
Low Cost Radar and Sonar using Open
Source Hardware and Software.

Lance Patrick Williams

A dissertation submitted to the Department of Electrical Engineering,

University of Cape Town, in fulfilment of the requirements

for the degree of Master of Science in Engineering.

Cape Town, August 2008

Declaration

I know the meaning of plagiarism and declare that all the work in the document, save for
that which is properly acknowledged, is my own.

Signature of Author .

Lance Patrick Williams

Cape Town

31 August 2008

i

Abstract

The full range of radar types and innovations can be complex and difficult to prototype,
especially for institutions that wish to perform a wide range of experiments for low finan-
cial cost. Radar and sonar system development can benefit from digital technology that is
powerful for research purposes, easy to use, and inexpensive. The purpose of this thesis
was the development of a sonar application using the Universal Software Radio Periph-
eral and the GNU Radio software framework. These are Open Source tools created for
the software-defined radio community. These tools provide a powerful yet flexible means
to experiment with a wide range of radio frequency applications, using a minimal amount
of relatively cheap hardware. In this thesis, these tools were modified from their original
telecommunications purpose, to produce a sonar system that could eventually be scaled
to a prototype radar system using the same device and software framework.

ii

Acknowledgements

I would like to thank Prof. M.R. Inggs for his supervision, guidance and patience dur-
ing development of this dissertation. I would also like to thank the South African Na-
tional Defense Force for their financial support which made the development of this dis-
sertation possible. I would like to acknowledge the invaluable assistance of the mem-
bers of the GNU Radio development community, in particular Eric Blossom, Matt Ettus,
and Jonathan Corgan. I must also thank all the members of the Radar Remote Sensing
Group for being available and eager to help, in particular Regine Lord, Marc Brooker, and
Stephan Sandenbergh. Finally, I would like to thank my family, whose constant encour-
agement and support helped me to complete this dissertation.

iii

Contents

Declaration i

Abstract ii

Acknowledgements iii

List of Symbols xiii

Nomenclature xiv

1 Introduction 1

1.1 Software-defined Radar . 2

1.2 The USRP and GNU Radio . 3

1.3 Objectives . 4

1.4 Thesis Outline . 4

2 From Telecommunications to Radar 6

2.1 Transceiver Hardware . 6

2.2 Software-defined Radio . 9

2.2.1 Concept . 9

2.2.2 Hardware for SDR . 10

2.3 SDR and Radar . 11

2.4 Radar using the USRP and GNU Radio 12

iv

3 GNU Radio and USRP 14

3.1 GNU Radio . 14

3.1.1 Overview . 14

3.1.2 Signal Sources . 15

3.1.3 Signal Sinks . 15

3.1.4 Signal Processing Blocks . 16

3.1.5 Developing with GNU Radio 16

3.1.6 GNU Radio and USRP . 17

3.2 The Universal Software Radio Peripheral 17

3.2.1 Overview . 17

3.2.2 Construction . 18

3.2.3 Specifications Summary . 21

3.3 GNU Radio Interface . 21

3.4 Transmit Chain . 22

3.4.1 FPGA . 22

3.4.2 AD9860 . 23

3.4.3 Daughterboards . 23

3.5 The Receive Chain . 24

3.5.1 Daughterboards . 24

3.5.2 AD9860 . 24

3.5.3 FPGA . 25

3.6 Working with the FPGA . 26

3.7 Conclusion . 27

4 Development of a Monostatic Sonar Application 28

4.1 Test System Goals and Requirements . 28

4.2 System Specifications . 29

4.3 The GNU Radio Control Program . 30

v

4.3.1 GNU Radio Transmitter Overview 30

4.3.2 GNU Radio Receiver Overview 34

4.4 FPGA / Verilog Modifications . 36

4.4.1 FPGA Transmit Chain Modifications 37

4.4.2 FPGA Receive Chain Modifications 38

4.5 Daughterboards . 39

4.5.1 Transmit Daughterboard . 39

4.5.2 Receive Daughterboard . 39

4.6 Front-end Hardware . 40

4.6.1 Transmitter Circuitry . 40

4.6.2 Receiver Circuitry . 42

4.7 Prototype Development Summary . 42

5 Tests and Results 44

5.1 System Performance vs. Specifications Tests 44

5.1.1 Software Gain Test . 45

5.1.2 PGA Gain Test . 47

5.1.3 PRI Settings Test . 49

5.1.4 Pulse Length Test . 50

5.2 Transmitter/Receiver Direct Coupling Tests 52

5.3 Receiver Circuit Tests . 54

5.4 Data Capture Tests . 57

5.4.1 Receiver Window Test . 57

5.4.2 Digitisation Start Time Test . 59

5.5 Data Processing Tests (Stationary Target) 60

5.5.1 Linear Chirp Pulse . 60

5.5.2 Unmodulated Pulse Tests . 69

5.6 Summary of Results . 73

vi

6 Conclusions and Recommendations 75

6.1 Summary . 75

6.2 Discussions and Conclusions . 76

6.3 Recommendations . 78

A GNU Radio Script File 80

B RAM Control Module Verilog Source Code 83

C Project Files CD Directory Structure 86

Bibliography 89

vii

List of Figures

2.1 Diagram of a netted radar example containing one transmitter node, two
receiver nodes, and one transceiver node linked to a processing node. . . 8

2.2 Basic diagram of a radio transmission and reception system. 9

3.1 Diagram showing how a FM radio application is logically defined using
the GNU Radio framework. 15

3.2 Picture of the Revision 3 Universal Software Radio Peripheral.[13] 18

3.3 Basic diagram showing a system level representation of the USRP.[13] . . 18

3.4 Extract from the AD9860 datasheet showing a functional depiction of the
AD9860 transmit chain.[15] . 19

3.5 Extract from the AD9860 datasheet showing a functional depiction of the
AD9860 receive chain.[15] . 20

3.6 Diagram showing a system level view of the transmit chain within the
USRP FPGA. 23

3.7 Diagram of the digital down converter implemented in the FPGA. 25

3.8 Diagram showing a system level view of the receive chain within the
USRP FPGA including the AD9860 chips. 26

4.1 Basic diagram showing the interaction between the USB 2.0 standard and
the GNU Radio sample sets. 32

4.2 Diagram showing the sonar application setup and transmit process. 34

4.3 Diagram showing the sonar receiver process. 36

4.4 Diagram showing a system level view of the modified FPGA transmit
functionality. 38

viii

4.5 Diagram showing a system level view of the modified receive functional-
ity within the FPGA. 39

4.6 Picture of a Basic Tx daughterboard for the USRP. 39

4.7 Picture of a Basic Rx daughterboard for the USRP. 40

4.8 Circuit diagram of transmitter circuit filter. 41

4.9 Circuit diagram of the Tx transducer driving circuit. 42

4.10 System level diagram of the USRP based sonar application. 43

5.1 Diagram depicting performance versus specifications test setup. 45

5.2 Trace showing software gain reduced to 4000. Vpp = 46mV. 46

5.3 Trace showing maximum software gain. Setting = 32767. Vpp = 364 mV. 46

5.4 Trace showing output when PGA is set to 0 dB (minimum). Vpp = 32 mV. 48

5.5 Trace showing output when PGA is set to 10 dB.Vpp= 100 mV. 48

5.6 Trace showing tpri = 2 ms (2τ). 49

5.7 Trace showing tpri = 1 ms. PRI = τ , thus the output waveform has become
continuous. 50

5.8 Trace showing τ = 1 ms (512 complex samples). 51

5.9 Trace showing τ = 500 µs (256 complex samples). 52

5.10 Diagram depicting transmitter/receiver direct coupling test setup. 53

5.11 Trace showing the directly coupled signal detected at the receiver. 54

5.12 Diagram depicting the receiver circuit test setup. 55

5.13 Trace showing the analogue echo from a flat plate target 0.5 metre, as
measured after the front-end. 56

5.14 Trace showing the analogue echo from a trihedral corner reflector posi-
tioned 0.5 metre from the sonar, as measured after the front-end. 56

