an
operating system and extensions to a parallel processing library for the system. The
most important part of the libraries is the communications subsystem which need to
use the hardware to its maximum.

2.1.3 Hardware Configurable Parallel Processors

The concept behind a hardware configurable parallel processor is that the electronic
circuitry in a node can be reprogrammed to perform the currently required operation
in the most efficient means. With the advent of advanced FPGA technology, these
logic devices can be reprogrammed while running to allow the processing logic to be
changed dynamically.

Presently most projects using configurable hardware such as FPGA’s use them to
create a configurable network or reconfigurable mesh. This allows the system to im-
plement various interconnection topologies to optimise various algorithms and exper-
iment with with arbitrary connection patterns.

Radar Remote Sensing Group, Electrical Engineering, UCT Page: 6 of 123
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FPGAs can also be used to implement algorithmic specific cores for each type of
data processing required by the system. These can be performed many times faster
than with standard general purpose processors because it allows the programmers to
optimise the circuitry and run multiple sub portions of an algorithm in parallel.

2.1.4 Communication Architectures

Various communication topologies exist for distributed parallel processing. Depending
of the system size and algorithms run on the system, each one has its own strengths
and weaknesses.

Important issues in parallel topologies:

Connectivity: The ideal situation is when the network if fully connected, thus every
node has a direct link to every other node. This is impractical for even reasonably
sized clusters.

Degree of connectivity: This is the the number of direct lines from each node, or
the number of neighbours a node has. The larger this value, the quicker the
communications, but it makes the software and hardware more complicated.

Static: A parallel computer is static when all the links are pre-defined and fixed.

Switch: A node or set of nodes that only perform communications and no processing.
A switch can be used to make the network topology dynamic or even fully con-
nected. It can connect and node to any other node on the same switch directly.

In the case where a fully connected system is not possible or even in a small system
designed to scale, a network topology for connecting the nodes must be used. There
are many network topologies around and they all aim to either keep the system simple
and cost effective or as close to fully connected as possible.

Bus type networks allow a type of fully connected system however all the commu-
nications are restricted to the bandwidth of the bus.

Direct one-to-one connected lines allow for the best speed and lowest latencies and
allow the communications protocols to be simplified.

Some typical topologies are:
Bus: When a bus is used, it is normally a commercial

bus like Ethernet and may not be very fast. However mem-
ory busses allow for very high performance but are limited
to a few nodes. A cluster of PC machines on a network

running a Beowulf system is a typical example.

Star: Each node is connected only to one central node. The
number of nodes that the central node can support is limited.

Array: A � -way array of nodes each with
� � lines to other
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nodes. Typically a 2-d or 3-d array. There are multiple paths
from any given node to any other node. This is the basic struc-
ture used by the Intel supercomputers including ASCI Option Red
(1.8 TFLOPS).

Tree: Nodes are arranged in a tree configuration. Each node has� children nodes and one parent node except the top node which
only has children.

Ring: Ring type structures can be formed by connecting oppo-
site edges of an array topology together. The picture shows a ring
from a 1-dimensional array.

2.2 Example Parallel Processors

Although many hundreds of parallel computers have been designed a build, very few
have been designed to specifically exploit the potential of configurable logic to opti-
mise the systems performance from a processing point of view.

Firstly, in an attempt to discover what traits a successful parallel processor has,
some of the most powerful and successful parallel computers not using configurable
logic are investigated.

The Intel Paragon

http://www.cica.indiana.edu/iu_hpc/paragon/pgon-
tutorial/section2_2_3.html

The Intel Paragon is a successful range of parallel processors that was reasonably cheap
compared to the other commercial processors of the time. The processing nodes are in
a 2D matrix arrangement of nodes connected to a backplane for communications. Each
nodes runs a minimal operating system that performs the message passing and thread
management. File access is performed by specialised nodes on the edge of the array.
The system also has a single applications processor that provides the user interface to
the machine. Each node has an 2 CPUs, one to run applications and the other is a
dedicated communications processor.

Cray T3E Multiprocessor

http://www.cray.com/products/systems/crayt3e/

The Cray T3E is a scalable shared memory processor with nodes containing COTS
processors connected together in a 3D torus. Each node interconnect carries up to
480MB/s of data which supports the shared memory system. I/O access is via the
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GigaRing channel provides 267MB/s of bandwidth for every four nodes. The T3E
nodes incorporate advanced cache techniques to hide the memory latency of the system
and increase performance. To take advantage of these caches, special optimisations
had to be incorporated into the compilers to take advantage of the system.

Cray T90 and other vector processors

The vector processors use custom CPUs that provided multiple floating point oper-
ation per clock. These systems are true shared memory processors with each node
connected to the main system memory with an extremely high speed memory inter-
face. Each CPU is synchronised by a central clock distributed via fibre optics. Each
shared memory system is considered a node and multiple nodes can be connected via
the GigaRing system.

The ASCI Option Red Supercomputer

http://www.cs.sandia.gov/ISUG97/papers/Mattson/OVERVIEW.html

Timothy G. Mattson and Greg Henry, Intel Corporation

This super computer was developed as the first in a line of super computers for the US
Department of Energy (DOE) that had needs far greater than the then current fastest
supercomputers. Intel was challenged to build the world’s first and currently only >
1TFLOPS (Trillion Floating point Operations per Second = 1,000,000,000,000). It
utilises a 2D mesh interconnection structure controlled by custom mesh routing chips
providing four simultaneous 200MB/s channels to every other mesh routing chip. A
network interface chip on each node connects to a mesh routing chip and sets up a route
between two NICs though the mesh network. Each node in the system has two pro-
cessors and a PCI bus to which COTS PCI cards such as RAID, ATM and FDDI cards
are connected. Various nodes in the system also run specialised operating systems de-
pending on their function. The entire system is designed with redundant components
to allow system operation to continue in the presence of hardware failures. This system
used no reconfigurable logic and all processing was done in COTS processor chips.

Kendal Square KSR1

http://wwwmcb.cs.colorado.edu/home/capp/ksr.html

This is an older highly parallel system using hardware supported “distributed-shared”
memory. They use a caching technique they call ALLCACHE memory that allows
each CPU to reference any memory location in the machine. The local memory then
becomes a cache of another memory location. A cache-miss will prompt the hardware
to search first locally and then distributed for the location of the addressed memory.
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The search hardware is called the search engine and it runs on a custom set of rings
and directories for finding and moving memory pages.

Huinalu Linux SuperCluster

http://www.mhpcc.edu/doc/huinalu/huinalu-
intro.html

This machine is the latest in a stream of new highly parallel machines based on COTS
components. This machine has 260 dual P3 933MHz nodes using standard IBM rach
mount computers. The theoretical maximum processing speed is 478 GFLOPS. The
general purpose components make this machine cost 1/10th the price of an equivalent
custom supercomputer.

CM-5

http://csep1.phy.ornl.gov/cm5_guide/cm5_guide.html

The CM-5 contains a large set of processors divided into groups. Each partition has its
own processor, a partition manager. Each processor is a SPARC based processor with
four vector units in parallel. The whole arrangement of nodes is a distributed memory
system.

There are two communications systems in the CM-5. A data network and a control
network to which all nodes are connected. The control network is used to synchronise
nodes and perform global operations. The data network is used for inter-node data
communications at 20MB/s.

This machine supports a maximum of 16,384 nodes giving a theoretical maximum
speed of 1000GFLOPS

Fujitsu VPP Architecture

http://www.fujitsu.co.jp/hypertext/Products/Info_process/hpc/vpp-
e/index.html

The Fujitsu high performance computing machines are Vector Parallel Processors (VPP)
based on custom LSI CMOS devices. Each processor in the VPP5000 for example
performs over 8700 MFLOPS for the LINPACK benchmark. Each processing element
contains up to 16GB of memory with the total system containing up to 2TB.

The processing elements communicate on a crossbar switch supporting 1.6GB per
second in two directions simultaneously. The system runs a Unix operating system
and provides distributed parallel filesystems and high speed networking interfaces.

The maximum theroetical speed is rated at 1228 GFLOPS on 128 processing ele-
ments.
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2.3 Example Reconfigurable Processors

Armstrong III

http://www.lems.brown.edu/arm/

The Armstrong III processor is a 20 node parallel computer build to research merging
a processor and reconfigurable logic device in each parallel node. Each node has eight
high speed links which can allow the system to be arranged in numerous configura-
tions. Each node contains a communications board and processor board. The comuni-
cations board contains a communications processor and communications FPGA. The
processor board contains a RISC processor and FPGA as well as memory and serial
ports. The system showed that the FPGA devices greatly accelerated the performance
of the system.

ArMen

http://ubolib.univ-brest.fr/~armen/armen1-
eng.html

The ArMen processor is a parallel processor with each node containing a FPGA copro-
cessor. Each node has up to 4Mb of ram and has a T805 processor with four 20Mb/s
links. The interconnect architecture is configurable to optimise various applications
requirements.

2.4 Reconfigurable Logic
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Chapter 3

User Requirements and Specification

This chapter develops the requirements and deliverables for the project as well as a
specification for the project hardware and software design. No past research into hard-
ware reconfigurable parallel processors has been conducted at the University of Cape
Town, and thus the requirements and specifications are largely drawn from the ba-
sic requirements and research on other existing reconfigurable and parallel processing
systems.

Firstly, a user specification is provided which specifies the high level objectives of
the project. These specifications make no reference to specific hardware or software
usage. The project deliverables are then developed from the user requirements and
are followed by an analysis of the user requirements. A system specification is then
developed followed by a set of test specifications to which the implemented system
must comply to.

3.1 User Requirements

The the development of a software and hardware configurable parallel processor node
has the following functional requirements:

1. The system must demonstrate the principle of using a configurable logic co-
processor to implement common functions such as the FFT algorithm for use in
radar processing, or the Discrete Cosine Transform for use in image processing.
The system must also demonstrate the parallel execution advantages of config-
urable logic.

2. A node shall be a low cost and power efficient processing module that can run
as a stand-alone processor. All the nodes in the parallel system will be identical
from a hardware perspective (isotropic).

3. Each node must contain a communications unit, central processor, and config-
urable logic unit capable of interfacing with the processor.
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4. Each node must provide support for high speed inter-node communications.

5. Each node will run its own copy of an open-source operating system and parallel
processing libraries. The nodes will form a MIMD processor.

6. A minimum of two nodes must be built to demonstrate the nodes performing
parallel processing functions.

7. Speed comparisons of various networking topologies must be performed for
common parallel algorithms.

3.2 Project Deliverables

The fundamental goal of this project is to produce a working node for a Parallel Pro-
cessing Unit (PPU) and to demonstrate a simple, hardware accellerated parallel algo-
rithm running on the node. The nodes are to be comprised of a configurable logic
unit and a general purpose microprocessor with supporting hardware. Each node is
required to run an open-source operating system and demonstrate a parallel processing
example.

The system is to be configurable in software and hardware. Software configura-
bility means the ability to change the algorithms and software running on the system.
Hardware configurability is the ability of the system to change the behaviour of certain
logic components to optimise the system for specific processing needs.

As secondary goals, the following deliverables should be attained: The implemen-
tation of networking protocols across the configurable communications infrastructure.
The use of configurable logic for optimising various computations.

As tertiary goals, dynamic re-configuration to constantly optimise the system per-
formance and dynamic network configuration should be investigated.

The functional hardware platform is the major deliverable. Software for the pro-
cessors, configurable logic, communications interfaces, communications libraries and
parallel processing libraries are also part of the deliverables.

3.3 Requirements Analysis

After considering the requirements, it is clear that no specific hardware design con-
straints are implied other than providing the required functionality. Therefore after an
analysis of typical microprocessor systems and the requirements of a node in a parallel
processor, the following more focused requirements have been developed.

3.3.1 Silicon requirements

The basic componet requirements of the reconfigurable parallel processing node are
illustrated in figure 3.1.
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Figure 3.1: Basic Component Requirements of a Node

1. Processor, a high performance, low power embedded processor with the capa-
bility to interface with a: Communications controller, FPGA and Memory In-
frastructure.

2. A high gate count FPGA with an interface to the processors memory bus to
provide high speed access. Advanced clock generation would be beneficial for
implementing high speed designs.

3. A low gate count communications FPGA with high speed interfacing technolo-
gies. The most commonly provided interfaces being Low Voltage Differential
Signalling (LVDS) or PECL.

4. Ethernet like communications infrastructure capable of at least 10Mb/s and pos-
sibly 100Mb/s speeds.

5. Non-volatile boot memory for standalone system operation.

6. JTAG Test and Access port or similar debugging and testing interface.

7. Serial communications (EIA-232) for system control and debugging.

8. High speed inter-node communications infra-structure support.

9. Power supplies and system control components.

10. Processor/system boot-up configuration if necessary.

11. Status/debugging indicators.
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3.3.2 Mechanical requirements

Ball Grid Array (BGA) and other high density chip packaging products are to be
avoided where at all possible to reduce system cost and reduce the risk of manufacture
or design error. For future designs, this limitation may be removed.

The physical dimensions and interfacing connectors must comply with the require-
ments of the backplane or system architecure to which the nodes will interface, if any.
This will be specified in the specification and hardware design chapters.

3.3.3 Interface requirements

1. Ethernet or some other high speed means will provide communication and soft-
ware downloading to each node.

2. Serial communications must be used for debugging and console use.

3. FPGA communications must use high speed (>100Mb/s) LVTTL, PECL or LVDS
signalling between nodes.

4. FPGAs must be memory mapped to the processor and provide an interface to
processing and communications logic.

5. Comms FPGA should have bus mastering or DMA capbitiles for fast memory
transfer operations.

6. Parallel processing libraries will provide a technology independent interface for
messaging between nodes.

7. The operating system must provide a TCP/IP link over a custom communica-
tions channel to allow transparent simple communications between nodes.

8. For the prototype hardware design developed in this thesis, an interface to a
standard PC is required, possibly across the PCI bus.

3.3.4 VHDL / Macro-function requirements

1. Communications controller.

2. Coprocessor functions.
Including an FFT or DCT processor

3. System bus interface controller.

4. Advanced clock generation and deskewing.

5. RAM buffers for communications and processing.
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Figure 3.2: Node interface requirements

6. FPGA configuration support

7. System boot and configuration

3.3.5 Software requirements

1. Operating system (Linux or eCos) ported to a node.

2. Ethernet or equivalent networking: Programming, control, messaging.

3. FPGA run-time reconfiguration if FPGA supports it.

4. Interfacing with FPGA processor and communications.

5. Parallel processing libraries ported to OS/communications network.

6. Test suites.

3.4 System Specifications

3.4.1 Processing Algorithms

1. FFT or DCT algorithm demonstration.

2. Parallel execution of algorithms.
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3.4.2 Communications

1. GDB / Custom debugging interface via RS-232 channels.

2. TCP/IP Stack over Ethernet or equivalent.

3. TCP/IP Stack on Custom Network Mesh.

4. Configurable inter-node topography.

3.5 Test Specifications

The system will initially be tested with a single node in order to develop the VHDL
firmware and port and test the operating system to the platform. Acceptance test pro-
cedure tests will be developed to verify the functioning of the hardware and firmware
designs. Testing will be performed using the serial port and with test software in the
FPGA. If a direct interface to a PC system is implemented, this interface can be used
to test system components without the functioning of the processor.

Later testing will be done at a higher level over a communications link and will
provide access to features such as a remote shell if the Linux operating system is used
and configuration such as programming the flash and setting up the software on the
node.

Final testing will test processing algorithms running on the processor and FPGA,
verfiy the correct operation of those algorithms and finally demonstrate a parallel pro-
cessing example.
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Chapter 4

Concept Study

The idea of a hardware and software reconfigurable parallel processor is not a novel
idea, however not many such systems have been developed. In most cases, the projects
have been either commercial or research using proprietary technology. This makes
open research in this area more difficult due to the lack of information provided and
the lack of physical hardware.

A hardware configurable processor with the use of open-source technology hopes
to further the use of open-source software for parallel computing and to develop an
environment for further development and research. This chapter describes the concept
study undertaken at the beginning of the project in order to determine the viability and
further develop the requirements and specification of the system.

Firstly, the requirements of the parallel node in general are discussed, this is fol-
lowed by more detailed looks at the processor and reconfigurable logic. A high level
system design is specified followed by discussion of the various choices for inter-node
communications. Finally the software requirements for the system are expanded upon.

The results of this study were that the project goals of developing a node for config-
urable parallel processing were determined to be within reach using currently available
technologies.

4.1 Parallel node requirements

Essentially, each node needs to be capable of running as a stand-alone entity without
support from other nodes. This means that and as such, it will require some of the
basic elements needed for a microprocessor system:

1. Processor: This can be either a stand-alone, System On Chip (SOC) or ASIC
implemented processing device. This will provide the general processing and
control requirements of the system.

2. Memory: Memory for system and application software as well as data storage is
essential for the operation of a microprocessor. Types of memory that should be
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considered.

(a) FLASH, a medium density non-volatile memory primarily for program and
data storage.

(b) SRAM, a high speed memory low density memory for low latency and
high bandwidth data storage.

(c) DRAM/SDRAM, a high density memory type with reasonably high speed
for program execution and high volume data storage.

3. Communications. In order for a node to communicate with other nodes, various
forms of communication may be required.

(a) Ethernet networking is a well defined industry standard communications
bus, with average bandwidth capabilities.

(b) Backplane communications provide very high speed connections but can
only support a limited number of nodes.

(c) Custom communications can be provided though link layer chip-sets or
implemented using configurable logic devices. They have the potential for
producing very high speed point-to-point or bus type connections.

(d) Standard Serial. These low data rate communications may be used for
control and system configuration as well to aid in debugging.

4. Power supplies for the various system components and microprocessor supervi-
sory, control and configuration devices.

5. Hardware interface devices and physical connectors.

To support the need for reconfigurable processing, a configurable logic device with
enough resources to support the algorithms required will be needed.

4.2 Processor requirements

The scope of this project is to develop a basic node for parallel processing and the focus
is more on the design than absolute processing speed. Where possible, devices such as
Ball Grid Array (BGA) will not be used because of the added design and manufacture
problems.
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4.2.1 System Requirements

The major requirement of a processor for the parallel processor is CPU processing
performance. The major processing tasks of the CPU will be communications and
integer/floating point mathematics. DSP instructions may be used for particular pro-
cessing algorithms but these will usually need to be routines written in the proces-
sors assembly language and very carefully optimised. The Multiply And aCcumulate
(MAC) features of some processors can also greatly speed up certain algorithms.

The processor (with companion memory controller if necessary) must be able to
interface to SDRAM, SRAM, FLASH and the FPGA preferably with a glue-less inter-
face. This will mean that the hardware design will be greatly simplified and the risk
involved with interfacing to complicated devices such as SDRAM will be reduced.
The ability to perform Direct Memory Access (DMA) transfers on the bus will allow
the FPGA and processor to used a shared memory arrangement which will reduce the
overhead of copying data through the CPU.