5.15 Plot showing the unfiltered response from a flat plate target. Rx window
is 5 ms. The maximum viewing range is 0.85 m. Digitisation start time
setting is 0 ms. 58

5.16 Plot showing received data with Rx window adjusted to 2 ms. The resul-
tant viewing range is 0.34 metres. The target is no longer visible. 58

ix

5.17 Plot showing the response from a flat plate target. Digitisation start time
is 4 ms. Rx window = 5 ms. Adjusted start time discards 0.68 metres of
range data. The target response is truncated. 59

5.18 Plots showing the frequency spectrums of the sample sets used to generate
the match filters for the chirp waveforms. (a) Spectrum of the set used to
filter the 500 µs chirp pulses. (b) Spectrum of the set used for the 1 ms
chirp pulses. 61

5.19 Plots showing the monotonic pulse sample set frequency spectrums. (a)
Spectrum of the set used to filter the 500 µs pulses. (b) Spectrum of the
set used for the 1 ms pulses. 62

5.20 (a) Plot showing the match filtered result of the data set gathered from
the test in section 5.4. (b) Plot of the response spectrum. τ = 1 ms, Rx
window = 5 ms. 63

5.21 (a) Plot showing the unfiltered response from a flat plate target. (b) Plot
of the response spectrum. τ = 500 µs, Rx window = 5 ms. 64

5.22 Plot showing the match filtered response from a flat plate target. τ = 500
µs, Rx window = 5 ms. 65

5.23 (a) Plot showing the unfiltered response from a flat plate target. (b) Plot
of the response spectrum. τ = 500 µs, Rx window = 8 ms. 66

5.24 Plot showing the match filtered response from a flat plate target. τ = 500
µs, Rx window = 8 ms. 67

5.25 (a) Plot showing the response from a flat plate target. (b) Plot of the
response spectrum. τ = 1 ms, Rx window = 8 ms. 68

5.26 Plot showing the match filtered response from a flat plate target. τ = 1
ms, Rx window = 8 ms. 69

5.27 (a) Plot of the response from a flat plate target at 1 metre range. (b) Plot
of the response spectrum. τ = 1 ms, Rx window = 8 ms. 70

5.28 Plot showing the match filtered response from a target at 1 metre range. τ

= 1 ms, Rx window = 8 ms. 71

5.29 (a) Plot showing the response from a flat plate target at 1 metre range. (b)
Plot of the response spectrum. τ = 500 µs, Rx window = 8 ms. 72

5.30 Plot showing the match filtered response from a flat plate target at 1 metre
range. τ = 500 µs, Rx window = 8 ms. 73

x

C.1 Project files directory structure on the accompanying compact disk. . . . 86

C.2 GNU Radio Scripts Folder - contains the sonar application script file
(sonar_app.py) in addition to other test scripts for generating signals us-
ing the GNU Radio and the USRP, and testing the various blocks used in
the project. 86

C.3 Icarus Verilog Testbench Files - contains the Verilog test files used for
testing the logical functionality of the modified USRP FPGA files before
implementing them in the FPGA. 87

C.4 Matlab Script Files - contains the files used to process data files generated
by the sonar application. The “read_binary...” function is first applied on
the data files, and then the “One_window” script file is used to calculate
and display the desired parameters. 87

C.5 Quartus Verilog Project Files - contains the main project and Verilog files
required by Quartus to compile a new FPGA bitstream image. In addition
to this folder, the register reference files are required from the firmware
folder (which can be obtained with a download of the latest GNU Ra-
dio compressed package file) to compile a new image. Depicted are the
contents of the ../top_lvl/usrp_std/ directory. 87

C.6 Depiction of the contents of the sdr_lib folder. 88

xi

List of Tables

4.1 USRP-based sonar application parameters. 29

xii

List of Symbols

B — Transmitted RF bandwidth
c — Speed of Sound
∆ f — Sweeping Frequency Range
tpri — Pulse repetition interval
τ — Pulse duration

xiii

Nomenclature

radar — radio detection and ranging.

sonar — sound navigation and ranging.

pulse — a finite burst of radio or acoustic wave energy.

Doppler frequency — A shift in the radio frequency of the return from a target or other
object as a result of the object’s radial motion relative to the radar.

Ubiquity — The telecommunications engineering goal of obtaining total network cover-
age in every possible location on earth.

FPGA — Field-Programmable Gate Array: a programmable array of logic gates used to
create custom integrated circuits.

ADC — A/D (Analogue to Digital) converter: a device which converts an analogue signal
into a digital signal.

DAC — D/A (Digital to Analogue) converter: a device which converts a digital signal
into an analogue signal.

GNU — A set of freely distributed Open Source software packages.

PRF — Pulse repetition frequency.

PRI — Pulse repetition interval.

Modulator — A device or process which mixes an information signal with a carrier
signal.

Demodulator — A device or process which mixes a carrier signal with a modulated
signal in order to obtain the embedded information signal.

Range — The distance from a radar/sonar antenna to a target.

RCS — Radar Cross Section

SNR — Signal to Noise Ratio

xiv

Netted Radar — A radar sensor network composed of multiple nodes spatially separated
in some geometric configuration.

Software Defined Radio (SDR) — An RF system design approach which implements
RF tasks in software that would traditionally have been performed using analogue com-
ponents.

GNU Radio — Software defined radio programming framework.

USRP — Universal Software Radio Peripheral: a computer peripheral which implements
radio transceiver capabilities.

HDL — Hardware description language.

Verilog — A particular hardware description language.

Matlab — A script programming language for mathematical processing.

Python — A script programming language.

GUI — Graphical User Interface

IC — Integrated circuit: a complex circuit implemented within a single component pack-
age.

WxPython — Python extension libraries for creating graphical user interfaces to Python
programs.

USB — Universal Serial Bus: a communication protocol used between electronic devices.

CIC — Cascaded Integrator Comb: a type of digital filter.

CORDIC — An algorithm for calculating sinusoidal waveforms via vector rotation.

Decimation — The process of reducing sample rates.

Interpolation — The process of increasing sample rates.

Quartus — An HDL programmer and compiler software package produced by Altera.

Daughterboard — A capability expanding add-on device for the USRP.

PGA — Programmable Gain Amplifier: An amplifier with a gain value that can be altered
via programmable registers.

opamp — operational amplifier.

xv

Chapter 1

Introduction

The rapid evolution of the telecommunications industry has lead to a great surge in the
advancement of digital signal processing hardware. The demand for ubiquity in modern
digital telecommunications requires hardware with ever expanding capability and flexi-
bility to be able to implement the modern wireless network.[1]

The mass production of the devices needed for wireless communications has resulted
in the miniaturisation of transceiver hardware, sub-components of which can even be
implemented within a single integrated circuit. This advancement in the manufacturing
processes of transceiver hardware is driven by the demand for more powerful wireless
devices which can transfer data at high speeds and operate within an increasingly occupied
radio frequency spectrum. The results are cheap, highly capable, highly functional, low
power transceiver components that are small in size.

The implementation of transceiver hardware for modern digital telecommunications sys-
tems particularly favours digital processing approaches.[2] This is possible because of the
advancement of certain key technologies:

• Processing – CPU, FPGA and DSP processing has become cheaper in terms of
computational time, physical size and the cost of memory

• A/D and D/A conversion – analogue-to-digital and digital-to-analogue converters
have become much faster with greater dynamic range.

The two factors listed above have also lead to greater focus on another approach to radio
transceiver and wireless communication development namely, Software-defined Radio
(SDR). The aim of a SDR approach to communications systems design is to implement
as many of the system functions as possible in software and reconfigurable hardware.
Reconfigurable hardware refers to hardware that can be redesigned and modified using

1

a hardware description language to alter the hardware’s functions and operational abili-
ties. The advancement of processing and converter technology has allowed this design
approach to be functionally applied closer and closer to the antenna in radio communica-
tion systems. Tasks such as signal definition, filtering, modulation and demodulation can
all be performed in general computing software. The advantages of SDR include:

• Reconfigurability (even in real time)

• Flexibility (operational capability can be completely altered without changing hard-
ware).

Cheap mass-produced DSP and radio transceiver component devices (some able to oper-
ate at 5 GHz), along with SDR enabling hardware and design approaches, are constantly
pushing the boundaries of what is possible in the telecommunications industry. These
advances and potential applications, while created for the telecommunications industry,
have not gone unnoticed by the radar engineering community.

1.1 Software-defined Radar

While radars constructed with components designed for telecommunications may not pro-
vide the best performance (particularly in terms of bandwidth), such radars may still prove
invaluable for the emulation and prototyping of new radar designs and principles. In ad-
dition to making use of telecommunications components to reduce cost, design time and
circuit complexity, an SDR approach to radar design also offers its own means of reducing
costs, and enabling faster prototyping due to its rapidly reconfigurable nature.[1]

Radar types which may particularly benefit from the ability to prototype and emulate,
as described above, include the concepts of netted radar and passive coherent location
(PCL) radar. Radars such as these are the topics of ongoing research. The ability to con-
struct prototypes and emulators is needed to assist in the development of such radar/sonar
systems, and to verify their theoretical and simulated performance.

These prototypes should be reconfigurable and relatively low in cost, in order to keep
pace more easily with new developments. Ideally, they should be able to perform either
as small scale emulators, or as more powerful and complete working systems. This should
be achievable with minimal change to the hardware and software being employed.

Relatively easy development of the hardware and software should also be possible to allow
new developers to quickly become familiarised with the system and its possible uses.
This would allow more focus on developing the high-level concepts and architectures of

2

emerging radar technology. A prototype/emulator like this would also make it possible
for practical teaching of new developers and students of these new concepts and other
existing radar systems.

1.2 The USRP and GNU Radio

This thesis focuses on the adaption of a SDR development platform called GNU Radio,
and a transceiver device called the USRP, from their original telecommunication function
to performing radar functions. The adapted versions were tested by implementing a small
scale air sonar prototype described in later chapters.

The Universal Software Radio Peripheral (USRP) is a USB 2.0 connected computer pe-
ripheral that provides a relatively cheap hardware solution for software radio applications.
It is an Open Source hardware project developed for use with GNU Radio. GNU Radio is
an Open Source SDR project and software framework, which users can use to construct
SDR applications. Open Source refers to hardware and software for which all the designs
are freely available, and can be modified, added to, and enhanced by the general public
without the need to purchase a license.

The USRP is primarily designed to implement telecommunications applications built in
GNU Radio. It takes advantage of reconfigurable and flexible digital technologies such as
the AD9860 DSP chips and the Altera Cyclone FPGA. These components perform high
speed sampling and digital down-conversion to allow the capture of high frequency RF
signals.

The USRP is priced to be affordable for amateur radio enthusiasts. Separately available
interchangeable daughterboards which plug into the USRP, contain limited RF hardware.
These enable the USRP to access various frequency bands which would otherwise be be-
yond the capability of its A/D converters to sample. This is a more cost effective solution
for developing a wide range of RF applications which would otherwise require specially
designed custom systems.

A USRP based system requires: a personal computer with the appropriate open source
software a GNU Radio package installation; a USRP with desired daughterboards; and
the necessary RF front-end devices such as amplifiers and antennas.

3

1.3 Objectives

The objectives of this thesis are as follows:

• Analyse the USRP and GNU Radio framework functionality. Determine their suit-
ability for creating radar or sonar applications. Determine the limitations to creating
said applications. Take note of functionality that would be useful for the creation of
radar prototypes.

• Make the necessary modifications to both GNU Radio and the USRP to facilitate
the creation of radar and sonar applications.

• Design and build a monostatic air sonar prototype using the USRP and the GNU
Radio software. Use the prototype to observe and record echoes from various tar-
gets. This will serve as a test case to show how the USRP handles some of the basic
tasks that a radar system must perform.

• Perform basic and well-known radar/sonar signal processing on the captured data
sets. Use this to demonstrate the prototype’s performance and behaviour.

• Draw conclusions on the prototype’s performance. Make recommendations on how
the prototype might be enhanced and/or modified to emulate other types of radars
or sonars.

• The findings of the prototype development process are intended to be utilised for
research into other radar and sonar applications using the USRP, specifically those
relating to netted radar and PCL research.

1.4 Thesis Outline

Chapter 1 gives an introduction to this thesis and its purpose and what the objectives are.

Chapter 2 expands on the discussion of telecommunications components that can be used
in radars. The topic of software-defined radio and the technologies that enable it are
included. How SDR might service radar is discussed, GNU Radio and the USRP are
introduced as being implementations of the discussed concepts. The functional design re-
quirements of a radar application based on GNU Radio and USRP are listed. The desired
performance and capabilities of such a system are proposed in a comparison to an existing
netted radar prototype.

4

Chapter 3 provides more detailed information about the GNU Radio software framework.
This will provide insight into how the sonar prototype outlined later in this dissertation
was defined and implemented. The chapter then goes on to take a closer look at the USRP.
It is useful to understand how the USRP achieves application flexibility by looking at
the specific hardware components on the USRP and how the FPGA is configured. The
USRP’s capabilities and operation will be described. Features useful to radar will be
highlighted. This chapter will show the limitations of the default USRP configuration and
which functions would need to be altered to make radar and sonar applications possible.

The USRP is designed to work with the GNU Radio framework. How GNU Radio works
and interacts with the USRP will also be covered. This will provide insight into how
using the USRP and GNU Radio will affect a radar application’s performance and what
the system restrictions would be.

Chapter 4 will cover the details of the monostatic air sonar that was developed. The
supporting GNU Radio program created for this application, as well as the FPGA level
modifications that needed to be performed, will also be explained. This chapter will also
describe the supporting front-end hardware that was designed and built for the sonar, in-
cluding the various implementations that were attempted. The capabilities and limitations
of the system produced will also be presented.

Chapter 6 will look at the various sonar tests that were performed and their intended
purpose. The results will be presented and explained.

Chapter 7 summarises the work done and what was achieved. This chapter will also
discuss the test results, and make conclusions about the USRP and its performance as part
of a monostatic sonar system. The USRP’s suitability for prototyping various other radar
types will be revisited. Recommendations are made on how radar and sonar using the
USRP can be further researched, as well as how the produced sonar can be improved and
functionally expanded/enhanced.

5

Chapter 2

From Telecommunications to Radar

There are various technical advancements that have been made in the telecommunica-
tion industry, particularly in terms of capability and manufacturing. These advancements
have been necessitated by the drive towards ubiquity and the consumer demand for more
functionality and greater media-sharing capability. Some of these technologies have the
potential to be applied to radar applications. This chapter will look at some of these
technologies and what they would mean if adapted to radar. This chapter also identifies
some of the aspects of radar that would benefit from a software-defined radio implemen-
tation which makes use of reconfigurable digital hardware. It also looks at the particular
benefits a SDR implementation might serve for the development of radar emulators and
prototypes.