4.2.2 Processor Selection

The MIPS range of processors (see [2] for MIPS information) generally come in small
easy to use packages and have very high performance. The MIPS instruction sets
are supported by Linux, eCos and the various ’BSD open-source operating systems
and most importantly the GNU C Compilers (GCC). A port of an operating system
to the project hardware will be greatly accelerated by using existing ports to the same
processor architecture. In general, most mid-range MIPS processors come in a low pin
count package configurations and have an interface to a support chip (companion) for
memory bus and peripheral bus access.

The IDT 79RC64574 [3] processor is a 64bit MIPS processor capable of running
up to 333MHz with a maximum performance of 444 Drystone MIPS (Millions of In-
structions Per Second) in a 128pin PQFP package. This processor features a double
precision floating point unit running up to 666 MFLOPS (Millions of Floating Point
Operations Per Second). It also includes DSP extensions for up to 125 million multiply
and accumulates (MACs) per second, a full featured virtual memory manager and 32kb
data and 32kb instruction caches. The ’574 has a 32bit wide external data/address bus
(SysAD bus) and the ’575 is 64bits wide. Other variations of the 64bit MIPS proces-
sors are available from IDT, NEC and Toshiba all supporting the same instruction sets
and similar bus interfaces. The GNU C compiler supports the full range of standard
MIPS processor instruction sets. The internal architecture of all MIPS processors are
very similar internally and are backwards compatible which makes migrating to newer
devices very easy.

The embedded powerPC chips from IBM and Motorola run up to 550MHz and
support a host of on chip peripherals. These devices typically come in the 300 to
600 pin BGA package types and are very complicated to design with. These devices
are typically aimed at communication processors and support a host of interfaces and
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features. Most of the features provided are not needed for a parallel processing node.
The powerPC range of devices are supported by the GCC compilers and most open-
source operating systems.

The Hitachi Super-H processor range SH-4 runs up to 200MHz delivering 360
Drystone 1.1 MIPS. It comes in a 208 pin QFP or 256Pin BGA. The SH-4 has added
instructions for vector manipulation mainly aimed at graphics processing which could
be used for accelerating certain algorithms. There is not a wide range of these de-
vices available and backward compatibility and future support for these processors is
questionable.

Intel’s Strongarm processors run up to 235 Drystone MIPS at 206 MHz and come
in a MicroBGA package. The are supported by the GCC compilers and are based on a
modified ARM core. The number of devices available is limited and future continua-
tion of this range of processors is questionable.

Overall, the MIPS processors have the greatest performance to complexity ratio
of all the processors evaluated. The are available in easy to use packages and there
are many pin compatible chips available from multiple manufacturers. The processors
are designed to be dedicated processing units and added peripherals and interfaces are
available on a range of MIPS companion chips. Linux, eCos and BSD’s support the
MIPS processor range which will greatly aid in the porting of the chosen operating
system.

4.3 Reconfigurable logic requirements

For an FPGA to be used as a viable device for implementing arbitrary coprocessor
functions, the device should have the resources to support any synthesisable design up
to to some limit. In certain cases, a parallel implementation of the algorithm itself on
a device can be created if the resources are available. This can allow each node in the
parallel system operate as internally parallel in addition to the parallelism of the sys-
tem. There is also the need to possibly implement a reduced CPU core on the FPGA
device. This could allow more complicated processing functions to be implemented
on the FPGA and reduce the amount control required from the microprocessor. The
implemented CPU could be used to feed data into coprocessor units and write results
back into a shared memory as an example. This CPU could also be used to perform
communications functions and provide intelligent switching of the inter-node commu-
nication links.

A device in the order of a 1 million gate FPGA will provide the flexibility to imple-
ment a very wide range of functions and provide the resources to implement multiple
copies of simpler functions to create a super-scalar system. However these devices are
very expensive and a lower gate count device should probably be used for the prototype
implementation.

To experiment with high speed interconnects, the FPGA used must support high
speed I/O such as LVDS (Low Voltage Differential Signalling) serial channels which
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can run up to 840Mb/s in some FPGAs. The FPGA-CPU interface must be capable of
handling the full burst rate of the bus. This should allow maximum data throughput
across this interface.

The Xilinx Virtex-E FPGAs [4] support multiple (limited by device pin count)
622Mb/s LVDS channels running off a single clock channel. They do not provide
any hardware serialiser/deserialiser (SERDES) circuitry however the application notes
provide reference designs to implement these in low-level components. All the Xilinx
Virtex-E devices provide LVDS support.

The Altera APEX20KE/C devices support up to 16 622Mb/s channels on prede-
fined pins. Only devices in the KE and KC range with greater than 400,000 gates
support LVDS. These devices do however provide hardware SERDES units however
lack flexibility in their use.

4.4 High level system design

The structure of each node in the parallel processor will be identical from a hardware
perspective. At some stage, certain nodes in the system may be required to perform
different tasks. Therefore, the design of a node must make provision for general pur-
pose computing functions in addition to the hardware reconfigurable processing units.

Each node will contain a MIPS based processor preferably an IDT or NEC MIPS
R4000 or R5000 64bit device. These devices can double the integer performance of
32bit processors when used correctly under certain conditions. The IDT processors
also provide a high speed floating point unit that operates in parallel with the integer
unit and employs dual issue support to create a scalar piplined architecture. This means
that the processor can execute a single integer and floating point instruction simultain-
iously. These devices also provide multiply and accumulate and other DSP extensions
which can be utilised. These processors also all have advanced memory management
which support advanced operating systems like Linux and BSD. This can be used
to create a totally hardware independant environment for applications to execute in
which means that they can be very easily ported to other hardware platforms. Moving
between MIPS platforms will in most cases not even require a recompile.

The IDT MIPS processor requires an interface chip to provide memory interfaces
and peripheral bus support for the system. The interface chip performs the interfacing
and controlling of the various memory components without processor intervention.

The interface chip will connect to at least 16MB of SDRAM memory possibly
supporting DIMM format modules or on board devices. There will also be a 16Mbit
of Boot FLASH memory for boot loader and operating system storage.

A Xilinx FPGA will be connected with an SRAM or similar interface (config-
urable) to the memory bus. The Xilinx FPGA’s provide a greater flexability for design
and support LVDS channels in all the Virtex-E devices.

The FPGA will have a high speed SRAM device directly connected to it for private
high speed data storage. This removes the problem of having the FPGA compete for
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the usage of the processor local bus.
The FPGA will provide at least four LVDS channels for point-to-point inter-node

high speed serial commmunication.
The low speed memory devices (FLASH) may need to be located on a peripheral

bus to reduce the loading of the local bus.
The prototype hardware platform will interface to a standard PC system via the

PCI bus. This will allow the devices in the system to be accessed transparently from
the host PC which will greatly aid in development, debugging and also provide com-
munications capabilities. Devices on the PCI bus may be accessed by a node in the
system if it provides bus master support. This for example will allow nodes to access
standard PCI ethernet controllers. At a later stage, the nodes could be connected to a
passive PCI backplane for standalone operation. Because the nodes will interface to a
PC system, they must conform to the specifications of the PCI bus.

4.5 Communication infrastructure choices

The various parallel processor systems examined during the pre-study use a variety
of different networking topologies. Some were limited to the system hardware capa-
bilities while others implemented complex communications processors. By using a
configurable logic device, we have the freedom to implement a wide variety of com-
munications structures if the basic physical interconnects are well planned.

The various options for a network topology are as follows:

1. A serial chain or loop of nodes. In this system, each node will contain two
links to two opposite neighbours. This system has the advantage that switching
and communications software can be implemented in a very simple manner.
A message to any node can be broadcast in both directions (or one direction
in a loop) and be passed from node to node until the addressed node receives
the message. There is however a very low level of connectivity and the total
communications bandwidth is limited to the bandwidth of one link.

2. A square matrix of nodes. This is a common structure and is most notably used
by the Intel Paragon supercomputers. Each node has a link to its neighbour on
four sides. Messages are routed though nodes using routing algorithms. The
total bandwidth of the network is much lager than the chain topology as there
are multiple paths between any two nodes and a message only uses one path,
leaving the other paths free for other nodes.

3. Cubic and hyper-cube structures are also possible, however the hardware and
software becomes increasingly more complicated.

4. A Tree structure. These types of networks are useful when implementing an
algorithm where jobs are dispatched from a central node and all results are re-
turned back to that node. No inter-node communications other than with the
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master node is performed. In this situation, the number of paths from the mas-
ter node to the furtherest node is minimised for a node with a fixed number of
interconnects.

5. A star network. These networks are normally made of non-symmetric nodes
with a central communications node having much greater IO capabilities to the
rest of the nodes. The aim of this project however is to develop a low cost system
of generic nodes.

6. A Bus network. Each node will have support for Ethernet networking which
is a bus structure. Thus a bus structure need not be considered for the custom
topology. The Ethernet bus may be switched to make the system act as if it was
fully connected.

Based on these various structures, a square matrix of nodes configuration is simple
to implement and allows for configurable topologies. This will give each node four
bidirectional configurable ports for interfacing to other nodes. Each port may consist
of one or more pairs of LVDS channel depending on the FPGA resources.

The configurability of the FPGAs will also allow for the nodes to be reconfigured in
a ring or torus by linking the outer nodes of opposite sides of the matrix. The network
can also be reconfigured in to a tree structure by changing the routing with each node
supporting up to three children.

This structure can also be used to investigate using the FPGAs to switch traffic
through one port and out another to provide transparent access between nodes and
reduce message handling by each node between the two communicating nodes. This
project however will focus on the hardware design and basic system functionality and
these options will be left for future work.

4.6 Software requirements

The primary requirement for the system is to port an operating system to the hardware
platform and to demonstrate the processing capbilities of a single node. Further work
must demonstrate the ability for inter-node communications and demonstrate a simple
example.

All the software required for this project is required to be built on open-source
projects and tools. The development tools and operating systems selected will be open-
source and most of the standard parallel computing libraries especially MPI and PVM
already open-source projects.

The operating systems available for running on the MIPS platform are: Linux,
eCos, NetBSD, L4, QNX

NetBSD [5] runs on a host of MIPS based machines and on the NEC and Toshiba
based MIPS palm-top devices as well as some Silicon Graphics machines. The NetBSD
kernel provides support for a host of platform independent architectures including PCI,
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ISA, Ethernet, USB and other commercial busses. The strong point of NetBSD is that
it has been designed specifically portability and runs on multiple architectures. It can
also run Linux applications with the aid of a compatibility mode or layer. The GNU
tools are the primary development base used for the NetBSD.

Linux [6] has been ported to the MIPS processors in at least two forms, the standard
kernel and real-time Linux. The Standard GNU tools are used to develop code for the
Linux MIPS platform. Linux supports many of the R4000 and R5000 based MIPS
chips except those with an on-chip L2 cache controller. The IDT MIPS processors do
not have this feature and thus should pose little problems.

eCos [7] supports the NEC Vr4300 64bit MIPS processors. eCos however is a
hard-realtime system and thus does not use memory management and is staticly com-
piled. This make changing applications or running multiple aplications simultainiously
much more difficult.

The L4 microkernel is a real-time kernel and runs on the R4000 MIPS CPUs but a
large percentage of it is hard coded assembler which may prove difficult to port. (see
[8]) User mode Linux can run under the L4 kernel, however for this project, a real-time
system is not neeed and may prove unnecessary.

QNX is a non-opensource, free to use operating system that support the IDT MIPS
processors. It therefore is not fitting of this project.

In general, NetBSD, eCos and Linux all use the GNU compiler tools which pro-
vides generic support for the various MIPS versions. This means that the main port-
ing requirements for these operating system will be the provision of devices specific
drivers and bootup initialisation code.
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Chapter 5

Hardware Design and Implementation

After the requirements analysis and specification was performed, the hardware design
was developed. This chapter describes the hardware design process and the imple-
mentation of that design. The design process is presented starting from the high level
design showing major functional units and their methods of interaction. Increasingly
more detailed design descriptions of each functional unit and sub-parts thereof are
provided. The entire design would be too large to cover in a single low-level descrip-
tion. Various difficulties and complicated design choices are explained in further detail
where applicable.

The design of the system and each sub-section was specified to conform to the
requirements and specifications laid out in Chapter 3. The design choices made are
indicated with motivations for the various choices given. Implementation details are
provided for each module to give an understanding of the low-level functioning of the
components in the system.

5.1 Processing Node Components

After the review stage, specific processor, companion devices, memory and FPGA
devices were chosen for the design. The major components needed chosen and sourced
early in the project before the design had been finalised because of long lead times.

The processor chosen for the project was the IDT 79RC64754 64-bit MIPS RISC
microprocessor [3]. This part was chosen for a number of reasons. It has 32-bit wide
external data bus would make hardware design much easier and cheaper and reduce the
risk involved in designing with a 64-bit bus. The device provides a double precision
floating point unit which operates in parallel with the integer unit through a dual-issue
architecture. Finally, the device is packaged in an easy to use 128 pin package.

The MIPS companion device selected for the project is the Galileo GT64115 [9].
This was selected primarily because it interfaces the same 32-bit SysAD bus as the
IDT processor. It also has an integrated PCI bus master interface which would make
interfacing the PCI bus simple. An on chip SDRAM and memory controller allows

27



5.2. DESIGN CHOICES

for a ’glueless’ interface to SDRAM. To access SRAM and FLASH devices however,
a bridge or bus decoder circuitry is required. Examples are given for designing such
interfaces in the datasheets.

The FPGA chosen is the Xilinx XCV200E, 200,000 gate device in a 240 pin pack-
age. This device provides up to 64 LVDS pairs, 114k bits of block RAM and 20
I/O standards. The major factor influencing this choice was cost. Higher gate count
FPGA’s are available for later use but at a much higher cost.

Other core components required are SDRAM for main processor memory, FLASH
memory for program storage, SRAM buffers and supervisory devices. Also essential
are power supplies for the various components.

5.2 Design Choices

This section describes three possible system implementation architectures and lists the
pros and cons associated with each. The final implementation details differ from these
designs which are from early in the design phase. They do however give an indication
of the basic system architectures.

5.2.1 Choice A

See figure 5.1.
The FPGA is acts the bridge between the local bus and the peripheral bus.

Advantages

� High speed operation with minimal loading on memory/data bus.

� Direct 32-bit interface to FPGA maximises data transfer rates and allows DMA
access.

� FPGA can perform DMA transfers direct to SDRAM / PCI bus. This reduces
CPU usage for data transfer and doubles memory bandwidth.

� FPGA and CPU ROM allows stand-alone system operation (Without host sys-
tem intervention).

� SRAM cache memory for high speed FPGA reconfiguration.

� Partial reconfiguration possible via direct PCI I/O operations.

� Single CPLD for system configuration and FPGA configuration management.

� Simpler routing of PCB.
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Disadvantages

� FPGA requires a simple default configuration to allow access to CPLD and
SRAM for reconfiguration from the CPU and PCI bus.

� Cannot perform direct I/O full configuration of FPGA, must be cached in SRAM
first.

� FPGA configuration errors will prevent system operation.

� Peripheral bus operation dependent on FPGA operation.

5.2.2 Choice B

See figure 5.2.
The FPGA resides on the local bus along with a separate CPLD to act as a bridge

to the peripheral bus.

Advantages

� High speed operation with greater loading on memory/data bus.

� Direct 32-bit interface to FPGA maximises data transfer rates and allows DMA
access.

� FPGA can perform DMA transfers direct to SDRAM / PCI bus. This reduces
CPU usage for data transfer and doubles memory bandwidth.

� FPGA and CPU ROM allows stand-alone system operation (Without host sys-
tem intervention).

� SRAM cache memory for high speed FPGA reconfiguration.

� Full/partial reconfiguration possible via direct/cached PCI I/O operations.

� Hardwired peripheral bus though CPLD device not dependent on FPGA opera-
tion.

Disadvantages

� Greater loading on high speed memory bus.

� Two CPLDs may be necessary.

� More complex PCB routing.
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5.2.3 Choice C

See figure 5.3.
The FPGA resides on the peripheral bus, with only a CPLD device and SDRAM

on the local bus.

Advantages

� Reduced loading on memory/data bus.

� FPGA and CPU ROM allows stand-alone system operation (Without host sys-
tem intervention).

� SRAM cache memory for high speed FPGA reconfiguration.

� Full/partial reconfiguration possible via direct/cached PCI I/O operations.

� Hardwired peripheral bus though CPLD device not dependent on FPGA opera-
tion.

� Simpler PCB routing.

Disadvantages

� Buffered access to FPGA reduces interface speed.

� Two CPLDs may be necessary.

� DMA operations may not be possible.

� Full bus width probably not available to FPGA, performance implications.

5.3 High Level System Design

The basic architecture from design option B in the previous section was selected for
the design. The major design feature of this setup is that the FPGA is located on the
local bus of the memory controller along with a separate ’Bus CPLD’ that will act as
a bridge to the peripheral bus as well as providing the logic required to configure the
FPGA.

The MIPS CPU to be used requires various interfaces to be provided for opera-
tion. Most importantly, the processor bus (SysAD bus) needs [3, 15-1] to interface
with a memory controller. The GT64115 controller provides a directly compatible in-
terface which will serve this function. The processor requires various interrupt inputs
which are provided by the various active components of the system. All possible fu-
ture interrupt sources must be accommodated for in order to make the design more
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generic. The configurable logic devices provide further possibilities. The processor
also requires a configuration bit-stream which must be provided by either an EEP-
ROM memory or dynamically generated. This will be one of the functions provided
by a ’Config CPLD’.

The memory controller does not require any interfaces its self, it merely provides
functions for the requirements of the system. The need for high speed high density
memory is satisfied by inexpensive SDRAM and the memory controller provides an
interface for controlling this memory.

The FPGA will have a direct connection to the local bus. By providing as many
bus signals as possible to the FPGA device, the configurability and options available
for implementation is kept high. It also introduces the possibility for the FPGA to
emulate the memory controller if it has access to all the required signals. The FPGA
has the following modes of configuration: JTAG, Serial bitstream and 8-bi Parallel.
JTAG programming is very simple and works reliably with a simple JTAG program-
mer. Support for JTAG programming will be provided for initial system testing and as
a backup in the event that other methods do not work. Serial configuration requires a
special protocol or serial memory device to program the FPGA. The FPGA’s parallel
programming interface is the fastest method available for configuration. The interface
is 8-bits wide and can interface a standard memory bus with some additional signals
for the controller of the bus to use. The ’Bus CPLD’ will control the generation of
these signals and allow for parallel programming of the FPGA via its interface con-
nected to the peripheral bus. FPGA devices have some internal RAM blocks which
operate at very high speeds. For complicated processing algorithms however, more
memory is required than available in the device (XCV200E has 114kbits). For this
reason, a high speed 4Mbit SRAM device will be provided with a dedicated interface
to the FPGA.