2.1 Transceiver Hardware

Components available for telecommunications devices operate within the frequency ranges
of certain radars. Their ability to mix signals from these bandwidths to intermediate fre-
quencies to be digitised by high speed A/D converters optimised for mid-range perfor-
mance and cost, makes these devices interesting to consider for low cost radar systems.

A powerful technology that is currently found in wireless network devices is called radio-
on-a-chip (R-o-C). These are circuit components which contain many of the components
that a radio transceiver requires, such as amplification and mixing, all within a single
integrated circuit package. They are optimised to use low power and occupy very little
physical space in order to service the mobility required in devices such as WLAN adap-
tors and wireless broadband modems. While not having sufficient transmission power to
serve in a radar transmitter without additional amplification, they can form an important
intermediary step in the development of cost effective radar transceiver hardware.

6

Devices such as the AR5112 created by Atheros Communications, offer R-o-C systems
that are designed to work with wireless networking standards. These wireless standards
occupy bandwidths at around 2.4 GHz (2.3 – 2.5 GHz) and 5 GHz (4.9 – 5.85 GHz).
These are within the operational frequency ranges of S-band and C-band radars.[3]

A/D and D/A converters are of paramount importance in the advancement of digital
transceivers. They are a determining factor in the performance of a transceiver as they
dictate the amount of usable bandwidth which can be obtained. Interesting telecommu-
nications products exist such as the AD9860 from Analog Devices, which combines the
A/D and D/A converters with amplification, filtering, interpolation and signal mixing all
within one surface-mounted integrated circuit. This device was created for use in broad-
band modems and is capable of theoretically converting 32 MHz of signal bandwidth in
its receiver chain and 64 MHz in its transmitter chain. Also present in this device is pro-
grammable gain, making it possible to employ range-dependent gain [3] used in radar
receivers to protect the dynamic range of its A/D converter.

The use of such devices does come with limitations. Since they are designed to operate in
frequency bands used by established radio communication standards, the relevant portions
of the RF spectrum contain much interference from other devices. They are also optimised
for cost, size and power consumption, acquiring only the performance levels required for
the telecommunications applications they serve.

Although bandwidths such as 32 MHz are also nowhere near the capability of wideband
radar, devices with such operating capabilities might be well suited to narrowband radar
applications only requiring less than 50 MHz bandwidth. The effect of narrower band-
width negatively impacting radar performance metrics such as range resolution and target
classification, can potentially be reduced by employing new radar schemes such as netted
radar.

7

Figure 2.1: Diagram of a netted radar example containing one transmitter node, two re-
ceiver nodes, and one transceiver node linked to a processing node.

Netted radar is simply an extension of the sensor network concept. It implies a radar sys-
tem composed of multiple transmitters and receivers called nodes. The transmitters and
receivers may or may not be co-located. These nodes work together to more effectively
observe the target area. The advantages of netted radar include:

• Receiver-only nodes are invisible to anti-radiation weapons and are less prone to
targeting by electronic countermeasures such as jamming.

• Certain spatial configurations can ease design constraints or favourably alter param-
eters on particular nodes.

• Receiver nodes can be placed far from the transmitters and other sources of radio
interference. This would provide protection from the transmitter and allow for more
flexible node system parameters.

• Multiple nodes introduce redundancy, which improves the total system’s survivabil-
ity and reliability.

• Multiple nodes are able to collect more total scattered radio energy, which can po-
tentially increase the system’s overall sensitivity.[4]

• There is a potential increase in the probability of detection of targets, since environ-
mental effects and interference, which would degrade the RCS of the target, may
not affect all receivers within the system at once. This is also true for a fluctuating
target RCS, since it is unlikely that all nodes will experience the same nulls in the
RCS simultaneously.[3]

8

• Multiple nodes in suitable spatial configurations can also counter stealth technolo-
gies, since attempts to disperse, mask or otherwise alter the RCS of the target, may
not affect all nodes in the system simultaneously.

• Multiple nodes separated over suitable distances give the system more perspectives
of a target. This provides more information on the target shape, which can improve
target classification and potentially reduce false alarms.[4]

An analysis of the radar equation adapted for netted radar [4] shows that under ideal
conditions, the SNR can improve by as much as the square of the number of nodes in
the system, if coherency can be preserved in collective receiver data processing. Thus, as
more radar nodes can be added to the network, system performance can begin to surpass
that of a non-networked radar system. This represents a possible means of regaining
useful radar performance while still using telecommunications components, by increasing
the number of nodes while preserving coherency.

2.2 Software-defined Radio

2.2.1 Concept

Software-defined radio is a term which describes the use of software and reconfigurable
digital hardware to perform radio transceiver component tasks previously performed by
analogue components and subsystems.

Consider a simplistic overview of a radio system. A signal to be transmitted would be
modulated, amplified and applied to an antenna. The radio wave would propagate through
the air, and a signal would be received at the receiving antenna. This received signal would
be subjected to amplification, filtering, and demodulation.

Figure 2.2: Basic diagram of a radio transmission and reception system.

9

Thus, within this radio system, there are some easily identifiable tasks which must be per-
formed such as modulation/demodulation, filtering, amplification and mixing. [5] There
may also be many stages to each of these tasks, but these too can be clearly identified and
described. A software-defined radio system would implement as many of these tasks (or
stages in these tasks) as possible using general computing software processing. SDR has
been employed in systems such as the Joint Tactical Radio System (JRTS), which takes
advantage of the adaptability and compatibility of SDR.[6]

2.2.2 Hardware for SDR

Components such as mixers, amplifiers and filters are also found in radar systems. There-
fore, an SDR approach may also be applied to radar designs. Due to the emergence
and continual evolution of high speed digital hardware, software-based solutions to radar
problems are becoming more viable.

The goal of SDR receiver design is to digitise received signals as close to the antenna as
possible. The limitations of ADC hardware must be balanced against the desired opera-
tional bandwidth of the receiver and signal fidelity. Similarly, DAC hardware is consid-
ered versus transmission bandwidth and output signal quality. Radars typically operate in
frequency bands beyond the compatibilities of cheaper ADC technology to sample the re-
ceived signals directly. This implies some degree of front-end hardware is required to mix
received signals to intermediate frequencies that the ADC can sample effectively.[6][2]
Section 2.1 of this chapter looked at how hardware components designed for telecommu-
nication may fulfil this requirement.

Once the signals are digitised, the component most commonly used to transfer the samples
to a computer system to be processed using software is the Field Programmable Gate
Array (FPGA). This device makes an excellent development tool. Manufacturers include
a wide variety of additional features and functionality besides the FPGA’s reconfigurable
logic structures. These include features such as A/D and D/A conversion and integrated
circuit elements which can perform data transfers via well-known protocols such as I2C
and Ethernet.

Their reprogrammable functionality and speed make FPGA’s ideal for SDR applications.
They are also useful to designers in that pre-designed cores, which perform various func-
tions such as FFT or CORDIC, can be acquired for free (in some cases) and incorporated
into other designs. This can greatly reduce the time needed for development of a new
application.

While perhaps not being truly pure components of the ideal software radio, in that they
are still hardware components and cannot simply be treated as another stage of software

10

development using the same design method, they do provide many of the advantages of
software which software-defined radios aim to exploit.[7] By integrating FPGA’s with
existing transceiver hardware, a reconfigurable element is added, which combines the
speed and parallelism of hardware with the flexibility of software.

2.3 SDR and Radar

The main advantage of SDR for a radar system is its reconfigurability, both on the fly and
during design and redesign. A SDR application can completely change its capabilities
and even its operational ability, simply by altering the defining software code. Implemen-
tation of dynamic radar functions such as staggered PRF, frequency agility and complex
modulation and code modulation schemes within a varying array of radar types, can be
approached as software problems.

The capabilities of hypothetical SDR based radar might include the ability to completely
change operating modes from surveillance, to tracking to passive operation. Multiple
tracking algorithms and filters could be tested and altered in real time. Treating such tasks
comparatively, as interchangeable blocks, the radar can potentially be subjected to an
evolutionary program, which can analyse, test, discard and interchange various function
types and combinations autonomously to find the most effective system.

The above is simply an example of the type of systems that could be implemented with
the ability to define a radar application in software and reconfigure its operation simply
be altering or replacing the software. The example is rather ambitious in terms of what is
possible, even with today’s processing methods and hardware configurations.

In a situation where the ability to change rapidly between operational functions and fea-
tures is not required and processing power is compromised, SDR becomes valuable for
prototyping, emulation, and educational demonstration. In this case the same hardware
can be used to implement multiple radar schemes, or to adapt quickly to new data, or test
new theories. This can greatly reduce the costs in terms of designing or purchasing new
hardware and in application implementation where software design is well understood.

Designing the logical system and actually implementing it, can potentially be complicated
unless the design process can be abstracted. In the case of abstraction however, certain
considerations of the underlying systems and technologies which are abstracted may be
difficult to resolve.[6]

For the purpose of quickly gaining the knowledge and ability required for developing ap-
plications for teaching, testing and emulation, it would be useful if an easy-to-use frame-
work for developing applications already existed. This thesis looks at using an exist-

11

ing Open Source SDR application building framework called GNU Radio to implement
radar applications. This thesis also examines an Open Source hardware transceiver de-
vice called the USRP, to see if it can be modified to implement pulsed radar applications.
The USRP is a computer peripheral device designed to implement applications developed
with GNU Radio, and it employs many of the telecommunications hardware components
discussed in previous sections.

2.4 Radar using the USRP and GNU Radio

The USRP and GNU Radio are tools created primarily for telecommunications orientated
SDR applications. The main work of this thesis is a study of the theoretical capabilities
of the two systems, modification of the system functionality and then implementation
of a basic test case. For comparison, this project was envisioned to provide a hardware
and software alternative to the radar nodes used in a prototype netted radar developed at
The Electrical Engineering Department at University College London (UCL).[8, 9] Their
system is comprised of three transceiver radar nodes which are connected via twisted pair
cables. A 200 MHz distributed clock synchronises the nodes, which operate at 2.4 GHz
with 50 MHz bandwidth. A low frequency clock pulse is also distributed to the nodes
and is synchronised with the radar system’s PRF, which is variable from 1-10 kHz. The
system can transmit various pulse waveforms with adjustable pulse durations of 10 ns to
20 ns.

Thus, in analysing the features of the USRP and GNU Radio, they will be compared to the
capabilities of the netted radar nodes described above. This thesis expands on the paper
submitted to the IET Radar 2007 conference.[10] This project aims to eventually make a
contribution to the development of netted radar theory through facilitating the creation of
netted radar prototypes. A USRP and GNU Radio implemented netted radar application
is envisaged to be comprised of multiple USRP transmitters and receivers connected to a
central data processing point. The system would take advantage of several features of the
USRP which will become evident in Chapter 3.

To have modified the USRP and GNU Radio successfully for radar applications, the fol-
lowing functions and abilities were defined as being necessary:

• Definition of a classical radar waveform, and flexibility in waveforms that can be
implemented.

• Accurately produce a radar waveform.

• Provide precise PRF definition and control.

12

• Accurately capture a received waveform with control over receive windows and the
starting time of receiver digitisation.

• Provide precise timing control relative to PRF in order to resolve phase and range
information.

• Provide means of reliably archiving and displaying received data.

• Provide means of accurately processing received data.

In order to test the basic functional elements of the modifications made, a small-scale
monostatic sonar application was implemented using the USRP and GNU Radio. This
sonar would employ small, cheap ultrasonic transducers as its transceiver antennas, and
very minimal amplification and filtering circuitry. By minimising the amount of circuitry
required, more time could be spent focusing on the functional changes that needed to be
implemented within the USRP and GNU Radio. The ultrasonic transducers that were
used are also fairly robust. A sonar with a low operating frequency would also be less
sensitive to front-end circuitry design considerations such as noise, attenuation and phase
shifting.

13

Chapter 3

GNU Radio and USRP

This chapter provides more detailed information about the GNU Radio software frame-
work. This will provide insight into how the sonar prototype outlined later in this dis-
sertation was defined and implemented. The chapter then goes on to take a closer look
at the USRP. It is useful to understand how the USRP achieves flexibility in its applica-
tions by looking at the specific hardware components on the USRP and how the FPGA is
configured. The USRP’s functionality and operation will be described. This chapter will
also show the limitations of the default USRP configuration and what functionality would
need to be altered to make radar and sonar applications possible.

The USRP is designed to work with the GNU Radio framework. How GNU Radio works
and interacts with the USRP will also be covered. This will provide insight into how using
the USRP and GNU Radio to emulate a radar application would affect the performance
and what the system restrictions would be.

3.1 GNU Radio

3.1.1 Overview

GNU Radio is an open source project which allows amateur radio enthusiasts to gain
experience using software-defined radio. It is a software framework (developed in Linux)
which forms a basis for creating radio applications and designing their functionality.[11]

To build an application with GNU Radio, a user combines various data processing el-
ements. These processing elements are divided into signal source blocks, signal sink
blocks, and signal processing blocks.

14

Figure 3.1: Diagram showing how a FM radio application is logically defined using the
GNU Radio framework.

3.1.2 Signal Sources

Signal source blocks are the origin of user defined signals. These can be digitally defined
and created signals, a data file, or signals gathered from some external source, such as a
hardware element (e.g. a microphone). By abstracting any signal input as simply a signal
source, users can simplify the design process.

3.1.3 Signal Sinks

Signal sinks consume signals, usually for the purpose of output. Objects abstracted to
signal sinks include graphing modules, binary files, or even sound-cards. Devices such as
the USRP are also abstracted as signal sinks from within the GNU Radio flow graph.

GNU Radio makes use of the Wx widget libraries for Python. Using these libraries allows
users to make use of Graphical User Interfaces (GUI) to make using the resultant GNU
Radio applications easier. Combined with the graphing libraries, these GUI interfaces
can be used to plot data. They are also useful for educational purposes, as they provide
an easy way to demonstrate RF technology and concepts.

15

The GUI code is treated as a signal sink within GNU Radio, with processed data streams
being logically linked to various output blocks from within the graph model. Since many
of these GUI contain controls as well, they can also be used to exert active control over
signal processing blocks.

3.1.4 Signal Processing Blocks

Signal processing blocks work on the data stream between signal source and signal sink.
Among the many existing processing blocks, GNU Radio includes:

• filters

• amplifiers

• demodulators/modulators

• FFT

• decoders/encoders.

The data processing elements described above are defined using C++. Users are able
to mimic and import base classes to write unique custom processing blocks. All the
framework code is viewable, so even the particular algorithms being employed can be
examined.

While the processing elements are defined in C++, a user will actually build the desired
application in Python. All the high level elements are defined, joined and coordinated
with the Python scripting language.

3.1.5 Developing with GNU Radio

Through the GNU Radio mailing list, users can receive support for developing their own
applications and understanding the details of the existing system.