The system requires a standard serial connection for use as a system console and
debugging. Devices are available that will provide this interface which would interface
to the peripheral bus. The logic used to implement RS-232 links for example on the
other hand use relatively few resources in an FPGA. By using the FPGA to imple-
ment the serial link, the flexibility to change the physical and software interfaces when
required is provided. For these reasons, it was decided to implement the serial port
functions in the FPGA.

The processor requires non-volatile memory for program storage if a node is to
operate stand-alone. A Linux kernel and simple filesystem which is enough to get the
system fully functional requires at least 1-2MB of storage. For this reason, a 16Mbit
(2MB) FLASH device will be provided for processor boot-up. The FPGA logic de-
signs may also be required to reside in non-volatile storage. The XCV200E FPGA
which is to be used requires 1.442Mbits (180kB) per configuration. The FPGA device
used however is upward compatible to a 600,000 gate device which will require 4Mbits
of configuration. In order to accommodate for this and to provide for the possibility of
storing multiple configurations, an 8Mbit FLASH device was chosen. This will allow
for up to five configurations for the XCV200E to be stored.
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The number of LVDS channels provided will depend on the available pin resources
after the routing of other components to the FPGA and the number of lines available
to off board connectors.

A watchdog timer and real-time clock device are desirable for system time keeping
and recovering from system errors. These devices typically interface to a micropro-
cessor bus or provide a serial interface such as ����� . The choice of device will largely
be decided by component availability and interfacing complexity required. The lower
the complexity the more favourable the device.

If cost and PCB space allows, a user FLASH device may be provided for miscel-
laneous data storage.

Finally, the various components require power supplies that are capable of supply-
ing the required current in addition to complying with device tolerances in terms of
noise and voltage accuracy. The processor and LVDS I/O blocks of the FPGA require
a 2.5V supply, the CPLD devices, GT64115 and FPGA I/O require 3.3V and the clock
oscillator requires a 5V supply. Switch mode power supplies are most likely to be used
due to the relatively high current requirements and to reduce power loss.

5.4 Functional Unit Design

This section gives a detailed description of the design process for each of the major
functional units in the design.

5.4.1 Microprocessor

The chosen microprocessor was the IDT 79RC64574 64-bit MIPS processor [3]. The
internal functional structure to the device is very simple and optimised for perfor-
mance. As can be seen in figure 5.4, the processor has multiple control and execution
units. The two execution units, the 64-bit Integer and Floating point unit operate in
parallel, each with a five stage pipeline that is fed by a dual-issue instruction fetch
unit. This allows both units to operate full speed simultainiously. The instruction fetch
unit is coupled to the cache controller which finds cached entries and performs external
requests when cache misses occur. The processor also has a system control processor
which manages interrupts, cache and memory management functions.

From the external view, the processor has clock, interrupt, configuration, JTAG and
SysAD bus interfaces which are shown in figure 5.5. The processor clock is derived
from the system clock by multiplication in an on-chip Phase Locked Loop (PLL). The
PLL is sensitive to noise and thus requires its own isolated power supply to ensure
proper operation. This was provided by filtering the PLL power supply though an LC
circuit, effectively acting as a low-pass filter. The processor has 7 external interrupt
inputs: Six normal inputs and one Non-Maskable Interrupt (NMI). The sources of
normal interrupts are: An interrupt from the memory controller which can be later
decoded into memory errors, DMA transfers and PCI interrupts. An interrupt from the
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each of the FPGA, Bus CPLD and Config CPLD which are to be used for application
specific purposes. The possibility for accepting interrupts from the PCI bus directly is
allowed by routing a PCI interrupt line though the Bus CPLD which has 5V tolerant
inputs. The processor can only accept a maximum 3.3V input voltage.

The processor configuration interface has five signals which need monitoring and
control. There are three reset signals which are generated from the Config CPLD and
two signals used for processor configuration. The processor configuration interface
uses a simple serial bit-stream. This can be generated by the Config CPLD and support
for this is provided. In the event that this is not possible, provision is made for using a
serial EEPROM device to configure the processor.

The processor supports the JTAG test and debug port and allows boundary scan
and instruction execution. The JTAG interface can prove very useful for debugging
and the processor was added to the system JTAG chain.

The processors 32-bit MIPS SysAD external interface matched the interface on the
Galileo memory controller. A direct connection between the two devices along with
the relevant pull-up and pull-down resistors required were added as per the recommen-
dation provided in the device datasheets.

Other than these features, the processor provides no other on chip peripherals
which need to be interfaced.
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5.4.2 Memory Controller

The Galileo GT64115 MIPS companion, PCI and memory controller device was se-
lected to provide access to the PCI bus and memory devices. It supports three main
interfaces, a 32-bit MIPS SysAD bus, a 32-bit PCI interface (up to 66MHz) and a
32-bit SDRAM and Device local bus interface. See figure 5.6. On the local bus, the
memory controller supports up to four banks of SDRAM and provides five device
chip-select signals which includes a chip-select for the boot memory.

Like the processor, this device uses an internal PLL device for clock generation
and required a power supply filter for correct operation.

The SysAD and PCI bus interfaces were connected up according to the specifica-
tions in the datasheets. For certain signals on the PCI bus more research and examples
were needed to clarify their usage such as the PCI_PRSNT1/2 signals.

The local bus SDRAM interface was connected to two 16-bit SDRAM devices
forming a single 32-bit 32MB SDRAM bank. The decision was made not to use an
SDRAM module due to the difficulty in obtaining parts and the possibility of over-
loading and lengthening the high speed bus. The FPGA and Bus CPLD devices are
configurable logic devices and as such are very flexible. Because the chip-select sig-
nals are multiplexed on the local bus, all are available to each device. Thus, no specific
chip-select signals are dedicated to either device. A convention was however specified
for the usage of the chip-select lines, see Table 5.1. The peripheral bus bridge is the
logic implemented in the Bus CPLD to provide transparent access to device on the
peripheral bus from the local bus. The local bus chip-select signal will be decoded into
address banks to address individual memory device.

The FPGA local bus interface was provided with the full set of signals required in-
cluding the memory controllers multipurpose pins which can be configured to provide
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Table 5.1: Memory device assignments
Chip-select signal Assigned Device

SCS[0..1] SDRAM Bank 0
SCS[2..3] Not assigned

CS[0] Peripheral Bus Bridge
CS[1] FPGA
CS[2] FPGA
CS[3] Bus CPLD

Boot CS Peripheral Bus Bridge

DMA support.

The Galileo memory controller device has a fully software configurable system
memory map which allows reprogramming of device widths, timing and address ranges.
For processor boot-up however a default configuration is need. The device provides
two mechanisms for initial basic configuration. Firstly a series of week pull-up and
pull-down resistors can be configured on certain local bus signals. On power up,
the busses are tri-stated and the signal level on each of these lines is sampled. This
allows various configuration options to be set. The alternative method is via auto-
configuration whereby the memory controller reads a set of configuration values from
a special location in the Boot memory device. Provision for both these modes was
made.
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5.4.3 Bus CPLD and Peripheral Bus

The Bus CPLD device operation has been largely discussed in previous sections. The
device chosen was a 144 macro cell Xilinx CPLD in a 144 pin package [10]. This
provided enough I/O pin resources to interface the local bus and peripheral bus along
with providing various other interfaces. This device generates the address and control
signals for the peripheral bus (master operation) and is a slave on the local bus. This
device also generates the configuration signals required to program the FPGA. The
system JTAG interface is routed to the I/O pins of the CPLD. This allows for the JTAG
chain to be accessed from the CPLD and thus from the system its self with the correct
logic design.

The peripheral bus was chosen to have an 8-bit (byte) wide data bus in order to
reduce PCB routing complexity. The address bus was sized to address the maximum
possible memory device on the bus. The processor boot FLASH is specified at 16Mbit
but provision was made for supporting a 32Mbit device. This meant that the address
bus needed to be 22 bits wide. 	 �
���������������������� �"! 	�# ������� . The SRAM device
chosen for general purpose storage and FPGA configuration cache was selected on the
basis of availability. The device chosen was a 16-bit wide, 4Mbit device which had
already been purchased for other projects. This would not however directly interface
to the 8-bit bus. Fortunately, the device selected has two control lines for byte wide
accesses. During read and write cycles with only a single bank selected, the unselected
bank is driven to tri-state thus not affecting that side of the bus. Therefore it was
decided that both banks could be hardwired together making sure that each bank was
selected individually. The Bus CPLD could then be programmed to use the two banks
as separate chip-selects, effectively accessing the upper and lower banks of the SRAM
as separate devices.

5.4.4 FPGA

The primary task for the FPGA in the requirements is hardware acceleration of pro-
cessing algorithms. The FPGA however also needs to provide some essential system
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support for the system to function. To interface to the processor, the FPGA is placed
on the memory local bus to provide high speed 32-bit data access and provide the
possibility for DMA transfers. The FPGA is required to implement a serial port con-
troller (UART). This can be performed in logic, but a RS-232 level translator device is
needed external to the FPGA to interface other RS-232 systems. An LT1386 EIA/TIA
compatible line driver was used. It provided the capability for two UART channels
however only a single pair of Transmit and Receive signals were routed. The reason
for this was that there would not sufficient physical space on the board for the extra
channel. The serial port will not be used as a primary communications interface in the
final system and thus only one is required.

The FPGA is connected directly to a 16-bit high speed 4Mbit SRAM device which
will provide dedicated external storage space for the processing algorithms imple-
mented. The JTAG interface of the FPGA is connected as part of the system JTAG
chain.

To use the LVDS I/O capabilities of the FPGA, the I/O blocks with the LVDS
channels to be used must be powered at 2.5V. Because all the other interfaces of the
FPGA operate at 3.3V there was only a single I/O block available that could be used
for LVDS. This I/O block provides support for eight LVDS pairs (configured four input
and four output channels) and an LVDS clock input. The LVDS clock input was not
implemented because the clock can be recovered with the aid of clock-data recovery
techniques. CAT-5 cabling is suggested for LVDS signalling and thus two RJ-45 jacks
were used providing four LVDS channels over two cables. This will allow for point-
to-point communications between systems in a ring or square matrix configuration
depending on the cable configuration.

Finally, the FPGA configuration interface was configured to allow parallel pro-
gramming on the SelectMAP interface described in the datasheets and application
notes.

5.4.5 Clocking

The processor, memory controller and SDRAM devices all require a synchronised in-
phase clock to which they need to synchronise. The FPGA, Bus CPLD and Config
CPLD also require clock inputs. The memory controller requires a clock greater than
the frequency of the PCI clock (33MHz for PC environment) but no more than 75MHz.
The processor requires a bus clock of between 33MHz and 125MHz and an internal
pipeline clock greater than 100MHz. The SDRAM memory used has a maximum
frequency of 100MHz. The CPLD devices each operate up to 100MHz and the FPGA
is specified at around 200-300MHz.

The bus frequency was chosen to be 66MHz with the possibility of running up to
75MHz. With such a high frequency bus clock and the number of devices running
from it, reliability problems can occur. If all the devices used the same clock, the
loading on that signal would be too great and possibly cause increased jitter and signal
degradation. The other problem is that each device will not be guaranteed to get the
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Figure 5.8: Clock Distribution Architecture

clock in phase which will cause synchronisation problems. To solve these problems,
a clock distribution system needed to be designed with terminations to prevent reflec-
tions. A clock driver chip with ten output drivers was selected to manage the system
clock. It offers a worst case 350ps skew between output clocks. Because each de-
vice has its own dedicated clock signal, the nets are single ended. [11] indicates two
recommended methods for terminating single ended clocks, source and end termina-
tions. End terminations works well but require a resitor-capacitor network. Source
termination requires only a single resistor at the signal source and was chosen for its
simplicity. In addition to the low skew of the clock distribution device, the signal prop-
agation delays on each net need to be very close to each other. For this reason, the net
lengths on the PCB were equalised by routing in zig-zag patterns were necessary to
get the nets to within 2mm of each other.

One particular issue that was described in an errata document from the memory
controller was that the clock signal to the particular processor (RC64574) needed to be
slightly delayed from its own clock input. The simplest method of achieving this was
to increase that clock net length to create the required signal delay of 1ns.

5.4.6 Power and Peripheral Devices

The power supplies for the system needed to be designed to be capable of handling the
worst case current requirements from the various devices. These worst case calcula-
tions are shown in table 5.2. The input voltage from the PCI is 5V and also 3.3V in
newer systems. For the 3.3V and 1.8V supply, it was decided to use a buck mode (step-
down) switching regulator from the 5V supply. This was mainly in order to reduce the
heat dissipation that would result from a linear regulator. For the 2.5V supply, a linear
regulator was used due to concerns about noise effects on the high speed processor and
LVDS channels using this supply. A heat sink was specified for use with this regulator.
The switch mode supply needed special attention to be paid concerning the choice of
inductors and smoothing capacitors. High ripple supply capacitors (Low ESR) and
power inductors were used with values calculated from datasheet information.

A real-time clock with EEPROM memory, watchdog timer and voltage monitor
device in an 8-pin SOIC package. This small device has a two wire � � � bus interface
connected to the FPGA which will implement a controller. This device satisfies the
need for voltage monitor, watchdog and RTC in a single device.
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Table 5.2: Worst case power supply calculations
Device 5V Supply 3.3V Supply 2.5V Supply 1.8V Supply

CPU RC64574 250MHz - - 880mA -
Galileo GT64115 - 250mA - -
Xilinx XCV200E - 400mA 20mA 1000mA
SDRAM (128Mbit) - 2x140mA - -
SRAM (4Mbit) - 12nS - 2x120mA - -
FLASH - 90ns - 2x12mA - -
Xilinx XC9572XL - 60mA - -
Xilinx XC96144XL - 110mA - -
Clock Distribution - 60mA - -
RTC XC1227A - 2mA - -
LTC1386 - 400uA - -
66MHz clock 20mA - - -

Total 20mA 1426mA 900mA 1000mA

5.5 System Configuration Options

One of the aims of the hardware design was to make the system flexible and config-
urable in order to provide a wide range of possible configurations and reduce the risk
of a design problem with an inflexible design.

The configuration options provided for the Galileo memory controller are shown
in Table 5.3. The interrupt and miscellaneous configuration is shown in Table 5.4.

5.6 Printed Circuit Board Design

The printed circuit board design had the constraint that the hardware needs be com-
patible with PCI in terms of physical size and layout. The board was specified to be
a six layer design in order to keep manufacture prices lower although for the proto-
type, additional layers could be accepted if necessary. Components were restricted
to single side with only very low profile passive components allowed on the back of
the board as per the PCI clearance constraints. Where at all possible, surface mount
components were used. The design was specified to keep EMC consideration in mind
as the hardware was required to interface a PC system which typically produces a lot
of interference and may be susceptable as well. (See [12] for EMC design)

The most important aspects of the PCB design were the bus and high speed track
layout and the component placement to optimise this. The local bus is a 32-bit wide
bus with additional control signals running at 66MHz to 75MHz. A circuit board trace
typically requires termination when the propagation delay on the net exceeds the time
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Table 5.3: Galileo GT64115 Configuration
Resistor/Jumper Configuration

R43, R44 Swapped CS[3] and Boot CS (PCI BAR)
R45, R46 Swapped SCS[3:2] PCI BAR
R47, R48 PCI Expansion ROM enable
R49, R50 CS[3] and BootCS PCI enable
R51, R52 Internal Registers PCI enable
R53, R54 Autoload enable
R55, R56 CS[2:0] PCI enable
R57, R58 SCS[3:2] PCI enable
R61-R64 BootCS , CS[3] bus width
R65, R66 PCI Conditional Retry
R35-R42 PLL Configuration

Table 5.4: Interrupt and other Configuration
Resistor/Jumper Configuration

J5 GT64115 Int Enable
J6 PCI Int B to CPLD
J7 PCI Power Required (Open 15W, Closed 7.5W)
J8 PCI Clock to System Clock

J10 FPGA - No Config Pullups
J11 FPGA - Config Pullups

DIP SW 1..0 CPU PLL: ’0’ - x2, ’1’ - X3, ’2’ - x4, ’3’ - x5
DIP SW 2 CPU Timer Int 5 Enable

DIP SW 4..3 CPU Write Mode: ’0’ - R4400, ’1’ - Res., ’2’ - Pipeline, ’3’ - Reissue
DIP SW 5 ADDR to Data Delay, ’0’ - Slow, ’1’ - Fast
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of 1/10th of a wavelength. Therefore:

!�$�$�$�$�$&%(')�+*-,"� �.�/!�$�$�$�$�$�$�$�$�')�+*-,
��0�1�2 #4365 � 7�'98;:=<>

> $ : � 7�$�?@'
A�B 7 C DFEHG�IKJ

'ML�N � IO��JPI �RQ ��S � 	 $�?@'
It was therefore important to keep the bus net lengths normalised and shorter than

20cm in order to avoid having to terminate the bus.
Due to the specification to try stick to a six layer board, a lot of effort was required

achieve this. The hardware design uses four separate supply voltages. Fortunately, the
supplies are each only required in localised areas on the board. This allowed the use
of segmented power plains, reducing the need for additional physical plains.

All the clock and bus nets were routed first in an effort to minimise the number of
layer changes and net lengths. Design rules such as no 90 T corners and equal track
spacing and widths were used to help improve signal condition. All bus nets were
routed in a daisy balanced configuration and the bus devices were arranged to support
this configuration. The support and low speed signals were routed around the critical
nets towards the end of the PCB design phase once all critical paths had been finalised.

Various test points for the power supplies were placed around the board for testing
the board. Some of the remaining free I/O lines on the FPGA were routed to a DEBUG
header for testing purposes.

The switch mode power supplies and smoothing capacitors were placed together
and as far as possible from the logic devices. This was an attempt to keep the device
power supply voltages as noise free as possible. Each device power pin was addi-
tionally decoupled with a 100nF capacitor for high frequency supply demand changes
and 22uF tantalum capacitors were distributed around the board to help with lower
frequency supply demand changes.

The LVDS and DB9 serial port connectors were placed on the East edge of the
board so that they would be accessible from the PCI slot interface panel of a stan-
dard PC. The PCI edge connector was hard Gold plated for improved contact conduc-
tance. Small copper planes were placed underneath the power supply devices with Vias
though the board to help increase the surface area for heat dissipation. A ground plane
was placed beneath the processor device on the top layer as the processor contains an
exposed metal heat sink on its underside.

The entire design was hand-routed due to the complicated power plane design and
special high speed routing requirements. This allowed precise control of the board
design to meet the requirements. The SDRAM devices were routed in a manner that
optimised the net placement however it required track sizes smaller than the manufac-
turers recommended minimum track widths. After consultation with the manufacturer,
it was confirmed that localised locations on the top and bottom layers may have track
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Figure 5.9: Top side, unpopulated project hardware

widths smaller than the minimum size specified. This greatly simplified the SDRAM
routing which otherwise may not have worked on the six layer constraint.

5.7 Conclusion

This chapter gave a quick summary of the hardware design process and some of the
decisions made. The result of this work is a hardware design capable of meeting the
system requirements. Each node has a microprocessor with boot memory and high
density program memory, an FPGA for system implementing system interfaces and
processing and high speed communications links for inter-node communications.

Four PCBs were manufactured at Trax Interconnect and the majority of the com-
ponents were placed by Rhomco electronic assembly services.

This hardware design is a first revision prototype design and thus was designed
with a major focus on risk reduction. This meant that the fastest and most optimal
solutions were not always favoured over more reliable and proven ones. Future projects
may enhance the design to improve performance and features.
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Figure 5.10: Bottom side, unpopulated project hardware
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Figure 5.11: Top side view, populated project hardware
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Chapter 6

Hardware Verification

This chapter describes the process of verifying the design and testing the hardware for
errors and compliance. This process was on going and ran in parallel with the firmware
and software design phases describes in the following two chapters.

This chapter begins with a description of the initial testing performed on the PCBs
before the placing any of the components. This is followed by a description of the
testing of the power supplies and the configurable logic devices. The testing of the
memory controller was performed and testing the PCI interface. Finally when the
whole system was functioning the processor operation was tested and verified.

6.1 PCB Inspection

The PCB inspection was relatively simple. Each individual PCB had already been
flying probe tested after manufacture to the compliance of the Gerber design informa-
tion provided. However, errors in the design may have existed which would not have
been detected. The most important feature to test was the power plane connections
and isolation. If any short-circuits were present between any of the power planes, the
hardware will not function and could be damaged if powered up.

A simple digital multimeter was used to test the power plane isolation as well
as testing for continuity between distant points of the same supply plane. All the
planes were verified to be isolated from each other as required and the planes were all
continuous from source to load.

A quick visual inspection of the design was also performed with a printout of the
PCB design as a reference. Everything appeared to be correctly manufactured.

6.2 Power Supply

The switch mode power supply devices selected for the project had not been previously
used or tested and thus a full compliance testing was performed to verify their oper-
ation. The power supply devices and all the supporting components were manually
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placed on the PCB in the laboratory. For each supply, the power was slowly applied to
the board by increasing the current limit until constant voltage operation was achieved.
If any problems existed, the current consumption would greatly exceed the power sup-
plies quiesent current requirements. By using the current limit, damage to the devices
can be prevented.

The switch mode power supplies were initially verified to generate the correct
ouput voltage levels at ’no load’ conditions even though the device specifications in-
dicated that a load was required. Resistive loads were used to progressively test the
power supply output current up to the rated 3A. The output voltage was observed to
drop slightly with the increasing load but never fell below the specifications. An oscil-
loscope was used to measure the ripple voltage produced. Initially, the ripple voltage
was measured at 80mV(rms) however after placing the smoothing capacitors this was
reduced to levels below the noise level of the oscilloscope (<2mV). Device power sup-
ply ripple and noise tolerances are not given for most of the devices however, noise
levels in a standard PC environment are generally orders of magnitude greater than
this and thus correct device operation should be assumed. During the 3A load test, the
heat dissipation observed from the switch mode devices was negligible, only becoming
slightly warm to the touch ( UV7�$XW�� ).

The 2.5V supply is generated from the linear regulator and was also tested. No
detectable noise was observed on the output. Linear regulator devices are typically
very stable and with low noise and do not nomally cause problems. The only problem
with them is power dissipation. The heat generated by the device with a 1A load from
5 Volts is 2.5W. With the heatsink rating of 2�1&WY� @ 2W and additional PCB designed
heat removal, no overheating was observed.

The power supply devices were found to produce the correct output voltages with
no detectable noise and each was capable of supply the specified maximum current
requirements. Finally, the clock and clock distribution components were placed and
their operation verified. The clocks are critical for the functioning of the logic devices
in the system. The 1ns clock delay designed for the processor was difficult to verifiy
due to the sampling frequency of the oscilloscope available.

6.3 Configurable Logic

The passive devices (resistors and capacitors), memory, clock and configurable logic
devices were then placed by a contract manufacturer. The first tests to be conducted
were to again test the power supply isolation. Any design errors in which power pins
had been routed to ground pins for instance would immediately be apparent. The tests
showed that at least no power pins and ground pins had been wrongly connected.

Power was applied to the board by slowly increasing the current limit until the
power supply switched into voltage limit mode meaning that no short circuits or ex-
cessive current drawing problems were present. If the current usage of the board had
exceeded a limit specified by totalling the quiescent current requirements of each de-
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vice, a fault could be assumed. Further testing would have been necessary to find the
fault.

It was verified that power on the board was not causing any of the devices to heat-
up and current consumption was as expected. Verification of the configurable logic
devices was started. All the configurable logic devices used have a JTAG test and
access port. The primary objective was to establish communications with the devices
using the JTAG interface in order to configure them.

A link was used to bridge the processor JTAG chain link as the device had not yet
been placed on the PCB. A Xilinx JTAG downloader to interface a PC to the hardware
was built on VeroBoard as per the Xilinx provided design.

Initial attempts to probe the hardware using the JTAG port failed. The software
indicated that no devices were present in the chain. After some investigation, it was
found that the problem was with the JTAG download hardware and a jumper for the
FPGA configuration mode needed to be set. The JTAG software finally detected the
correct devices in the right order on the JTAG chain. This verified that the power
supplies to each device were correct and each device was operating internally.

The FPGA was the first device to be tested. A simple design to flash the LEDs was
written in VHDL. The software compiled the code correctly however the configuration
via the JTAG interface although indicating correct operation, produced no change in
the state of the FPGA. A setting in the software configuration options was found to
cause this problem and the FPGA configuration was successfully tested. Similar tests
were used to check the functionality of the Bus CPLD and Config CPLD.

The Config CPLD VHLD design was the first to be tested. While no devices de-
pending on the state of the reset signals were present, the reset timing delays were
tested and measured on the oscilloscope. They were verified to be the same as those
calculated for the design. The push-button inputs were tested and verified to gener-
ate the correct behaviour and ensure that the debouncing logic was functional. The
brown-out reset detection of the MAX811 device was also verified by reducing the
power supply current limit to the point that the system supply voltage started to drop.
This triggered the MAX811 to assert its reset output and caused the CPLD to perform
the programmed response.

Work then began on the emulation of the local-bus to test the Bus CPLD design,
this is described in section 9.1.2.

6.4 Memory Controller

Once the correct operation of the configurable logic devices and peripheral bus mem-
ory was established, the processor and memory controller devices were placed on the
PCB. The Config CPLD was programmed to keep the processor in reset during this
testing phase. Again, a test of the power planes was conducted to check for PCB de-
sign errors. These tests found no problems with the memory controller PCB design.
Resistors to specify the power-up configuration of the GT64115 were then soldered
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into position. The device was setup for a little-endian default configuration.
On providing power to the system, it was observed that the memory controller

device was warm to the touch. Information about the power usage of the device was
not provided. The datasheet recommended the use of a heatsink when airflow was
reduced. This removed any concerns about the devices operating temperature.

The first major design test that was performed was interfacing the node hardware to
a PC by inserting it into a PCI slot of the host motherboard. Before this test, every pin
on the PCI edge connector was double checked to make sure that the correct supply
nets and device pins were connected to the interface. Any problems could cause a
critical failure of the processor card or PC hardware because the PC power supply is
capable of providing enough current to ’burn’ a short-circuit, damaging the hardware.
Once it was decided that the hardware was ready for testing in the PC environment, an
unused Pentium 133MHz computer was used as the host.

On the first power up with the hardware in the PC, the PC system did not respond
and start booting up. This caused concern and the power was turned off. After an
inspection it was found that nothing on the card had heated up or seemed unusual. The
entire design was rechecked and during the process, a feature called ’PCI Retry Enable’
which is a configuation option of the GT64115 was identified. The initial interpretation
of the use of this configuration option was incorrect. This feature was enabled which
meant that the memory controller forced PCI retry operations until it received a signal
from its local processor to indicate that PCI transactions may proceed. The CPU was in
reset with no code present for it to run. The memory controller thus kept the entire PC
system waiting indefinitely. By simply changeing the resitor setting, the PC system
started up correctly with the hardware and identified the Galileo memory controller
device on the PCI bus. The Linux operating system on the host’s PCI probe identified
the device but no drivers were available as expected for the device. This all verfied
the correct layout and design of the PCI interface on the Galileo memory controller
device.

The next phase of testing the memory controller was to access the memory on the
processor card from the PC across the PCI bus. This was very important in that it
would verfiy the operation of the entire memory controller before work on getting the
processor working started. The memory controller interprets PCI requests in the same
ways as processor requests, thus if PCI accesses worked then it could be assumed that
the memory bus was operational.

A driver for the host PCI PC computer running Linux was written. This was firstly
used to test access to the SRAM device on the Peripheral Bus. Various problems
were overcome and a greater knowledge of the memory controller and PCI systems
was gained. After finding and fixing various issues, the PC was able to read from the
SRAM device through the Config CPLD and memory controller from the PC.

The SDRAM was the last component of the memory system to be verified. A spe-
cial intialization sequence is required to by the SDRAM devices in order to initialise
the interface. Some support for the special bus commands sent to the SDRAM are
provided by the memory controller device. The SDRAM initialization sequence was
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sent from the PC Linux driver and the SDRAM was tested. The SDRAM was setup
for 2CLK precharge, 4 bank interleaving, 2CLK CAS/RAS latency and 8 data bursts.
Two prototype boards were being built during this hardware verfification stage. On one
board, the SDRAM was working while on the other, specific bits in the data readback
from the devices were incorrect. It was found that some of the SDRAM pins on the
one card had ’dry joints’ or pins that had not soldered correctly. This was caused partly
because the PCB footprint for the SDRAM devices was too small and solder did not
make proper contact on all the pins. Each dry-joint needed to be carefully resoldered
and tested. This solved the problem with the SDRAM memory.

6.5 Processor

The processor was placed at the same time as the memory controller although it was
initially held in reset. During the PCB testing phase, a very low impedance was de-
tected between the power and ground of the processor. After closer inspection it was
discovered that a design error had caused the processors PLL power supply pins to
be connected the wrong way around. Fortunately the PLL supply was filtered and
thus moving the components and using link wire corrected the problem. On one of the
boards, a low impedance still existed between the processor power supplies in the order
of 45 Z . The cause of this low impedance was never found however device operation
was not affected.

The processor operation was only tested once the memory system was verified to be
operational. The first step taken was to test the CPU ’ColdReset’ serial configuration
sequence. This involved testing the Config CPLD code and using an oscilloscope on
the serial channel to capture and verify the sequence. The processor PLL supply was
also tested with the oscilloscope to check for supply ripple characteristics from the
PLL. A week 200MHz ripple verified that the on chip PLL was operating in X3 mode
as specified: [�[(\]1 #/365 �V!^� 	 $�$ #/365 . Various changes to the CPLD code were
implemented in order to generate the correct configuration sequences.

The processor was then ready to be booted. The memory controller was configured
to allow the CPU to boot from the SDRAM memory. A test program was loaded into
the SDRAM and the processor reset released. An oscilloscope was used to monitor the
processor’s SysAD Bus interface to the memory controller to check for bus activity.
After various processor configuration changes, the system setup was correct and the
processor operation was verified by running test code and verifying the results across
the PCI bus.
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Chapter 7

Firmware Implementation

The ERPCN01 node hardware contains three configurable logic devices in which
firmware logic designs are required to implemented in order for the hardware to func-
tion. The design language used for the majority of designs implemented as part of
this thesis was VHDL. This language provides a method for describing digital logic
designs in a high level programming language style. Some of the important VHDL
design implications are discussed in the first section of this chapter.

Each individual design used during the course of the project, including test and
verification designs as well as final firmware designs is described. Each design is
documented with a requirements statement, specification, various design options and
choices made as well as implementation details.

7.1 VHDL design implications

VHDL stands for VHSIC Hardware Description Language, VHSIC meaning Very
High Speed Integrated Circuit. It is a IEEE standard for logic description which re-
sembles a computer programming language.

Designing and implementing logic designs requires very specialised software which
is generally manufacture specific. The design process which is generally followed is
as follows: A design is started from a set of requirements which are translated into a
specification. VHDL code is written to describe the design in a standard programming
language style text file format. Very sophisticated and complex compiler software is
then used to infer logic-elements and connections from the VHDL descriptions. A
net-list is generated as the result of this operation which a synthesiser will accept.
This net-list is usually not hardware dependent but may contain elements not directly
translatable to the target device technology. This net-list and various other net-lists
from other sources such as vendor specific macros are then merged together in the
synthesiser which generates a design consisting only of elements available in the tar-
get logic devices architecture. Place-and-Route software is then employed to allocate
logic and routing resources in target device to implement the design. In FPGA devices,
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the routing delay between logic elements is path and location specific. Thus the place
and route process is comprised of an iterative placement and net-delay analysis pro-
cedure that attempts to optimise the performance the design to a set of user specified
design constraints. The logic designer needs to be very aware of the capabilities of the
compiler and target technology used. Very complicated logic equations or circuits can
take a long time to produce a valid result. This time may be longer than the period
of the clock used for the design. This then requires a redesign of that block to either
reduce the complexity or use techniques such and pipelining and manual placement
to achieve the performance goals. The designer also needs to be aware of the various
VHDL constructs and what logic elements are instantiated or inferred from them. Of-
ten, the incorrect usage of language constructs can create a design that either performs
very poorly or not at all, even when the VHDL appears to be logically correct.

At two stages during the design process, the entire design or a particular module
may be simulated. The logical operation of the system may be simulated directly from
the compiled net-list. This provides no timing information but can be used to quickly
test the design logic. This simulation does not require a full compile process and
contains no routing and timing information and is thus much faster in runtime. The
final design as implemented on the device may be simulated which includes actual
silicon path and logic element delay information. This type of simulation can be very
useful to analyse asynchronous operations and the response to external stimulus or the
devices own output.

All the CPLD and FPGA devices used in the ERPCN01 hardware are Xilinx prod-
ucts and use the same compiler and synthesis tools. The compiler used in this project
was a Xilinx vendor release of the Synopsis FPGA Express compiler, version 3.5.1.
The Xilinx Foundation 3.1-r8 software package was used for all the logic design and
simulation.

7.2 Configuration CPLD

The configuration CPLD device is responsible for system reset control and processor
boot-up configuration. It also has non-dedicated connections to the Bus CPLD and
FPGA for general purpose usage and interrupt line to the processor is also provided
but unassigned.

System reset control is the primary function of this CPLD. The project hardware
has three system resets and five reset sources capable of producing different reset con-
ditions and sequences. The Bus CPLD device is responsible for monitoring the reset
inputs and synchronising the reset outputs. It also needs to generate the timings re-
quired by the various devices it controls.

Only a single design was implemented on this device due to its specific function.
The design under went a series of developments that fixed problems and added or
removed features as required.
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7.2.1 Requirements

MIPS Microprocessor Requirements

The IDT 79RC64574 microprocessor device has three reset inputs and two configura-
tion lines that need to be interfaced and controlled in a specific manner for the proper
operation of the device.

The three reset inputs are: ’VCCOK’ - indicates the state of the system supply
voltage and acts as a global reset. ’ColdReset’ - used at power on and during normal
operation to initiate a ’Cold Reset’ which requires the same sequence as a power-on
reset. ’Reset’ - is used at power on and during normal operation to perform a ’Warm
Reset’ after the device has been initialised from a ’Cold Reset’. After a ’Warm Reset’
the processor starts executing system code from the boot-vector.

The datasheet for the ’574 specifies the timing diagrams for boot-time initiation
and reset, shown in Appendix X. The requirements laid out by the processor manual
[x] (chapter 12) and taken from the timing diagrams are:

� The interface must be synchronous with the processor/CPU clock input and
comply with the timing requirement of the device.

� ’VCCOK’ must be asserted for a minimum of 100ms after the supply voltage
has stabilised in the processors operational voltage range.

� ’ColdReset’ must be asserted at least 64k clock cycles after the assertion of
’VCCOK’ and must be deasserted synchronously with the CPU clock.

� ’Reset’ must be asserted until at least 64 clock cycles after ’ColdReset’ has been
deasserted. It must be deasserted synchronously with the CPU clock.

� At least 256 CPU clock cycles after the assertion of ’VCCOK’, the initialisa-
tion interface generates a clock on the ’MODECLK’ output and samples a 256
bit initialisation bit-stream synchronised with the ’MODECLK’ which must be
provided.

� The ’MODECLK’ has a period of 256 CPU clock cycles and the device suppling
the bit-stream must provide a stable output before each rising edge of this clock.

The format of the processor initialisation bit-stream is shown in Table X in Appendix
X. This bit-stream is required to be generated by the Config CPLD or the Serial EEP-
ROM device.

System Requirements

The devices other than the processor that are controlled or affected by the Config CPLD
are the FPGA, Bus Control CPLD, Reset Voltage Monitor, Serial EEPROM device and
Galilleo MIPS companion chip. Two push button inputs are also available to the Config
CPLD which are required to be debounced in logic. Their requirements are:
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� The Config CPLD and FPGA require a reset input signal that is deasserted after
the supply voltage has stabilised and before the processor is released from reset.

� The Reset Monitor Device has a reset input for manual reset generation which
needs to be asserted to emulate a system cold reset.

� The serial EEPROM has a chip enable and output enable inputs which need to
be generated when that device is used for processor initialisation.

� The ’mTest’ input of the Galileo device is routed to the Config CPLD and needs
to be asserted for the device to enter normal operation.

7.2.2 Specification and Design

The design for the Config CPLD will be synchronous with the ’ConfCLK’ input
clock which is synchronous with clocks to the processor, bus CPLD, companion chip,
SDRAM and FPGA. This will allow output signals to the processor to meet its syn-
chronisation requirements. All reset input sources are synchronised with the system
clock.

The input clock is nominally 66.667MHz to a maximum of 75MHz. A 23-bit pre-
scaler counter will be used to generate the timing requirements. This will give a worst
case minimum count period of 	 �
_�0`8a1�2�� > $+b�<c�d$(\ >�> 	 �e� >�> 	 ')� . This counter is
started after the deassertion of all reset inputs.