GNU Radio itself can be obtained as either a compressed file, or via an online subversion
repository as new versions are released and development continues. The compressed file
contains GNU Radio library files and example files.

Open Source development keeps driving the development of new add-ons. Apart from
existing processing blocks, users can make use of the existing files as a template for
developing more specific functionality such as custom waveform generators or filters.
Add-on code files are compiled and installed into the GNU Radio install tree. From there
they become available to applications as signal sources, sinks, or processing blocks.

16

3.1.6 GNU Radio and USRP

In order to use GNU Radio for practical radio applications, a suitable hardware interface
to RF transmitting and receiving is required. One of the solutions to this requirement
is the Universal Software Radio Peripheral (USRP).[12] If one considered RF systems
in terms of the Open Systems Interconnection Basic Reference Model (OSI) the USRP
would perform the functions of the hardware and data link layers.

Using the USRP’s flexible functionality, applications such as the following have been
achieved by others using GNU Radio:

• FM Radio transmitter and receiver

• TV receiver

• GMSK transmitter and receiver

• GPS tracker.

This wide variety of applications was achieved using the USRP (with correct antennas
and the necessary additional front-ends) and GNU Radio. Similarly the sonar application
developed for this thesis was implemented using the USRP and GNU Radio.

3.2 The Universal Software Radio Peripheral

3.2.1 Overview

This section will focus on the Universal Software Radio Peripheral (USRP), taking a sim-
plified look at how it works. Its purpose is to provide a physical layer solution to a wide
range of primarily telecommunications applications that require the ability to transmit or
receive radio frequency signals.

The GNU Radio framework replicates both the application and a data layers in terms of
the OSI Model. The concept this conveys is the design independence of each layer. The
USRP and GNU Radio are, in fact, designed to be able to operate independently of each
other. It is primarily the requirements of their interfaces that must be satisfied. This allows
designers to freely design specific functionality within only GNU Radio, or only within
the USRP, taking care simply to make sure that the interface conventions are maintained.

On its own, the USRP is simply another USB device. It is possible to design and im-
plement interfaces to it via programs or frameworks other than GNU Radio. This can be

17

more complicated however, as the primary focus of the GNU Radio and USRP developers
is for these two projects to integrate with each other.

It should be noted that the USRP was designed primarily for telecommunications appli-
cations. The underlying implementation of its functionality is not suited to time critical,
and time managed systems such as radar or sonar.

3.2.2 Construction

Figure 3.2: Picture of the Revision 3 Universal Software Radio Peripheral.[13]

Figure 3.3: Basic diagram showing a system level representation of the USRP.[13]

18

The USRP connects to a host computer via USB 2.0. The USB protocol is managed by
the Cypress FX2 chip. This IC provides a simple means for a hardware developer to add
USB connectivity to their hardware. Upon plugging in the USB connection and powering
up the USRP, the host computer will flash firmware onto the FX2 chip. This will initiate
setup communications with the host computer to determine the link type, and what link
settings the connected device will require. For the USRP, the USB link is set up for USB
2.0 transfer rates. The maximum transfer rate the USB link can nominally support is 32
Mb/second.

On the USRP, digital signal processing (predominantly sample rate changing) is per-
formed within the Altera Cyclone FPGA [14]. Specifics about the FPGA’s role on the
USRP and its configuration are explained later in this chapter.

The signal paths are completed by 4 ADCs and DACs which are integrated on the two
AD9860 chips [15] physically located beside the FPGA.

In the transmitting path, these chips contain a Hilbert filter, an interpolator (maximum
factor of 4), and a digital quadrature mixer. The AD9860 performs 14 bit D/A conversion
at 128 M samples/sec and has a programmable gain amplifier on the output.

Figure 3.4: Extract from the AD9860 datasheet showing a functional depiction of the
AD9860 transmit chain.[15]

In the receiving path, the AD9860s have buffers and programmable gain amplifiers on
the inputs. The onboard ADC converts to 12 bit samples at 64 M samples/sec. It also
contains a Hilbert filter which can provide some degree of image rejection. The Hilbert
filter is deactivated in the standard USRP configuration. The AD9860 can work with both
real and complex signals/sample streams and is capable of multiplexing its inputs and
outputs.

19

Figure 3.5: Extract from the AD9860 datasheet showing a functional depiction of the
AD9860 receive chain.[15]

These chips provide the USRP with two complex transmit channels and two complex
receive channels. They provide a theoretical unambiguous transmitter bandwidth of 64
MHz and a receiver bandwidth of 32 MHz according to the Nyquist theorem. Their
clocks are derived from the USRP’s 64 MHz crystal oscillator. The AD9860s have their
own clock doubling circuitry to generate the clock for the DAC. Therefore, if the USRP’s
clock circuitry is changed, the AD9860 clock rates will change as well.[2]

To access the maximum possible USB 2.0 transfer rate, all data transfer must be done in
packet bursts. The USB 2.0 requires that the host computer and the connecting device,
package all data into 512 byte packets before burst transfer occurs. A data set is not
transferred until there is at least 512 bytes of data to send.

The USRP consumes and produces 16 bit complex samples. Thus, 256 samples would
constitute 1 packet. The USRP also interleaves I and Q samples into one data stream.
Thus, within any single packet comprised of 256 samples, there would be 128 real samples
and 128 imaginary samples.

Add-ons and Additional Features

To receive and transmit at frequencies above the AD9860 limitations, the USRP has ports
for add-on daughterboards. These daughterboards contain any additional analogue cir-
cuitry needed to mix desired signals down to frequencies the ADCs can sample without
aliasing, or up to frequencies beyond what the DACs can produce. Some of the daughter-
boards available for the USRP are described in later sections.

In newer revisions of the USRP, the designers have accommodated connection pads on the
printed circuit board (PCB). Most notable is the ability to solder on a SMA connection

20

to replace the built-in clock circuitry. This allows an external clock signal to be injected
into the board, or for the board’s own clock to be shared. This adds functionality which
lets multiple USRP boards run off a signal clock allowing for a degree of phase coherence
among multiple USRPs working together.

3.2.3 Specifications Summary

The basic setup of the USRP is as follows:

• 4 DACs, 14 bit, 128 MSamples/sec, interpolators and quadrature mixers

• 4 ADCs, 12bit, 64 MSamples/sec.

• FPGA based Cascaded Integrator Comb (CIC) filters to perform interpolation and
decimation.

• Numerically Controlled Oscillator, based on an implementation of the CORDIC
algorithm.

• Halfband receiver filter (decimation factor 2).

The USRP FPGA transfers 16 bit complex samples at variable rates. The USB link sup-
ports up to 32 Mb/sec transfers. Thus, using 16 bit samples, the link supports 8 MHz
bandwidth. Sample sizes at the USB link can be halved to 8 bit samples, allowing the link
effectively to support 16 MHz bandwidth.[16]

The FPGA is clocked at 64 MHz. The Cypress FX2 is clocked at 40 MHz. The AD9860
clock is derived from the same crystal oscillator and provides the FPGA clock (hence the
64 MSamples/sec sample rate). These chips contain their own internal clock doubling
circuitry that provides a 128 MHz clock for the transmit chain. Certain daughterboards
such as the RFX and TVRX daughterboards contain their own crystal oscillators.

3.3 GNU Radio Interface

Apart from the tools and methods for creating applications in Python, GNU Radio also has
various software interfaces to the USRP. The various hardware parameters are adjustable
via registers.

The bulk of adjustable parameters are within the FPGA. The process of changing regis-
ters is, as yet, not in sync with the data rates within the FPGA. Thus, parameters which
affect the transmission or reception of samples cannot be changed in real time. Before

21

start up, or when the application is paused, are the best times to change settings. Newer
versions of FPGA builds and GNU Radio are being revised in order to support inband sig-
nalling, which would allow register updates synchronised with sample transfers. Settings
which can be changed include decimation and interpolation rates, sample sizes, number
of channels and channel multiplexing.

The FPGA uses serial i2c to communicate settings to connected daughterboards. These
interfaces are also adjustable from GNU Radio. These allow adjustment of gain values
and transmit/receive switching for daughterboards which support that functionality. The
USRP can also perform certain automatic functions with particular daughterboards via
these interfaces, such as automatic gain control in the TVRX daughterboard.

3.4 Transmit Chain

The digital signal processing performed by the USRP can be divided into two parts: the
transmit chain and the receive chain. This section will take a closer look at the transmit
chain.

3.4.1 FPGA

Beginning from the USB connection point, sample data received from the host computer
is firstly de-interleaved. Depending on the daughterboard being used and the user settings,
this data stream is divided into channels and then into I and Q streams. These samples
are buffered in order to compensate for the differing clock domains of the FPGA and the
USB controller.

The separated channel data streams are then piped to Tx chain modules. There is one Tx
chain module per complex channel. Each of these modules contains a Cascaded Integrator
Comb (CIC) interpolator.[17] The interpolation value set in the FPGA is extrapolated by
the GNU Radio software, based on the sample rate the user requests.

The AD9860 chips are configured by default to perform interpolation by a factor of 4 on
the transmit sample stream. The FPGA CIC filter is configured to interpolate by 1/4 of
the user requested rate. The FPGA register that stores this resultant value is 7 bits wide,
giving a maximum interpolation value in the FPGA of 128.

This combined with the interpolation rate of 4 in the AD9860, gives a maximum possible
interpolation rate of 512 that the user can request from a GNU Radio application script.
This also means that the user can only select an interpolation rate that is divisible by 4.

22

The rate is chosen such that the DACs are always provided with samples at exactly 32
Msamples/second for each channel.

From the Tx chain module, the interpolated sample streams are directed to a user con-
trolled multiplexer. The user can select between 4 DACs (2 per AD9860 chip) to which to
route the streams. Each DAC is committed to one sample stream. This means that I and
Q sample streams will each be handled by a separate DAC. Thus, the USRP can manage
2 independent complex channels, or 4 real channels.

tx sample
FIFO

16 bit
IQ samples

CIC Interpolater
(interp n)

CIC Interpolater
(interp n)

Daughterboard
select

TX demultiplexer

de-
interleve

Altera CYCLONE FPGA

16 bit IQ samples

16 bit IQ samples 16 bit IQ samples

16 bit IQ samples

Figure 3.6: Diagram showing a system level view of the transmit chain within the USRP
FPGA.

3.4.2 AD9860

From the FPGA the sample stream is sent to the AD9860. These DSP chips contain a
quadrature modulator, an interpolator, and a programmable gain amplifier (PGA) which
provides 20 dB of gain. The DAC runs at 128 Msamples/second.

3.4.3 Daughterboards

The daughterboards are basic RF front-ends specifically designed to expand the USRP’s
capabilities. They include various functions depending on the frequency band to be
accessed and connection points for antennas. The transmitter daughterboards currently
available include:

Basic Tx: This is the basic board used for testing the USRP. It contains no RF hardware
besides an output transformer which simply blocks DC signals. This board does however,
have numerous debug output pins, making it very useful for debugging purposes. A user
can route any internal FPGA signal to one of these 16 output pins in order to debug custom
FPGA builds and modifications.

23

LFRX: These are daughterboards specifically made to operate at low frequencies right
down to DC.

RFX: This series of daughterboards contains onboard oscillators and mixers, additional
gain and custom controls such as transmit-receive switching. These boards offer access
to varying frequency bands right up to 2.9 GHz provided by the RFX2400. These boards
usually span transmitter and receiver slots on the USRP forming a transceiver unit. Their
layouts allow for modifications such as output ports for access to the daughterboard’s
independent clock.

3.5 The Receive Chain

3.5.1 Daughterboards

The following receiver daughterboards are available for the USRP:

Basic Rx: Like the Basic Tx daughterboard, it contains no special RF components or
functionality. It serves the same debugging purpose as the transmitter variant and has 16
debug IO pins that can be used to monitor selected signals within the FPGA, or to inject
a digital signal into it.

RFX: As mentioned in the previous section, these boards span both transmit and receive
slots on the USRP. Thus, they have transceiver functionality. This allows for reception of
various frequency bands depending on which model daughterboard is used. Among their
features is onboard I-Q demodulation, IF down-conversion and gain control.

DBSRX: This receiver board is made specifically to receive signals between 2.2 and 2.4
GHz. As with the RFX range, it has I-Q demodulation, IF down-conversion and gain
control.

TVRX: This is an older model daughterboard which is still supported. It receives signals
between 50 and 800 MHz. It supports up to 6 MHz bandwidth. It features IF down-
conversion, I-Q demodulation and automatic gain control. It is ideal for receiving FM
radio stations and has enough bandwidth to capture a TV channel image signal along
with its audio component.

3.5.2 AD9860

The USRP receive chain begins at the AD9860 once more. On the receive side these
chips contain a PGA which can provide 20 dB gain and a Hilbert filter, which is disabled

24

in the standard configuration as it lowers the maximum sample rate. The ADC runs at
64 Msamples/sec and delivers 12 bit samples to the FPGA. There is one ADC dedicated
to each channel, though the user can choose whether they are connected or not, via the
multiplexer within the FPGA. The channels in this case are representative of either 4 real
channels, or 2 complex channels.

3.5.3 FPGA

Once the interleaved samples reach the FPGA, the DC offset introduced by the ADC
is removed. The samples are also adjusted to signed 16 bit sample streams. The logi-
cal module within the FPGA which performs this alteration is known as the ADC-offset
module.

The sampled signal undergoes digital down-conversion (DDC) in the Rx chain module.[18]
Signal mixing is done using a numerically controlled oscillator (NCO). This NCO module
is implemented using a CORDIC algorithm to calculate and generate the local oscillator
signals. The mixed signal is then applied to a CIC decimator to reduce the sample rate.
The limiting factor is the eventual bandwidth that the USB link can support. Apart from
the user specified decimation rate, the standard USRP FPGA configuration decimates by
at least 2 by default, though this can be deactivated if the FPGA code is recompiled.

Figure 3.7: Diagram of the digital down converter implemented in the FPGA.

25

The reduced sample rate is then sent to the Rx buffer module. Here the samples are
interleaved and packed into a buffer awaiting transfer to the host computer. In this module,
it is also possible to reduce the sample size. By reducing the samples from 16 bits to 8
bits, the effective bandwidth that the USB link can support is increased. This increase
comes at the cost of dynamic range.

RX sample
FIFO

16 bit
IQ samples

DDC (decim m)
(uses CIC Decimator)

DDC (decim m)
(uses CIC Decimator)

RX
Mulitplexer

ADC
DC offset

correction

12 bit ADC

12 bit ADC

inter leve

Altera CYCLONE FPGA
AD9862

16 bit IQ samples

16 bit IQ samples

Input Channel A

Input Channel B

Figure 3.8: Diagram showing a system level view of the receive chain within the USRP
FPGA including the AD9860 chips.