The ’SystemReset’ signal controlling the FPGA and Bus CPLD is asserted until
half the pre-scaler count value is reached after a reset input event: 	 �
� 0`8a1�2V� > $ b <V�
$�\f2�2�g&�ihj2�[�')� .

The ’VCCOK’ signal is deasserted after the first pre-scaler roll-over (>=112ms).
The completion of the bit-stream initialisation signal is asserted at the first pre-

scaler count value with bits 15 and 16 set following the assertion of ’VCCOK’. This
effectively allows for 	 , blkm	 ,�n �og���!�$�7&?@J�p?q%`� in which to perform the initialisation
which needs at least 	 2�[����a���r� 	 2�[�?qJPp?O%`�i�4[&2�2+!�[�?@J�p?q%`� for completion.

The initialisation sequence is reset by the deassertion of the ’VCCOK’ signal and
is clocked by the ’MODECLK’ input from the processor. Certain bits in the stream
are fixed and the rest are sampled from the inputs of an 8-bit dip-switch which allows
various bits in the stream to be modified without changing the VHDL design and re-
programming the CPLD device.

The ’ColdReset’ signal is deasserted at the next 8-bit overflow of the pre-scaler
following the deassertion of ’VCCOK’ and the completion of the bit-stream initialisa-
tion.

The CPU’s ’Reset’ input is controlled by the boot-up sequence but is also required
to be toggled without a full system reset to enable ’Soft Resets’. This signal is asserted
by either a system or soft reset input signal and can only be deasserted when ’Col-
dReset’ is deasserted. A pair of delay registers is triggered following the deassertion

Radar Remote Sensing Group, Electrical Engineering, UCT Page: 58 of 123



CHAPTER 7. FIRMWARE IMPLEMENTATION

of the controlling signals which keeps the CPU ’Reset’ signal delayed at least 64 clock
cycles after the deassertion of ’ColdReset’ as required.

The two push-button inputs are used as ’SystemReset’ and ’Cold Reset’ inputs.
The ’SystemReset’ push-button is debounced and the ’Cold Reset’ push-button signal
is routed to the external MAX811 Voltage Reset Monitor device. The input from the
MAX811 is used to generate the Config CPLD’s ’Cold Reset’ events.

Finally, three LED devices are connected to the Config CPLD. These were used to
indicate the status of the ’ColdReset’, CPU ’Reset’ and ’SystemReset’ signals.

7.2.3 Implementation

The VHDL design was written according to the specifications and simulated test the
designs compliance to the requirements. During the course of the implementation
process, minor errors in the implementation and specification were discovered from
the simulation results and corrected.

The Config CPLD was originally specified in the hardware design to be a 36 macro
cell device, however a pin compatible 72 macro cell pin-compatible device was used.
The 36 macro cell device would not have had the required resources for this design.
The results of the final design resource utilisation after implementation are:

75% of macro cells, 30% of product terms, 65% of registers and 46% of function
block inputs used.
’ConfCLK’ maximum input frequency 100MHz, ’ModeCLK’ maximum input fre-
quency 71MHz

7.3 Bus + Control CPLD

The Bus and Control CPLD has three main functions. Most importantly, it implements
a bridge between the system local bus and the peripheral bus allowing transparent bus
transactions to be performed across it. Secondly, it has the task of handling FPGA run-
time reconfiguration. Lastly, it provides a memory mapped system control interface
for processor reset control and FPGA configuration initialisation.

7.3.1 Requirements

Local to Peripheral Bus Bridge

The local to peripheral bus bridge needs to interface the standard 8-bit FLASH and
SRAM devices with separate address and data busses to the Galilleo memory con-
troller’s 32-bit multiplexed Address/Data bus.

The timing requirements on the bus are very demanding and a proper understanding
of the bus operation was required in order to specify and implement the design. The
memory local bus is multiplexed meaning that the address along with control lines are
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shared with the data bus connections. Various signals are provided to latch and qualify
these signals which need to be decoded. The bus also supports up to 8-word burst
read/write transfers to a selected device. This is possible due to the fact that the lower
three address bits are provided as dedicated pins on the Galileo device. A detailed
description of the memory controller’s memory bus (local bus) along with full timing
diagrams are located in Galileo GT64115 datasheet [Chapter 5 Section 8].

The CPLD is required to bridge single and multi-word read/write cycles from the
local bus to peripheral bus. The CPLD is also required to perform address decoding to
fragment the local bus chip-select 0 (CS0) and ’BootCS’ windows into smaller mem-
ory windows to each device on the peripheral bus. The memory controller’s ’BootCS’
signal must access the processor boot memory device.

The peripheral bus is has an 8-bit data bus with a 22-bit address bus and operates
as a standard asynchronous bus. The CPLD is required to generate appropriate chip-
select lines to the individual devices and generate the read/write signals.

The CPLD is finally also provided with an interrupt input from the PCI bus and
has two interrupt lines to the processor. These lines must be deasserted if not in use.
Finally, a connection the the systems JTAG chain is provided. This is for future work
and it is required to be driven tri-state.

FPGA Configuration

The Bus + Control CPLD is required to generate the signals needed to configure the
Xilinx Virtex-E FPGA device via the SelectMAP [x] interface. This basically involves
generating the various control signals to initiate and control the configuration and gen-
erating an address and control signals for the memory device on the peripheral bus that
holds the FPGA design bit-codes.

During this configuration mode, the peripheral bus is busy and may not be accessed
from the local bus. All requests to the peripheral bus should be ignored.

The design must allow for power-up as well as run-time configuration and recon-
figuration. A maximum of configuration speed of 50MHz may be used without the
need for using a more complicated configuration algorithm. A detailed description
of the Virtex-E configuration via the SelectMAP interface is provided in the Xilinx
Application Notes [15] [16]

System Control Interface

The system control interface is required to provide an interface to allow the state of
the system to be controlled without physical intervention. It is required to provide
an interface that will allow the processor reset to be asserted, deasserted and pulsed
(off->on). This will allow the state of the processor to be controlled either by its self
or from across the PCI bus from the host. It is also required to provide an interface
to initiate FPGA configuration. No requirement was set for the selection of an FPGA
configuration memory device or address. Finally, an interface to allow the toggling
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of the ’SystemReset’ signal and a method to acquire the systems revision number for
software purposes.

7.3.2 Specification and Design

The specification and design process for this component of the system went though
a series of revisions before reaching its final state. During various hardware test and
verification processes, slight modifications and changes in functionality were required
and some features were only implemented when required.

The design is required to operate in two distinct modes: FPGA configuration and
bus bridge modes. A global signal will indicate this state and disable the appropriate
logic and act as the control signal for bus multiplexers. Of the signals that need to
be multiplexed, the address and data on the peripheral bus have two possible sources,
one from the FPGA configuration logic and the other decoded from the local bus. The
peripheral bus control signals need to be generated for both modes.

The FPGA configuration requires a configuration clock. 8-bit parallel data is
latched on every rising edge of this clock. The FPGA interface is signalled that a
new configuration cycle should begin. A read request starting from address zero is
directed to the memory device containing the configuration data from the Bus CPLD.
The memory device outputs this data onto the bus which is connected to the FPGA
interface. During each configuration clock cycle, the memory address is incremented
thus loading the entire design into the FPGA. On completion, the FPGA notifies the
Bus CPLD with a ’DONE’ which returns the CPLD back to the bridge mode of oper-
ation.

The local-bus interface upon closer inspection is not very complicated, but requires
precise timing. The address, chip-selects and control signals need to be latched on the
falling edge of the ’ALE’ (Address Latch Enable) signal from the memory controller.
A chip-select timing signal from the memory controller is used to qualify the latched
control signals. The peripheral bus read and write signals are generated directly from
the decoded signals from the local-bus. Bi-directional buffers are controlled by the
decoded read/write signals to allow the data bus to be bridged to the local-bus during
data transfers.

The system control interface is to be implemented as a memory mapped virtual
address on an unused chip-select signal. The communication lines between the Bus
CPLD and Config CPLD are to be used to manipulate the Reset signals. Any access to
the virtual device (chip select) will invoke an action selected by the address selected.
A table of ’commands’ is provided in Table 7.1.

7.3.3 Implementation

The design was written as a single VHDL file and targeted to the 144 macro cell
Bus CPLD. The Bus CPLD design was tested initially in simulations to verify correct
operation. During the simulations, errors in the design and implementation were found
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Table 7.1: System control interface, on Chip Select 3 (CS3)
Address Command Action

0x000 Reset Asserts the processor Reset signal
0x010 Run Deasserts the processor Reset signal
0x020 Pulse Reset Asserts then deasserts the processor Reset
0x080 Toggle Sys Reset Changes the state of the system reset
0x100 Revision Places System Revision number on the bus

and corrected until the simulated operation conformed to the requirements of the local
bus interface and other requirements.

The initial testing of the design in the system was performed during the hardware
verification phase described in chapter 6. The FPGA was used initially to emulate the
local bus while the memory controller device was not present in the system. A more
detailed description of that process is described in the FPGA Designs, section 7.4.6.

The design did not give many problems although during the hardware verification,
a problem caused by a dry joint on the FPGA Flash which prevented the SRAM from
functioning correctly. This prompted an investigation that looked partly at the CPLD
design before the cause was found.

The final design implemented in the Bus CPLD required the following resources:
95% of macro cells used, 35% of product terms used, 38% of registers used and 50%
of functional block inputs used.
The maximum clock frequency of the design was limited to 100MHz.

7.4 FPGA Designs

During the development of the project, 10 basic designs were developed to test and
provide interfaces for the system. Some designs underwent constant review, additions
and modifications while others were very simple tests. The simple designs are de-
scribed briefly with more attention being paid to the complicated designs.

All the FPGA designs interfacing the system local bus are specified to use the
WishBoneTMSystem on Chip (SOC) bus. This is an open standard for linking modules
of a system together with a common interface. The design requirements and specifica-
tions for implementing Wishbone compatible systems were analysed and followed in
all the designs. By sticking strictly to a single interconnect system, design reuse was
greatly improved.

7.4.1 Basic LED Test

This design served as a simple example in order to verify the hardware design and the
software tools used to implement the FPGA designs. Initially, this design consisted
only of a counter dividing the system clock down to a human detectable frequency
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Data
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xor-> -> clock signal

Figure 7.1: Data-Strobe Encoding

for display on the LED devices attached to the FPGA. Once this was verified, ex-
perimentation began with the FPGA’s on chip Delay Locked Loops (DLL) and I/O
capabilities. This involved using Xilinx vendor components in the design and thus
served to test this functionality. It also tested the whether the hardware design allowed
for very high speed clock generation in terms of correct power supply decoupling and
device routing. Clocks up to 266MHz were successful generated. Some implementa-
tion problems occurred in the use of the DLL components due to the use of out-of-date
documentation. This was quickly resolved by using the latest documentation.

7.4.2 LVDS VHDL Test

This test design was an experiment in the use of Low Voltage Differential Signalling
(LVDS). The FPGA has connected to it, 8 LVDS channels (4 in , 4 out) but contains
no internal hardware serialiser/deserialiser circuitry. This design was an attempt at
specifying an LVDS link in synthesisable VHDL.

Raw LVDS is simply a physical layer and provides no link capabilities. During
the design period, various clock / data recovery systems were investigated for use as
a link layer. Data Strobe Encoding was investigated for use as a signalling protocol
because it reduces the data interference between the channels. Two LVDS channels
are employed to generate Data and Strobe channels. The Strobe channel is generated
from the data channel xor’ed with the transmission clock. The clock can be recovered
at the receiver by simply xoring the Data channel with the Strobe channel. See figure
7.1.

Various frame detection schemes for synchronising the data were investigated.
They all negatively affect the data rate of the channel by inserting framing information.
Finding a reasonable implementable solution that provided a high data rate to baud rate
ratio was the problem.

During the implementation of basic data transmission VHDL, serious problems
were encountered. The high speed outputs require special Double Data Rate (DDR)
registers which can be implemented using the low level components of the Virtex
FPGA architecture. Unfortunately, the FPGA compiler’s optimiser misinterpreted the
high level description, reducing it which caused the design to fail. At this stage, the
VHDL implementation of LVDS was cancelled and a schematic entry approach was
attempted.
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Figure 7.2: LVDS Transmitter Logic

7.4.3 LVDS Schematic Test

The implementation of an LVDS transmitter and receiver design in schematic capture
is much simpler than the equivalent in VHDL. Timing constraints which are extremely
tight for LVDS can be generated by simply clicking and modifying the properties of a
net. There is also the added benefit that the schematic translates directly into an EDIF
net-list file without the compiler trying to optimise the logic.

An example of a transmitter/receiver design in the Xilinx Application Note x233_07_062100
[x] was used as the reference for this design.

For LVDS transmission, the transmission rate far exceeds the practical internal
speed limits of the device. For this reason, the high speed sections needed special
attention. The transmitter design used Parallel Input to Serial Output (PISO) compo-
nents. Each PISO takes a 4-bit parallel input and a 4X-Clock from the DLL’s and
generates a four stage output signal switching sequentially though each input in each
stage. Two PISO devices, one positive and one negative edge triggered, have their out-
put signal connected to two a Double Data Rate (DDR) Flip Flop which multiplexes
the two signal together switching state on every edge of the 4X-Clock. See figure 7.2.

The LVDS receiver is the opposite of the transmitter, demultiplexing the signals
back to parallel output using the received clock. Note that the receiver’s local clock is
not synchronised to the transmitter’s clock and a synchronisation barrier needed to be
implemented.

The design was implemented with the FPGA system clock at 66MHz, this allowed
for a theoretical baud rate of [�[ #/365 �s7t� 	 �u2 	 � # ���a����0�� . Framing information
reduces this baud rate. Only basic clock and data recovery was demonstrated on the
hardware to test the physical design. The FPGA connected LED devices were used to
display received data in real-time.

The link was tested briefly by transmitting a pattern and displaying the recieved
data on the LEDs. The results of this test showed that the synchronisation was ex-
tremely stable, the received data displayed on the LEDs remained constant even though
the data rate was 528Mbits/s. The link was also observed to be very tolerant to loading
and even stub connected short-circuits. A problem was observed in the test. The re-
ceived pattern was not the same as the transmitted pattern. The problem was analysed
with a high speed oscilloscope and posterised to be caused by sampling the received
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waveform with the wrong timing.

7.4.4 Local Bus Emulation Test

The need for the emulation of the memory controller arose from the need to test the
functioning of the Bus CPLD which implemented the Peripheral Bus Bridge and the
need to access and program the FLASH memory in-system. The local bus emula-
tion design needed to emulate exactly, the signals from the memory controller. For
this reason, a good understanding of the local bus protocol was needed. The Galileo
datasheet [x] and additional timing diagrams [x] provided for the device by the man-
ufacturer proved invaluable. In addition, the timing parameters configurable on the
memory controller were specified to be implemented in the design to allow various
configurations to be tested.

The implementation of the design was incremental with various sections being
designed and simulated to test compliance individually. The local bus emulation unit
was specified to have a simple internal interface to which an intelligent module could
attach to gain access to the local bus. This interface contained: a request signal and a
direction signal to start a transfer, a completion strobe to indicate the completion of a
bus cycle, and data input and output ports.

The design was implemented as a number of synchronous state machines that inter-
operated to manage the bus. A main state machine monitored the request signal and
initiated a bus transfer. Firstly an address state is used to place the requested address on
the bus. This is followed by either a read or write state and completed with a bus hold-
off cycle. Various parallel state machines generate the cycles requires for read and
write cycles as well as generating the timing and burst accesses as specified by input
parameters. Various parallel processes are also implemented that monitor the states of
the various state machines and generate the required control and output signals.

A simple state machine was finally written to interface the bus control logic to
perform test read and write accesses to the SRAM device across the bridge. In total,
ten independent parallel processes were implemented to perform the emulation of the
memory controller device. The design for the basic bus emulation test was imple-
mented in the FPGA and used the following resources: 5% of device slices, 2% of
available FlipFlops, 32% of the I/O pins and was implemented with an equivalent gate
count at 9075. The place and route software optimised the design to run up to 75MHz.

7.4.5 16550 Compatible UART

The 16550 UART is the standard UART used in a PC and many embedded applica-
tions. It was thus desirable to implement a UART design that was software compatible
to it. The design requirements and interface specification were taken from the Na-
tional Semiconductor NS16550 UART datasheets [x]. Reference was also made to
a Verilog 16550 UART design from the opencores.org Internet site for free IP cores
[x]. Various design errors and flaws were identified in the Verilog design however, it
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still influenced some of the implementation features. The design was specified to be
implemented using the WishboneTMbus.

The design was segmented into six functional units: A transmission unit, a receiver,
FIFO memories, baud rate generator, registers and control unit and a wishbone bus
interface unit.

The baud rate generator is implemented as a simple down-counter that resets to
a value specified at its input when it counts to zero. On reaching zero, a pulse is
generated which acts as the baud rate enable. This pulse has a frequency of 16 times
the wire baud rate. This is purely to increase the reliability of the receiver which
performs over-sampling and synchronises to the received start bit.

The transmitter unit was specified as a stand-alone functional unit performing par-
allel to serial conversion. The interface was specified to provide all the functionality
required by the 16550 transmitter, including parity, bit-count and stop bit generation
controls. The transmitter was implemented as a state machine with a shift-register used
to serially send the data.

The receiver unit is also a functional unit that is based on a shift register to serially
capture data received. The input signal is first synchronised to the system clock to pre-
vent meta-stability in the flip-flops. A state machine monitors the state of the receive
line for a start bit and then proceeds to capture the data in the format specified by its
input settings. Parity, frame and break errors are detected and provided along with the
received data to the interface.

The FIFO unit implements the transmit and receive fifos as indicated by the 16550
specification. All error information is inserted along with the received data in the
receiver FIFO. Various full, empty and control signals are provided for the system
control logic.

The registers unit contains the 16550 interface compatible registers and the control
logic required to integrate all the components of the system. This unit has a simple
bus interface to read and write the various registers. The control logic has the task of
sending data to the transmitter unit from the transmit FIFO, generating interrupts and
sending and receiving data from the FIFOs.

The last unit required was the WishBone bus interface which is a simple unit that
translates WishBone read/write cycles into the simple read/write interface provided by
the registers unit.

7.4.6 Remote Bus Access

The remote bus access design was implemented to test various aspects of the Peripheral
Bus though the FPGA across Local Bus emulation. The requirement for the design was
to implement a controller on the FPGA that would allow a PC to access and modify
memory devices on the Peripheral Bus through the FPGA implemented RS-232 port.

This design was implemented with three major system modules. The 16550 UART
design was used to provide the serial port access and the Local Bus emulation design
was used to provide access to the Peripheral Bus through the bridge in the Bus CPLD.

Radar Remote Sensing Group, Electrical Engineering, UCT Page: 66 of 123



CHAPTER 7. FIRMWARE IMPLEMENTATION

RS-232

FPGA

UART

Local Bus Emulation

Control
Logic

Addr Data

Bus CPLD
Bridge

Flash (FPGA)

Flash (Boot)

SRAM (x2)

Figure 7.3: High level overview of Remote Bus Access system

The third module that was required was a control logic unit to interface the two other
units and implement a protocol to communicate to the PC. A high level diagram of the
system is shown in Figure 7.3.

The protocol for the RS-232 communications was specified to be a general purpose
as possible, not providing the most optimal performance. The protocol specifications
were:

Baud Rate 115200bps
Format 8 bits, Even Parity, 1 stop
PC - Communications master, FPGA - slave
Address Format - Segmented: 24 bit (16 bit seg-
ment, 8 bit address)
Packet Format:

Master -
1 Control byte followed by 1 or 2 data bytes

Slave -
1 Ack/Nack byte followed by 0 or 1 data bytes
Control byte (master):

0x33 -> Read operation + 1 data byte (8-
bit address)

0xCC -
> Write operation + 2 data bytes (address,data)

0xA5 -> Set segment + 2 data bytes (16-
bit segment)
Slave ACK/Nack responses:

0xF0 -> Data acknowledge + 1 data byte
0x0F -> Negative acknowledge + 0 data
0x3C -> Simple Acknowledge

State machines diagrams were designed before the VHDL implementation in order
to simplify the implementation though a better understanding of the logic sequences
required by the implementation. The VHDL implementation of these state machines
and the control logic driven by the states was implemented and simulated.
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The final design resource utilisation in the FPGA was: 14% of Slices, 7% of Reg-
isters, 10% of LUTs and the total equivalent gate count the design was 12,887 gates.
The design was optimised to run up to 72MHz.

7.4.7 Local-Bus Test

The Local-Bus test design was required to develop, verify and test the FPGA inter-
face for implementing a slave device on the Local Bus. This is necessary in order to
communicate with the FPGA from the memory controller device.

A lot of experience on the working of the Local Bus had been gained from the
Bus CPLD bridge and emulation work. This design however needed to interface the
asynchronous Local Bus with the synchronous internal FPGA logic.

Interfacing the asynchronous bus proved to be relatively simple in an initial work-
ing design. This basic functionality operated with the constraint that very slow timing
was required from the memory controller due to the discrete sampling properties of
synchronous system. What is a lot more difficult would be to re-think the design to
speed up the interface. This was a low priority for this project and was left for future
work.

The basic Local Bus test displayed the lower 8-bits of data written to the FPGA on
the LEDs and on reading from the FPGA provided a hard-coded value on the bus.

Finally, the 16550 UART was connected to the Local Bus interface module by
implementing a local-bus to WishBone bridge. This was done to test the operation of
a peripheral device implemented in the FPGA from across the bus.

7.4.8 Sigma-Delta Modulator

A Sigma-Delta modulator [13] is a function that generates a digital stream of pulses
from an input value. The proportion of Logic ’1’ outputs to Logic ’0’ outputs over a
large sample count is equivalent to the ratio of the current input value to the maximum
input value. By low pass filtering this digital bit-stream, an analogue output value can
be obtained. This creates a simple Digital to Analogue Converter (DAC). The purpose
of designing a Sigma-Delta modulator was to demonstrate the high speed processing
and general purpose ability of the FPGA.

The Sigma-Delta modulator was researched and a design for a simple uncompen-
sated or signal processed converter was developed. The design consisted of two iden-
tical modulators for stereo output channels, a FIFO memory for buffering samples and
a control unit that generated the timing and external interface. The sample format was
specified to be 16-bits per channel in sign-magnitude format which is used for digital
audio representation. The modulator was run at 66MHz with gave around 11-bits of
accuracy per sample however it could be run at 133MHz to improve the signal quality.
The FIFO was polled at 44100Hz so that CD quality audio samples could be demon-
strated in the system.
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Various revisions were required to perfect the design as problems in the initial
implementation of the audio format and FIFOs existed. The design was tested initially
from the host PC by a program that interfaced the Sigma-Delta converter using the
Linux driver.

7.4.9 Propane UART

The 16550 UART design was unnecessarily complicated and used a lot of FPGA re-
sources. What was required for future work where other modules were to be incorpo-
rated in the FPGA was to drop the 16550 design and specify a simpler UART design,
the ’Propane UART’, for eventual use in the propane system interface described in the
next subsection.

The specification for the simplified Propane UART design were:

� Only 7 and 8-bit selectable communication modes

� Only 1 or 2 stop bits

� Parity modes, Even, Odd, None

� Transmit and receive FIFOs

� Interrupt on receive FIFO content size - programmable - 1,6,12,Full

� Programmable baud rate - 1100 baud to 4M baud

� Parity and Frame error detection

This design although still providing a great deal of flexibility is implementable using
less logic than the 16550 UART, particularity due to the complexity of implementing
infrequently used functions like break detection and 5,6 bit transmission modes.

The design implemented the WishBone interface as required by the Propane inter-
face.

7.4.10 Propane Design

The propane system interface is a specification developed for this project to allow
the processor to automatically detect and use various functional units present in the
active FPGA configuration. Examples of such functional units are UARTs and the
Real Time Clock interface. The propane interface aims to create a simple ’Plug and
Play’ environment for the FPGA designs so that operating system and boot-up software
need not be modified every time a new design is loaded into the FPGA.

The Propane interface was specified and the major requirement of the system was
to implement a design that met the interface specification and used the WishBone SOC
bus for linking modules in the system. The Propane interface is specified to provided
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an interface for up to eight modules or cores to be used on the FPGA, with provision
for extending this to more if required. The specification is as follows:

<move this to appendix??>

The Propane interface provides eight 1MB address windows for function
implementation. Thus Address bits 20,21,22 are used for device or win-
dow addressing.

Window 0 is the Propane control interface

Windows 1..7 are designer/implementation specific.

Address 0x00 of each window is mapped to a configuration register which
provides device identification and designer specifiable features.

The format for each configuration register is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

I I I I V V V V x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x x x x x

I - Function ID, V - Function Version, x - Design specific

Windows 0..7 correspond to internal WishBone chip-selects 0..7

The interface specification for the Propane interface on device window 0 is:

Window Address Description Attributes

0x00000 Configuration Register read-only
0x00004 Interrupt Status Register (raw) read-only
0x00008 Interrupt Mask Register write-only
0x00100 RTC Status/Control Register read-write
0x00104 RTC Request Address read-write
0x00108 RTC Request Data read-write
0x00200 Reserved - DMA Controller

...

Configuration Register 0x00000

Function ID: ’0xE’ or ’1110’

Function Version: 0x1

Bits 23..8 reserved (read as ’0’)

Bits 7..1 Indicate function (7..1) presence in the system.

Bit 0 Function 0 presence - always ’1’

Interrupt Status Register 0x00004

Bit 10 NMI Summary (Masked)
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Bit 9 Interrupt Summary (Masked)

Bit 8 Interrupt Summary (Raw)

Bits 7..0 Interrupt Status of each functional unit

Interrupt Mask Register 0x00008

Bits 23..16 Logic ’AND’ mask to generate NMI.

Bits 7..0 Logic ’AND’ mask to generate Interrupt

RTC Status/Control Register 0x00100

Bit 9 Alarm 2 Status

Bit 8 Alarm 1 Status

Bit 7 Alarm 2 Enable

Bit 6 Alarm 1 Enable

Bit 5 Enable alarm polling

Bit 4 Send ’RTC Write’ request (write-only)

Bit 3 Send ’RTC Read’ request (write-only)

Bit 2 ����� Data valid

Bit 1 �����9� � �vIw��xyLX?qI busy

Bit 0 ����� User request busy

Various other Propane functional unit interfaces were specified:
Propane UART Interface:

Window Address Description Attributes

0x00000 Configuration Register read-write
0x00004 Transmit / Receive Register read(receive)-write(transmit)
0x00008 Status Register read-write

Configuration Register 0x00000

Function ID: ’0xA’ or ’1010’

Function Version: 0x1

Bit 21 UART Enable

Bits 19..8 Baud rate (bits 11..0)

Bit 7 Receive interrupt enable

Bit 6 Transmitter empty interrupt enable

Bits 5..4 RX FIFO interrupt trigger level

Bit 3 Protocol bits - ’0’ - 8-bits, ’1’ - 7-bits

Bit 2 Stop bits - ’0’ - one stop bit, ’1’ - two stop bits

Bit 1 Even parity

Bit 0 Parity enable
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Transmit / Receive Register 0x00004

Bits 7..0 Data bits

Status Register 0x00008

Bit 11 Frame Error

Bit 10 Parity Error

Bit 9 Receiver empty

Bit 8 Transmitter empty

Bits 7..4 Receive FIFO contents count

Bits 3..0 Transmit FIFO contents count

LED Display Interface:

Window Address Description Attributes

0x00000 Configuration Register read-write

Configuration Register 0x00000

Function ID: ’0xB’ or ’1011’

Function Version: 0x1

Bits 23..16 LED 7..0 Available status

Bits 7..0 LED 7..0 Output register

Propane Sigma-Delta DSP Interface:

Window Address Description Attributes

0x00000 Configuration Register read-write
0x00004 FIFO Input Register write-only
0x00008 DSP Rate Register read-write

Configuration Register 0x00000

Function ID: ’0x5’ or ’0101’

Function Version: 0x1

Bit 17 FIFO Full

Bit 16 FIFO Empty

Bits 15..0 FIFO contents count

Propane DSP Interface:

Window Address Description Attributes

0x00000 Configuration Register read-write
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Configuration Register 0x00000

Function ID: ’0xF’ or ’1111’

Function Version: 0x0 - (DCT)

The Local Bus interface from previous designs was used for the Propane design. Many
problems existed with this interface and a lot of development time was required to try
and obtain reliable operation. Some of the major problems experienced with the Local
Bus interface were, metastability from input signals, double read / write strobes being
issued for single read / write operations and bus-hold contention. Many of these prob-
lems were only detected when implementing the Propane UART because the FIFO
read and write operations are not tolerant of any extra read / write strobes and prob-
lems such as missing received characters and transmitting multiple copies of the same
character were experienced. After much debugging and simulation of the interface,
a stable working but slower than optimal bus interface was obtained. It was left for
future work to improve the interface speed of this unit.

The various functional units were all implemented with a WishBone SOC bus in-
terface. The Local Bus interface acted as a bridge and WishBone bus master allowing
external accesses from the Local Bus to reach the addressed functional unit. No sup-
port for burst reads or writes was provided by the Local Bus interface.

The Real Time Clock (RTC) interface was specified as being part of the same
functional unit as the Propane interface. The RTC device used in the project is a Xicor
X1227 which provides a RTC, watchdog timer, alarms and reset and voltage monitor
in a single 8-pin SOIC device. The interface to the device is the ����� protocol [14].
This was the first logic unit required to implement the RTC functional unit. A basic
� � � master controller was designed for use by the other units. After an analysis of the
X1227 ���Y� interface, the master interface was specified. The interface consisted of:
an address input which translated to the X1227’s Clock Control Register address, 8-bit
input and output data, a read/write direction control signal and Start and Done control
signals.

The implementation consisted of a complicated 11-state master state machine that
provided the basic major protocol state logic. Various smaller state-machines and con-
trol logic were used to generate fine grain protocol details and control the sequencing
of the main state-machine. The unit interfaced the X1227 RTC at 346kHz which is
reasonably close to the rated maximum speed of 400kHz.

The � � � protocol generated by the unit was very carefully simulated for compli-
ance in the functional simulator. All error states and possible problems were specified
to be handled in the implementation and simulated for compliance.

The RTC unit interfaced to the Propane system interface and the � � � master con-
troller. This allowed requests from the Local Bus, translated to the Wishbone Bus to
the performed over the �(�Y� protocol to the X1227 RTC.

With the Propane FPGA interface design complete, adding and removing custom
Propane compatible cores requires no changes to any other modules. With properly
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designed software, automatic detection and use of the modules provided in the FPGA
is possible.

7.4.11 DSP Experiment

The Digital Signal Processing experiment was required to demonstrate the processing
capabilities of the node. Two possible processing algorithms were identified for pos-
sible implementation in the FPGA: The Fast Fourier Transform (FFT) use mainly for
signal processing and Discrete Cosine Transform (DCT) used for image processing.
The FFT and DCT processing cores are both supplied by Xilinx as modules for inser-
tion into a design. On closed inspection it was found that the FFT core supplied would
not be implementable in the 200,000 gate FPGA used due to specific architectural re-
quirements of the core. It was for that reason that it was decided to use the DCT core
for processing benchmarks.

The DCT DSP functional unit was implemented at a module for the Propane inter-
face which software development to use the core simple. The DCT core was generated
by the Xilinx CORE Generator with the following parameters: 16 - point DCT, 12-
bit coefficient width, 9 clocks per sample latency, 8-bit data input width, 16-bit data
output width, signed mathematics.

To optimise the DCT core usage, two FIFO memories were used, one for the in-
put data storage and one for output data storage. Since the Local Bus interface is
bi-directional, during write cycles to the input, no output data can be read. A control
unit was designed that converted 32-bit input values from the Local Bus into four 8-bit
values, serially loaded into the input FIFO. The 16-bit output values were multiplexed
into 32-bit values for reading. These conversions optimised the Local Bus through-
put but required extensive synchronisation logic and a lot of simulation to perfect the
interface.

The full performance of the CORE was not expected to be achieved though the
Local Bus interface. The DCT core used is a pipelined unit that is capable of reading
an input sample generating an output on every clock edge. Thus the core at 66MHz is
theoretically capable of processing [�[�[�[�[�[�[�[�\z[&1�0 > [V�47�\ > [�1 million DCT transforms
per second. The Local Bus interface was a great limiting factor to this performance.

7.5 Conclusions

In conclusion, various VHDL cores were specified, designed, implemented, simulated
and finally implemented on the various Programmable Logic Devices (PLD) in the
system. Testing configurations were used to verify the correct functioning and per-
formance capabilities of the system. Final designs and interface specifications were
developed that provide a stable and flexible base for the software environment to be
developed.
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Software Development

Previous chapters described the Hardware and Firmware specification and design pro-
cesses. The final design and development effort was related to the software for both
the node and the host PC systems. The host PC was running a version of the Linux 2.4
kernel for which drivers and utility programs were developed to communicate with and
test the nodes. The node software consisted of a combination of low-level assembler,
embedded C and Linux application programming.

The chapter begins with a description of the software developed for the PC host
system including Linux drivers, test applications and utility programs. The second part
of the chapter describes the software developed for the MIPS processor on the node
hardware. Various complicated design problems and their solutions are described in
more detail in each of the sections.

All software developed for this project used opensource technologies including
compilers, debuggers and operating systems as specified by the requirements for the
project.

8.1 Linux PC Software

In order to properly use, debug and test the hardware and software on a node, PC
software was required to communicate with the nodes on low-level hardware as well
as high level software interfaces. The first requirement was to interface the Galileo
PCI memory controller on the nodes. Programs to communicate with the FPGA and
memory over the serial port were needed to test the Bus Access firmware designs as
well as the hardware. Various utility and test programs were required to provide higher
level interfaces to the hardware for testing, debugging and controlling the nodes.

8.1.1 PCI Driver

The Linux kernel only allows hardware drivers access to the hardware resources in the
system. Since the nodes were connected to the host PC system on the PCI bus, a driver

75



8.1. LINUX PC SOFTWARE

was required to allow user-space programs to communicate to the nodes.
A test driver was originally developed to identify the Galileo PCI device for an

evaluation board that was purchased for testing the Galileo memory controller device.
The main purpose of this driver was to develop an understanding of the Linux PCI
driver system and provide a skeleton driver for development of the project hardware
driver. This driver identified the Galileo memory controller devices in the system
and registered the driver for each instance of the device found. It also performed a
secondary role which was to reset the evaluation system’s processor which was useful
while experimenting on the platform.

The development of the driver for the ERPCN01 node was based on the initial
driver developed for the evaluation board. The development of the driver was also
progressive with features been added as required. The order in which these features
are described below is a rough equivalent to the order in which they were developed.
Various features which were used for testing various hardware elements were omitted
in the later versions.

The first major goal of the driver was to test the Galileo memory controller. Once
the hardware was in a state that the Linux host operating system identified the Galileo
device, development of the driver was started.

The driver on detection of a Galileo memory controller device remaps the memory
windows provided by the device into the host system’s memory space. This effectively
allows the physical memory on the node to be accessible directly by the driver. Firstly,
the driver was modified to perform write operations to the SRAM device on the node.
A correct read from that device would verify the operation of the Galileo device, Local
Bus - Peripheral Bus Bridge and SRAM device. During this stage many problems were
encountered which were gradually solved as a greater understanding of the Galileo
device and the issues associated with a PC environment. One particular problem that
took a long time to rectify was caused by the PC’s PCI BIOS reprogramming the
Galileo’s PCI registers, adjusting the PCI memory map without reprogramming the
internal maps. This caused memory access errors and PCI retry operations which
effectively locked up the host PC in certain situations.

Following the testing of devices on the Peripheral Bus, the SDRAM memory
needed to be initialised and tested. Since the Galileo’s internal registers are mem-
ory mapped to the host, full control of the device is possible without the on board
processor’s intervention. The SDRAM memory controller needed to be programmed
to enable the SDRAM and to setup the device timings. The initialisation sequence and
timing settings from the SDRAM’s datasheets were used as a reference for this. A test
sequence then proceeded to write and verify the SDRAM to test its functionality.

Once access to physical memory devices on the project hardware from the driver
was functional, a device interface for user programs was implemented. A Linux char-
acter device interface was chosen for access to the physical memory on the board. This
would allow user programs to read and write various memory locations with a file like
interface. In addition, the Linux kernel provides a memory map file access extension
which allows a user space program to access the memory identically to the way it
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accesses its local memory.
A driver interface and the four memory windows on the Galileo device were allo-

cated device names:

/dev/parnodectlX - 63:(X) -
driver control
/dev/parnoderegX - 63:(X+8) -
Galileo registers
/dev/parnodesdramX - 63:(X+16) - SDRAM memory
/dev/parnodedevsX - 63:(X+24) - Chip-
selects 0..2
/dev/parnodebootX - 63:(X+32) -
Boot device and CS 3

These devices are UNIX devices with a major number of 63, indicating the driver ID
and minor numbers identifying the sub-device referenced. The ’X’ is replaced by a
number from ’0’ to ’7’ and indicates the node number in the system. The ’parnode’
reference stands for ’Parallel Node’ which is how the system identifies the ERPCN01
nodes.

The size of each of the Galileo windows is different, however in some cases, the
window is not large enough to address the entire memory space of the addressed de-
vice. For this reason, PCI windows can be offset into a device address space to access
these areas. One of the primary reasons for the driver control interface was to provide
an interface to modify these offsets.

The final addition to the Linux ’parnode’ driver was a network emulation layer
to provide a virtual network between the local PC operating system and the Linux
operating system that was implemented on the MIPS processor.

Two approaches to this networking emulation were attempted. The first approach
was to emulate a full Ethernet network including Ethernet MAC emulation and Ad-
dress Resolution Protocol support. This work was based on the Linux PCI-skeleton
networking code for NE2000 compatible PCI cards. The transmit and receive buffers
that are provided by a physical network card are emulated by using shared memory be-
tween the host and target board. The basic principle of operation was to place a packet
ready for transmission into the shared memory buffer and signal the remote side that a
packet has arrived. The remote driver will then read this buffer and insert the packet
into the networking layer as if the network card had just received it. This approach
worked well initially for the low level Ethernet emulation and ARP / ICMP protocols
however, TCP connections were being ignored. After an extensive debugging effort, a
solution was not found and it was decided to try the alternative approach which was to
emulate a Point-To-Point link.

For the Point-To-Point link, the basic concepts were the same as for the Ethernet
link except that no Ethernet framing information, MAC addresses or ARP messages
are sent across the link. The kernel knows the IP address of the target machine and
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less processing is performed as no Ethernet Frame decoding has to be performed. This
driver used the Linux Virtual Point-to-Point(TUN) and Ethernet(TAP) device drivers as
a reference base. This driver was implemented and after debugging and fixing various
problems, a working driver was obtained.

Various work was performed to try and improve the performance of the virtual
networking link. The initial driver used the unused upper bank of the SRAM on the
node as a shared memory buffer. The host operating system did not use this device in
its system memory map. For this reason, no other programs or data would be affected
by using this memory. The problem however was that it is a 8-bit device with slow
timing. To try and increase access speed, a 32kb block of SDRAM main memory
was reserved early during the Linux MIPS kernel memory management initialisation.
This was reseved for the networking driver. Both the host PC and board processor had
much greater bandwidth to the 32-bit SDRAM memory and the performance increase
justified the effort.

8.1.2 Bus Access and FLASH programmer

The Bus Access design in the FPGA implemented a serial port and protocol to which
a PC could interface in order to read and write devices on the Peripheral Bus though
the Local Bus. The first application to be developed was a speed-test program to test
the system by reading and writing the SRAM device as fast as the serial port allowed.
During the development of this program, the routines for handling the communications
protocol were developed.

One of the primary reasons for developing the Bus Access design was to allow
the FLASH memory on the board to be programmed without the need for a working
processor or memory controller. A suite of programs were written to perform actions
using the Bus Access design.

The next program to be developed was a FLASH identication program. It was re-
quired to read the FLASH identification code from the FLASH devices on the board
using the common FLASH interface which the Flash devices supported. The Flash in-
terface is memory mapped in the FLASH devices and allows the programming, erasing
and controlling of the device. The protocol was implemented using the specifications
given in the FLASH datasheets. This involved sending a sequence of commands to the
device and reading back the result. The successful reading of the FLASH ID would
also verify the operation of the device as it was the first test to interface the devices.

A similar program to erase the FLASH memory was written based on the Get_ID
program. Finally, two programs, ’program_flash’ and ’fast_program’ were developed
to program the FLASH memory. They both implemented different programming algo-
rithms as specified in the datasheets [x]. The ’fast_program’ program was finally used
to program the FPGA Configuration FLASH memory device with an FPGA configu-
ration. The standard FLASH programming routines in the ’program_flash’ program
involved many more many read/write operations which over the serial link it was cal-
culated to take more than 3hours to program the device. Finally, routines to read the
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FPGA configuration files in Intel MSC-86 format were written in order to program
the FPGA FLASH device with configuration data. The FLASH programming opera-
tions were proven successful as the read-back from the device was identical to the file
programmed into the device.

It is possible to implement the FLASH programming routines in the FPGA but the
time taken to implement the design was not worth the effort. The main method for
programming the FLASH in the final system would be from the host PC system across
the PCI bus. This method would be orders of magnitude faster. The Bus Access design
merely proved a usefull development and testing tool.

8.1.3 Debugging and Utilities

A full suite of debugging, testing and utility programs were written for the host PC
Linux system for interfacing the ERPCN01 nodes. The major programs are described
briefly below.

Flash-PCI

The Flash-PCI utilities are a set of programs to test and program the FLASH memory
devices on the boards. They talk to the board using the ’parnode’ Linux driver and use
the same programming and identification routines as the Bus Access software.

UART 16550 Test

In order to test the 16550 VHDL design in the FPGA from across the Local Bus, a
simple program was written to memory map the FPGA through the Linux ’parnode’
driver. This allowed the registers of the UART in the FPGA to be modified by simply
reading and writing to a pointer. This created a very simple and fast utility to directly
control the UART in the FPGA.

FPGA Configuration

One of the major aims of the project was to enable FPGA configuration at run-time
in the system. Run-time basically means that the process occurs while the rest of the
system is running. The software to program the FPGA is fairly simple. The FPGA
configuration file is decoded and programmed into the SRAM configuration buffer.
The Bus CPLD device is then triggered to program the FPGA by accessing the system
interface it provides.

Audio Test

The Sigma-Delta firmware design in the FPGA was tested by sending raw audio sam-
ples to the FPGA into the FIFO buffer. A simple loop was written that polled the FIFO
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state in the FPGA and inserted data as required. The input data was taken from the sys-
tem ’stdin’ (standard input) which allowed audio data to be ’piped’ into the program.
Most of the debugging and fixing was involved with overcoming the read latencies and
buffering the input to prevent the FIFO from emptying.

Utility Programs

A number of utility programs were developed to aid various system operations and
functional requirements. Some of these programs were:

cpu_reboot Accesses the Bus CPLD system interface to reboot the processor

cpu_reset Accesses the Bus CPLD system interface to reset the processor

cpu_run Accesses the Bus CPLD system interface to release the processor from reset

dev_dump Programs a binary file into a memory location in the CS 0..2 PCI window

dev_read Reads from a memory location in the CS 0..2 PCI window

map_cs1_devs Instructs the ’parnode’ driver to map the PCI window CS0..2 to CS1

reset_maps Instructs the ’parnode’ driver to set the PCI windows back to their origi-
nal state

sdram_read Reads from the SDRAM memory

setup_sdram_boot Programs the memory controller to boot the processor from SDRAM

setup_sram_boot Programs the memory controller to boot the processor from SRAM

One last Unix program, ’dd’ was used extensively to dump binary files into the board
memory though the device driver.

8.2 MIPS Software

The major software development effort focused on the software written for the MIPS
processor in the project hardware. Four distinct sets of software were developed during
the course of this project, test programs to verify the operation of the processor and
system, the diesel boot-loader software to initialise and interact with the processor, the
Linux operating kernel porting effort and various Linux applications.

Before any programs for the MIPS processor could be developed, a development
environment needed to be setup on a development PC. The development tools that were
used are all GNU opensource software and consisted of: binutils - Binary utilities for
creating, modifying, extracting and viewing compile object files and archives. GCC
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- The GNU C Compiler. GDB - The GNU Debugger including DDD and Insight.
glibc - The GNU standard C Library. newlib - An embedded glibc alternative with
no operating system calls. Three sets of tools were configured for different processor
configurations and feature usage. These were: MIPSel - little endian 32-bit MIPS
compatible, MIPS64el - little endian 64-bit MIPS compatible and MIPSel-Linux -
little 32-bit MIPS compatible for Linux applications. The MIPS Linux tool-chain had
many problems and issues at the time of use and pre-compiled, tested versions of the
compilers were used to ensure correct operation.

8.2.1 Verification Programs

The first programs to be developed were used to test the compiler tool chains and gain
a greater understanding of the tools and the MIPS instruction set. The code written for
these tests was in MIPS assembler language and was used to boot the processor and
initialise the Galileo memory controller. This code was simulated but never run on the
processor.

The first program to be executed on the processor was designed to be run from
SRAM. The program configured processor for basic operation and a main loop incre-
mented a 64-bit counter at a specific memory location starting from value ’0’. During
this test, the processor was running un-cached which meant that the physical memory
location was constantly updated and could be read from the host PC across the PCI
bus. This was used to verifiy the operation of the processor.

The first programs written in ’C’ were then developed to test the compiler tool
chains. An initialisation function in assembler language was used to initialise the pro-
cessor, setup the stack and clear the program heap. This is required to start execution
of a ’C’ program. The GNU term for this file is the ’crt0’ file which is used to initialise
all programs and is required to be custom written for embedded systems. The first ’C’
program tested implemented the same counter as the previous counter in assembler.
This was followed by a program that interfaced the 16550 UART in the FPGA to echo
received characters.

One last assembler program was written to test the SDRAM memory. A value was
written to the SDRAM while the program was running from SRAM to verify that the
processor to SDRAM interface of the GT64115 was working.

8.2.2 Diesel Boot-Loader

Before work on the Linux kernel could begin, a boot loader and debugging platform
was required which would also have the responsibility of setting up the hardware sys-
tem for Linux and executing it.

The processor initialisation code from the previous programs was used as a base
for the Diesel initialisation. Various additional checks such as endianness and Galileo
configuration were added to prevent the program from executing under an incorrect
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hardware environment. Interrupt handling routines were written to provide error mes-
sages when the program execution caused an exception. Tests to determine from what
location the program was running were performed to allow various features to be en-
abled or disabled. One such feature was that processor caches should only be used
when running from SDRAM memory. The processor cache controller was reset and
the various routines to enable a ’C’ environment were performed before executing the
main program.

The Diesel Boot-Loader was designed to be simple and made easy to add new fea-
tures. A serial port communications interface was designed so that changing the serial
port functionality (in the FPGA) would not affect the reset of the system. A shell inter-
face was written to provide a user interface to the system. This interface implemented
a ’plug-in’ style architecture to allow various shell commands to be added into the
system to provide functionality. The basic shell functions provided were:

boot Execute a program from a user provided address, typically used to start Linux

cache Enable/disable processor caches as well as changing the cache modes

cp0 Allows access to the processors Co-Processor 0 (cp0) for system control

help Provide information on the use of the shell and various shell commands

memory Display the memory controller’s configuration in an easy to understand way

port Perform read or write operations to a specified address (processor address)

propane Display the core modules present in the Propane system interface

reset Perform a processor reset

rtc Display and modify the date and time in the on board Real Time Clock

The diesel boot loader was later modified to provide a test platform for running various
benchmarks in a 64-bit environment without an operating system.

8.2.3 Linux Kernel

The porting of 64-bit little endian Linux to the ERPCN01 hardware platform took the
majority of the software development time and effort. During the development period,
various versions of the kernel were experimented with and much of the kernel memory
management, filesystem and architecture specific code was under speculation.

The porting effort from the start was a very big task which needed to be broken
down into smaller units in order to manage the work load and understand what was
required. The first task was to take the kernel sources and add in support for the ER-
PCN01 platform into the MIPS64 architecture port. The next task was to fix the kernel
source tree, adding configuration settings and fixing problems to allow the kernel to
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compile. Then the task of debugging this code on the actual hardware was started.
Drivers for the serial port, virtual networking and sigma-delta audio processor were
then written. One last task was to implement an initialisation RAM disk from which
to boot the Linux system.

The first task was to implement architecture specific code involved developing in-
terrupt, timer, system and error handling interfaces for the kernel. The bus error han-
dling code was taken from the Silicon Graphics ’Indy’ port as the processor internal
operation was identical. A low level interrupt handler based on the ’Indy’ port was
written in assembler that differentiated between timer and other system interrupts. The
reason for handling the timer differently was in order to reduce the latency of this high
frequency interrupt. The main high level interrupt handler was written to handle inter-
rupts from the various devices in the system. The MIPS processor only provides five
hardware interrupt lines, however each interrupt can be cascaded ie. the Galileo mem-
ory controller has a single interrupt line to the processor but has 21 possible interrupt
sources. The interrupt handler will respond the the Galileo interrupt by requesting the
cause of the interrupt from the device. A virtual interrupt table was specified for the
direct and cascaded interrupts as shown in Table 8.1.

Routines were written to allow the enabling and disabling of any interrupt by num-
ber. This would automatically mask or unmask cascaded interrupts were necessary.
Handlers for the Galileo memory controller interrupts and the Propane interface inter-
rupts were written to handle specific details concerning the two interfaces. Setup rou-
tines to initialise the memory system prior to the starting of the generic MIPS memory
management system were needed. These functions cleared the Linux stack, detected
how the system was configured and setup memory regions as per the requirements of
the MIPS memory interface. This is were the shared memory buffer was reserved for
the virtual networking device. A driver was implemented to setup the MIPS inter-
nal timer to act as the Linux kernel timer. Much of the timer code was devised from
the ’Indy’ port. A driver to interface the Real Time Clock interface provided in the
Propane system interface was developed. This was used to set the Linux clock and
keep it synchronised. Finally, routines to reset and reboot the processor were provided
as required by the Linux kernel.

The task of getting the kernel sources setup for the new configuration and com-
piling was the next major task. It was discovered that the 64-bit little endian support
in the Linux kernel was not complete. During the process of setting up the kernel
configuration options in order to compile the required source code and setup the cor-
rect memory maps, the various missing sections of code were written as ’stub’ code
to allow the kernel to compile. These ’stubs’ would need to be written at a later stage
during the debugging of the kernel when required. The initial kernel version that was
worked on was the Linux 2.4.9 kernel which was the latest version when development
started. It was found that various changes had been made to the kernel which had not
been corrected in the MIPS port. A lot of development time was spent on fixing the
MIPS port to allow the kernel to compile.

After a fixing the problems preventing the kernel from compiling, the task of de-
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Table 8.1: Virtual Interrupt Allocation
Interrupt Cascaded IRQ Description

0 no Software Interrupt 0
1 no Software Interrupt 1
2 no Galileo GT64115
3 no FPGA
4 no PCI / Bus CPLD
5 no Bus CPLD
6 no Config CPLD
7 no MIPS Timer Counter

16 2 CPU Memory Address Bounds Error
17 2 DMA Memory Address Bounds Error
18 2 PCI Host Access Error (Memory Error / Parity etc)
19 2 DMA-0 Complete
20 2 DMA-1 Complete
21 2 DMA-2 Complete
22 2 DMA-3 Complete
23 2 Timer 0 Interrupt
24 2 Timer 1 Interrupt
25 2 Timer 2 Interrupt
26 2 Timer 3 Interrupt
27 2 PCI Read Parity Error
28 2 PCI Write Parity Error
30 2 PCI Abort Termination
31 2 PCI Retry Expire
32 2 Power Management Request
33 2 PCI Interrupt 0
34 2 PCI Interrupt 1
35 2 PCI Interrupt 2
36 2 PCI Interrupt 3
37 2 PCI Interrupt 4 (remote debug request)

48-55 3 Propane Interface Interrupt 0-7
48 3 Real Time Clock
49 3 Typically Propane UART (should auto-detect)
63 - Last interrupt
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bugging, fixing and implementing ’stub’ routines as started. The Diesel boot loader
program was used to execute the kernel which was placed into SDRAM memory by
the host PC over the PCI bus. Starting from the kernel entry point, an iterative process
of inserting debugging check-points and break-points was started. Each initialisation
function on the Linux kernel was verified as debugging progressed. As ’stub’ func-
tions were encountered, they were replaced with the required code to implement the
function. One of the first tasks was to get the kernel console drivers operational which
required a working serial port driver. When the serial port driver was working and the
console linked to it, it allowed kernel debugging messages to be echoed back to the PC
system from the serial port. As functions were verified, the debugging check-points
and break-points were removed to allow the kernel to boot further.

Some major problems were encountered during this process as soon as the cache
and memory management sections of the processor were enabled. Problems in the
cache caused strange and unpredictable operation and a lot of time was spent reading
back the SDRAM and comparing it to the original binary and Linux System Map. A
lot of time was spent on the Linux MIPS IRC channel talking to the developers from
SGI and other companies in order to solve these problems.

Various small goals were assigned during this development period such as getting
the MIPS timer operational, enabling system interrupt handling and fixing memory
management problems. The task of identifying the cause of the problems that re-
sulted from the memory management issues prompted a trace of program execution
though the kernel filesystem, drivers and process handling code. The problem was fi-
nally tracked down to a problem with the Translation Look-aside Buffers (TLB) in the
MIPS memory management low-level routines. A quick fix was implemented to fix
the problem but this had some performance problems associated with it. The proper
fix was left up to the Linux MIPS developers who identified that a problem existed
but could not state when it would be fixed. Development on the getting the rest of the
system operational was a priority and the memory management was left in this state.

Once the kernel was operational to such a state that it required the ’init’ program to
be executed to boot the system, work started on implementing an initialisation RAM
disk. An initialisation RAM disk is a filesystem based in memory that the kernel
uses for its root filesystem in order to run just enough programs to enable access to a
larger, possibly remote file system. For the embedded system, this filesystem needed
to be linked into the kernel object code by the linker which would provide pointers to
data location for the kernel. Code to implement this needed to be written and utility
programs to package the RAM disk as a linkable object file were written. The Linux
MIPS applications in the RAM disk are fortunately totally unaware of the underlying
hardware as the kernel provides all the interfaces. For this reason, a standard Linux
MIPS RAM disk file can be obtained or generated that will work in any Linux MIPS
kernel as long as the endianness of the files is correct.

Debugging the kernel although complicated by the caches was reasonably possible
with the use of debugging messages and monitoring memory from the host. When
interrupts were enabled however and processes started to be spawned, any piece of
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code in the interrupt handler and system call interface could be called at anytime from
any process or interrupt routine. Debugging in an environment where you are not sure
what is running when or whether the currently executed function will complete before
an interrupt occurs and the system starts executing other code before returning and
completing the function became very difficult.

Debugging user-land processes became even more compilicated because they ex-
ecute in virtual memory which may or may not have existed in physical memory and
probably not in contiguous blocks. User space programs were tracked by inserting
debugging code in the kernel system call entry and exit points to try and deduce what
operating system calls were being executed.

A major problem in the entire system was that the kernel was running in 64-bit
mode and user space programs in 32-bit mode. This is primarily due to the fact that
the Linux compilers were unable to produce 64-bit Linux user space programs at the
time of development. Every system call had to be evaluated to make sure that it was
32-bit safe. This was implemented as a 32-bit compatibility layer which was mostly
provided by the standard MIPS kernel but a few extra handlers had to be implemented.
The most common problem of running a 32-bit program on a 64-bit kernel is that the
’C’ size of pointers and ’long’ variables are different and thus data-structure sizes may
differ. This can cause memory overruns to occur resulting in unpredictable errors.

After a very extensive debugging period, the Linux kernel was sucessfully able
to execute a shell program, giving console access to the system. This allowed the
development of further Linux application software for the system to be started.

Following the successful implementation of Linux on the ERPCN01 system, drivers
were written to implement the sigma-delta audio interface and virtual networking inter-
faces. The sound card driver that was needed to provide an interface to the sigma-delta
DSP was developed from existing Linux drivers but did not implement most of the
’ioctls’ (I/O controls) provided by the interface. The driver was written to provide just
enough functionality to ’pipe’ audio data from the application, through the driver to
the FPGA. A ring buffer was implemented in the driver to prevent buffer under-run
problems and the FPGA FIFO state was polled at a constant rate and new data pro-
vided when necessary. Interrupt operation was tried but was unsucessful and the time
taken to fix this could not be justified.

The virtual networking driver was implemented to provide a TCP/IP communica-
tions link between the host PC and the node. Two versions of the driver were imple-
mented as described in the section on the Linux host PC driver. The specifications
for the virtual Point-to-Point networking link which was eventually sucessfully imple-
mented were:

� Two ’mail box’ shared memory windows will be used for transmit and receive
buffers

� Each ’mailbox’ will have a field indicating the size of the message packet and
an area of memory for the packet.
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� The signalling between the two processors will be done using interrupts. All
required information will be present in the ’mailbox’ for the receiving side to
use.

� Presently, no acknowledge of receipt is implemented.

� The interface will emulate a TCP/IP Point-to-Point link, no other low-level pro-
tocols will be usable.

� The virtual interrupt number 33 in the Linux MIPS kernel was allocated for the
transmit interrupt and 34 used for the receive interrupt. See Table 8.1.

� The SDRAM memory range reserved for shared memory communications was
32kb at address 0x00C00000.

8.2.4 Linux Programs

Developing user-space programs for Linux MIPS is as simple and changing the com-
piler used to compile programs for Linux on a standard PC. Once the Linux kernel was
operational, software development could focus on benchmarking and system testing.
What follows is a short description of some of the various programs used for testing
and benchmarking the Linux MIPS platform.

mpg123

One of the first processing intensive programs to be tested on the processor was an
MPEG audio decoding program called mpg123. The Linux audio driver written to
interface the sigma-delta converter was used as the output device. MPEG 1 Layer 3
audio files were successfully demonstrated on the system.

FFTW

FFTW is a collection of fast C routines to compute the Discreet Fourier Transform in
one or more dimentions. Provided with the library is a test programs that performs one
or multi-dimentional transforms given a set of command line options.

whetstone

A ’C’ converted version of the Whetstone Double Precision Benchmark. This is a sim-
ple benchmarks to provide a performance measure of both floating point and integer
performance of a processor.
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fastdct

Fastdct is a program to compute the Discrete Cosine Transform using the algorithm
from IEEE signal proc, 1992 #8, yugoslavian authors. This program was used to
benchmark the processors DCT performance to compare with the FPGA performance.

tcpserver test

A simple TCP server running on port 37 (time) was written to test the networking
code in the kernel. This program used simple unix sockets to listen on the port. The
program was first tested on a standard Intel PC running Linux before being compiled
for the MIPS processor.

PVM

From the PVM manual: PVM is a software system that enabled a collection of het-
erogeneous computers to be used as a coherent and flexible concurrent computational
resource, or a "parallel virtual machine".

PVM is a program that runs on various computer systems and provides transparent
communications between computing machines. A master program is responsible for
managing the application and requests processing clients to be initiated and provideds
them with data. The PVM software has the responsiblility of executing the programs
on the remote machines as well as performing communications with data conversion
where machines have different data representations. Because each machine can be
different, versions of the client programs must be compiled for each of the target ar-
chitectures.

The first problem experienced with PVM was to try get the application to compile
and execute. <more here>

miscellaneous

A simple http server program was compiled and tested on the platform.
Various network client programs such as ’ping’ and ’ftp’ were used to verify the

operation of the networking interface. Network sniffing programs such as ’tcpdump’
were used on the host system to monitor network communications.

Unix and Linux programs such as ’mount’, ’cat’, ’ls’ and ’ifconfig’ were used
extensively on the system.
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Testing and Verification

Testing and verification was important in order to demonstrate that the hardware and
software performed according to the requirements. This chapter describes the testing
and verification procedures performed to test the project firmware and software. The
hardware verification process was described in chapter 6.

9.1 Firmware Verification

9.1.1 Config CPLD

The Config CPLD firmware design in VHDL was tested incrementally during the de-
sign phase though the use of simulations. Each sub-section of the design was tested
after implementation to verify correct logic behaviour. The design consisted of el-
ements which produced real-time delays in excess of 100ms from a 66MHz clock.
These were extremely large simulations and thus the delays were reduced consid-
erably for the simulated tests. A full simulation at 100ps resolution would require
10,000,000,000/66,666,666.667*8,500,000 = 1.275 billion steps.

Once the design had been fully simulated, corrected and verified, the task of testing
the design in physical devices was initiated. Initially, the design was modified to keep
the processor reset signals asserted while enabling the functionality of the rest of the
system. This allowed the testing of the reset delay functionality without affecting the
processor.

Once it was verified that the reset delay counters operated correctly, the processor
initialisation section of the design was enabled. An oscilloscope was used to verify
the bit-streams generated from the CPLD as well as checking the timing conformance
of the various CPU interface signals. Various unforeseen problems such as incorrect
bit-ordering and inverted signals from the dip-switches were identified and corrected.

Finally, the processor initialisation sequences were verified and the final processor
reset disassertion logic was enabled. An oscilloscope was used to monitor the proces-
sor’s SysAD bus for activity which would indicate that the device had been initialised.
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This confirmed the correct functioning of the Config CPLD design.

9.1.2 Bus + Control CPLD

The Bus CPLD design was extensively simulated to verify the correct operation of the
local-bus interface before the design was implemented in the CPLD. Any problems in
the design could cause bus contention which could interfere with the operation of other
devices on the bus.

A 500MHz oscilloscope with a PC interface was used to assemble a timing diagram
of the Bus CPLD’s interaction with an emulated memory controller in the FPGA. See
7.4.4. The FPGA simulated four byte burst transfers across the Bus CPLD bridge to
the SRAM and Flash Devices.

The only major problem encountered during the testing of the Bus CPLD with
the memory controller. The device did not respond to any requests on the Local Bus.
During an investigation of the problem, every control signal on the Local Bus was
captured to make sure the memory controller was producing the correct signals. Two
problems were discovered, the memory controller was not generating a chip-select
signal and the Bus CPLD design specified an incorrect pin location for a Local Bus
signal. The memory controller problem was tracked down to a problem in the memory
controllers register configuration which was modified by the PC hosts PCI BIOS.

Once memory behind the Bus CPLD on the Peripheral Bus bridge was accessible
and working correctly, the Bus CPLD design was accepted as meeting the require-
ments.

9.1.3 FPGA Testing

Many designs were implemented in the FPGA during this project. Many of them re-
used components from previous implementations such as the UART module, Local
Bus interface and Propane system interface. Each module was tested individually and
proven before use in other designs.

The initial tests of the FPGA were required to verify that the hardware design was
correct and that the FPGA was functional. These tests output signals to the LEDs to
provide a visual verification of the design.

The Local Bus emulation testing and verification was performed mostly in the
simulator, with functional and timing simulations being performed. The Local Bus
interface was required to be correct in order to verify the operation of the Bus CPLD.
The design was worked on until it satisfied all the specifications of the Local Bus
interface in the simulations. A captured trace of the physical bus signals was also
acquired with the digital oscilloscope.

The next FPGA design to be tested was the 16550 UART core. The initial tests
were performed first on the transmitter unit. A continuous stream of characters was
output from the FPGA. Once the baud rate generations and transmitter unit were func-
tioning as specified, the characters were received and verified using a serial port on the
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host PC. The receiver was the next unit to be tested. The transmitter was connected to
the receiver unit so that received characters were retransmitted or ’echoed’ back to the
PC. The correct reception of transmitted characters verified the UART transmitter and
receiver units. The final test of the UART was the generation of a state machine that
interfaced the 16550 UART bus interface, setting up the registers initially, then polling
the receiver. On reception of a character, it was read from the UART, incremented by
one and sent to the transmitter back to the PC. This verified the operation of the 16550
UART design.

The Local Bus and 16550 UART designs were linked with control logic that im-
plemented a protocol for communicating over the serial port. This design was verified
in stages. The first goal was to enable reading and writing to the SRAM in order to
verify the designs operation. A digital oscilloscope was used to verify the assertion of
the correct signals on the Local and Peripheral busses. Once the read and write oper-
ations were working, the design was shown to be working correctly, the last task was
to verify that the FLASH devices in the system could be identified and programmed.
Successful reading and writing the FLASH device proved that the design was working
correctly. During the FLASH programming, over 700,000 characters were correctly
transfered over the UART link without a single error occurrence.

The Local Bus device interface was tested with the Galileo memory controller the
master of the Local Bus. Transactions on the Local Bus were requested from the host
PC across the PCI Bus. During testing, the interface was refined to resolve problems
such as write cycle synchronisation. The final design was verified when the FPGA
interface was functioning as specified and the physical signals on the Bus were verified
with the oscilloscope.

The sigma-delta modulator design was only verified by the quality of the output
signal. The first tests produced noise from the output which vaguely contained hints of
the presence of a signal. This was found to be a problem with the modulator design and
corrected. The next problem was that the digital audio format was being interpreted
incorrectly and the signal was being ’clipped’ and inverted which produced very poor
quality sound masked with a heavy noise component. Once this was identified and
fixed, the audio quality output equated to AM radio. Various problems causing the
FIFO buffer to under-run were fixed and eventually, high quality audio output was
achieved with only very slight modulation noise audible at very low output volume
levels.

The final testing on the system was concerned with the verification of the Propane
system interface design and its associated modules. The first task was to verify the
read/write access to the interface and then the operation of each device. For these
tasks, a program on the host PC was written to test the Propane interface across the
PCI Bus. The verifying of the Propane interface found a problem with the Local Bus
interface that had been adapted for this design. A lot of work was required to find and
solve this problem. This difficulty was mainly due to the fact that certain problems
only occurred with some of the Propane modules. The interface was finally corrected
and verified.
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Each of the modules implemented for the Propane interface including the Propane
UART, Real Time Clock interface, Sigma-delta processor and Discrete Cosine Trans-
form processor were all individually tested. The test program on the PC host identified
each of the modules present in the Propane interface and called functions to test them.
Each module was tested and fixed to meet the specifications before the system was
declared to be working correctly.

9.2 Software Testing

Through most of this project, software was used to test hardware and firmware de-
signs. The only software component that was tested with other software was the Linux
operating system.

Testing Linux was performed primarily to identify problems with the port in order
to fix them. The first program tested on the system was BusyBox, a program containing
various common Unix utility functions built into a single file for embedded systems.
The ’init’ part of the program emulates the Linux Init program which is used for system
startup. During the initial stages of getting Linux to execute user programs, the ’init’
program was modified to do various system calls and try find the causes of problems
in the port. One major problem that was identified and solved with this program was
that the ’sys_info’ system call was not 32-bit safe and a 32-bit version sys32_info was
created to address the problem.

Various networking and audio programs were used to verify the virtual networking
link and sigma-delta sound card interface. The networking testing was a considerable
effort caused mainly by the problems in implementing the Ethernet network emulation.
The TCP/IP Point-to-Point link caused a lot less problems. The proving test for the
networking link was to mount a filesystem from the host PC on the Linux MIPS kernel
via the NFS protocol. NFS operation was stable and reliable. A small TCP server
program was written and run on the Linux MIPS kernel to test connections initiated by
the host to a server on the Linux MIPS system. This proved successful and meant that it
would be possible to implement programs to communicate and exchange information
over TCP/IP for parallel processing.

9.3 Benchmarks

Various benchmarks were performed on the processor and FPGA to analyse the perfor-
mance of the prototype system and compare it to other reference systems. Most of the
benchmarks on the processor were run under the Linux operating system. Due to lim-
itations in the tools available, only 32-bit programs could be created. This limited the
instruction set available to the compiler for optimisation. The pre-compiled libraries
used were created for stability and only used the MIPS-I instruction set which reduced
the performance of the system.
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Table 9.1: Benchmark Results
Program MIPS-32 200MHz MIPS=64 200MHz x86 Athlon 1GHz Ratio

Whetstone 93.5MIPS - 588.2MIPS 79.5%
FFTW n=64 113.87 mflops - 590.94 mflops 96.3%

FFTW n=256 93.99 mflops - 622.077 mflops 75.5%
FFTW n=1024 103.3 mflops - 604.22 mflops 85.5%

FFTW n=65536 24.39 mflops - 127.7 mflops 95.5%
FFTW n=131072 23.33 mflops - 98.23 mflops 118.8%
FFTW 1024x512 29.334 mflops - 265.2 mflops 55.3%

DCT

The results of various benchmarks are shown in Table 9.1.
Figure 9.1 shows the normalised performance of the MIPS processor at 200MHz

compared to the 1GHz AMD Athlon (normalised to 200MHz). Past 1024 points, the
smaller cache on the MIPS processor makes the performance drop off.

The final benchmarks performed on the platform were to test the FPGAs process-
ing capabilities compared to the MIPS processor and a standard PC. Two possible
algorithms were identified for testing in the FPGA. The FFT function was the first
common function identified and is used in a wide variety of signal and image process-
ing applications. The Discrete Cosine Transform (DCT) is a common function using
in image and audio processing, most notably in JPEG and MPEG processing. The FFT
logic core provided by the manufacture was not compatible with the particular FPGA
that was chosen. This left the DCT function for testing. A DCT module was developed
using the manufacture provided core. This was integrated into the Propane interface
and a driver to access it was written for Linux.

The results of the 16-point DCT transform benchmark for the MIPS processor,
FPGA and 1GHz Athlon processor were: MIPS CPU - X DCTs per second, FPGA -
450,000 DCTs per second, Athlon - 700,000 DCTs per second.

Note, the speed of the FPGA was greatly limited by the FPGA bus interface which
requires a re-design.
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Figure 9.1: Normalised FFTW performance

Radar Remote Sensing Group, Electrical Engineering, UCT Page: 94 of 123



Chapter 10

Conclusions and Future Work

This chapter presents the conclusions of the project as taken from the results of the
hardware, firmware and softwares design, development and implementation. The var-
ious requirements that were specified and the manner in which these were achieved is
described. After the conclusions, is a section describing possible future work that can
be performed on the hardware system.

10.1 Conclusions

A hardware prototype platform with accompanying system software was developed
for the application of reconfigurable hardware parallel processing research.

The hardware platform provides all that is needed for a stand-alone microproces-
sor system with configurable logic. A 64-bit MIPS processor is provided for general
purpose processing and control, a memory controller and SDRAM memory provides
high speed high capacity memory required for high speed computing with large data
sets. Sufficient FLASH memory is provided for processor booting and FPGA config-
uration and an SRAM device is provided as an FPGA configuration cache. The FPGA
provides system functions and the ability to implement application specific hardware
processing routines and a simple interface for the processor to access it is provided.
The system provides Real Time Clock, processor configuration and Reset manage-
ment devices which provide support to the hardware and software environment. LVDS
channels are provided by the FPGA for high speed inter-node communications via a
dedicated interface.

The software developed for the system provides a base for future research in par-
allel processing with the system. A boot loader and system test application was de-
veloped to execute the Linux operating system as well as providing a simple base
for real-time application development. The Linux operating system was ported the to
MIPS processor and provides a software environment that is familiar to people with
Unix and Linux experience. The benefits of the Linux operating system were that
standard Linux programs simply require a recompile and binary files from other Linux
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MIPS systems are directly supported.
The software for the hardware platform also required the support of programs and

drivers on the host PC running the Linux operating system. These programs provide
debugging, testing and essential functions for loading and executing code on the pro-
cessor.

The PCI Bus connection to a host PC provides a very fast and simple interface
to the project hardware and allows firmware designs to be tested directly from the
host without having to interface them via the MIPS processor. The PCI Bus interface
also provides for real-time access to the platform memory while the processor is in
operation which simplifies debugging and allows for shared memory communications.

The MIPS processor was demonstrated to perform well despite the restrictions
under which the benchmarks were performed, namely running in 32-bit mode under
Linux without using only the MIPS-I and MIPS-II instructions. The processor per-
formed 75-100% of the normalised speed of an AMD Athlon 1GHz processor with
a 266MHz Front Side Bus. Given that the AMD processor has 256kb cache and ad-
vanced features such as branch prediction, the MIPS processor performed well and
could possibly outperform the AMD processor if its full set of features are deployed.

The FPGAs DCT algorithm is pipelined and can theoretically perform over 4 mil-
lion transforms per second at 66MHz. The external Local Bus interface however lim-
ited the performance as data could not be provided and read back fast enough. The
FPGA DCT benchmark still produced reasonable results at around 450,000 transforms
per second. This was still in the order of XX times faster than the algorithm running
on the MIPS processor. The FPGA benchmarks have shown that even a simple un-
optimised algorithm can have huge performance advantages when performed by the
FPGA.

10.2 Future Work

The focus of the project was the development of a hardware platform with supporting
software for reconfigurable parallel processing research. In order for the platform to
be of use for parallel processing, applications need to be developed to make use the
hardware. A developer skilled in Linux and FPGA programming could develop an ap-
plication to use the platform as a base for experimenting with various algorithms. The
PCI bus can be used for point-to-point communications and with more work, a shared
infrastructure could be developed. A communications link can also be implemented
over the LVDS channels to provided dedicated high speed communications between
nodes. Experiments with the PVM software package can be performed and work can
be focused porting it to use the high speed custom communications channels.

Further work can also take the form of optimising the hardware platform. On
the provided hardware, better bus interface logic can be experimented with including
DMA and VUMA support. Future work can also analyse the strong and weak points
of the current design and improve upon it. Given that the design developed during
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this project was a prototype aimed mainly for implementing a demonstration platform,
future work can be focused on optimising the performance. Faster processors, faster
and wider buses and deeper memory are features that should possibly be implemented.

Future work can also look at partial reconfiguration of the FPGA. Although the
current platform was design to permit this, none of the software tools used supported
this feature of the FPGA.
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Appendix B

Oscilloscope Traces
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Figure B.1: 4X Clock Generation

Figure B.2: 4X Clock - dV/dt (1GV/s per division)

Figure B.3: LVDS Clock - FFT (266MHz)
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Figure B.4: LVDS Cable Delay and Signal Quality

Figure B.5: LVDS Difference Voltage
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Appendix C

Source Code and Datasheets

Due to the size of the associated source code and datasheets, this information has been
omitted from this report.
Copies of the full source code, development tool and datasheets are provided on CDROM
format. Available on request.
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