3.6 Working with the FPGA

The USRP’s FPGA is programmed when a new application is launched from the host
computer. Programs are not retained when the device is switched off. When connecting
the USRP power supply and connecting the USB link, the Cypress chip is configured via
a firmware download from the host computer. Drivers are available within Linux that
recognise the Cypress chip and perform the firmware writing functions. This process
initialises the USB link and configures the transfer speeds and data packet sizes.

Once this is done, the FPGA can be programmed. The FPGA is programmed with a
pre-compiled binary file with the extension .rbf. When a GNU Radio application is pro-
grammed, the user can select the binary file they wish to program the FPGA with. Only
when the application is executed, will the FPGA be programmed. Once it has been fully
programmed, the application will begin and transceiver data will begin to flow.

The FPGA binary files used with the USRP are programmed in Altera’s Quartus Software
Program. The HDL language used is Verilog. All the standard code used by the USRP
FPGA, in addition to the basic Quartus project files used to compile it, are bundled with
the GNU Radio package.

Using Quartus, the code can be viewed and modified as a user wishes. Modified Verilog
code with custom functionality can then be compiled in Quartus to produce a custom
FPGA binary file for the USRP. This file is all that is needed to program the FPGA. Once

26

copied to the correct system directory, the GNU Radio user can select this modified binary
file to program the USRP FPGA. In this way, custom FPGA functionality is easily shared
among GNU Radio and USRP users for use in their own applications.

3.7 Conclusion

GNU Radio includes many useful features for building SDR applications. The code li-
braries are easily viewable and can be added to by following the documented instructions.
Access to threading control however is very difficult. Sample timing within GNU Radio
is controlled by one thread managing program, which cannot be easily modified.

The USRP is a very flexible tool for implementing RF applications. It is however, pri-
marily designed for telecommunications systems. It lacks strict management of timing
samples within the FPGA. The ability to manage and record the timing of events within
the FPGA is vital for implementing radar and sonar applications. Other disadvantages in
the USRP include:

• Registers not written in sync with sample rates - This makes implementing dynamic
changes to signal outputs in real time difficult

• Certain daughterboards lack clock outputs - in certain daughterboards such as the
TVRX, access to the onboard oscillator can be difficult, which needs to be overcome
if phase locking between the transmitter and receiver is to be achieved.

• FPGA utilisation is high - in the standard USRP FPGA build, when 2 complex
receiver channels and 2 complex transmitter channels are implemented, adding ad-
ditional processing within the FPGA becomes virtually impossible due to lack of
space.

The later chapters will look at how the components of the USRP and their layout affect
the development of USRP based radar and sonar applications. The potential for simple
modifications and the type of applications that might be achieved will also be discussed.

27

Chapter 4

Development of a Monostatic Sonar
Application

This chapter will cover the details of the monostatic air sonar that was developed. The
supporting GNU Radio program created for this application, as well as the FPGA level
modifications that needed to be performed, will also be explained. This chapter will also
describe the supporting front-end hardware that was designed and built for the sonar,
including the various implementations that were attempted. The capabilities and limita-
tions of the system produced will also be presented. The output scripts and code files are
available on the attached compact disk, the directory structure of which can be viewed in
Appendix C.

4.1 Test System Goals and Requirements

To emulate a radar node using the USRP, a small scale sonar application had to be de-
veloped. This same system had to be adjustable to serve as a back-end to a future radar
application by modifying various parameters.

The system had to make use of 40 kHz ultrasonic transducers [19]. These devices and
the accompanying amplification and filtering circuitry had to be able to emit linear chirp
pulses with a centre frequency of 40 kHz and a bandwidth of at least 2 kHz (determined
by the transducer characteristics). The only other hardware items to be used were the
USRP and a desktop computer using a Linux operating system.

The USRP was utilised with the Basic daughterboard pair. Some modifications had to be
made to the USRP FPGA in order to make pulsed sonar and any eventual radar applica-
tions using this device possible. These modifications are described fully in the sections
that follow later in this chapter.

28

A GNU Radio program had to be created utilising the standard libraries and utility blocks
provided with the standard GNU Radio release. This program is described in section 4.3.

4.2 System Specifications

Table 4.1: USRP-based sonar application parameters.
Centre frequency 40 kHz (Adjustable)

Bandwidth 2 kHz (Adjustable up to 32MHz)
τ 1 ms or 500 µs

PRI 10 ms (Adjustable up to 67.108 sec).
Delay before initiating data capture. 0 sec (Adjustable up to 67.108 seconds)

Receive Window size 5 ms (Adjustable up to 67.108 seconds)
FPGA based waveform sample RAM 2 kB

No. of samples that can be stored (16 bit complex
samples)

256 or 512

Selectable hardware interpolation rates 4 - 512 (Multiples of 4)
Selectable hardware decimation rates 4 - 256

Maximum USB link transfer rate 32 MB/sec
USB link bandwidth capacity (16 bit complex

samples)
8 MHz

Selectable sample sizes 8bits or 16bits
Samples gathered per test 128000 (Completely adjustable)

Hardware gain range 0 - 20 dB

The expected range resolution of the resultant system was calculated as 8.5 cm using
equation 4.1.

Range Resolution = c
2xB (4.1)

Where: c = 340 m/s (speed of sound in air)
B = pulse bandwidth

For the purpose of testing this application, a pulse duration of 1 millisecond was predom-
inantly used to transmit more energy. The Pulse Repetition Interval (PRI) largely used for
testing this application was 10 ms. The unambiguous range was calculated as 1.7 m using
equation 4.2.

Unambiguous range =
c×PRI

2
(4.2)

Where: c = speed of sound in air.

29

The dead range for the system was calculated as 17 cm using equation 4.3.

Dead range =
cτ

2
(4.3)

Where: τ = Pulse Duration

4.3 The GNU Radio Control Program

The sonar application program was developed as a Python language script and uses only
the various processing, sink and source blocks available within the standard installation
of GNU Radio 3.01. The script can be viewed in Appendix A and its development is
described in the following sections.

4.3.1 GNU Radio Transmitter Overview

Waveform Definition

The application creates a baseband linear chirp in software and generates a real sample
set. Using GNU Radio processing blocks, a complex sample set is then generated. The
waveform parameters are modified as follows:

The frequency range of the chirp is determined, e.g. 35 - 45 kHz

Lower frequency bound = 35 kHz × mod_value (4.4)

Upper frequency bound = 45 kHz × mod_value (4.5)

Where: mod_value = 0.000032.

Mod_value is a block input parameter which produces a 1 Hz sine wave from the fre-
quency modulator processing block provided with GNU Radio. An array of changing
frequency values must be produced in order for a sample set representing the chirp to be
generated. The step size of frequency values in the array is calculated using equation 4.6.

Step size =
u− l

s
(4.6)

30

Where: u = upper frequency bound
l = lower frequency bound
s = the number of samples to generate (which impacts on the pulse length).

Entering the frequency bound and step size values into the definition for the frequency
array will produce the required complex waveform from the modulator block output.

Pulse Length Definition

The number of samples created will affect the desired pulse length. This is determined
by the user via adjustable registers. The necessary register values to facilitate the user’s
requested parameters are calculated and resolved by the program according to the USRP
DAC rate. The DACs are hardwired to process samples at twice the FPGA clock fre-
quency. The USRP onboard oscillator produces a 64 MHz clock. Therefore, the DAC
processing rate is 128 M samples/sec.

This rate must be maintained to avoid sample under-runs, which may produce unwanted
distortions in the transmitted signal. The FPGA Tx chain allows interpolation of a sample
stream up to a factor of 512 (which is determined jointly by the default factor 4 for inter-
polation done by the AD9860 chips). Thus, the minimum sample rate to the Tx chains is
calculated as 250 ksamples/sec using equation 4.7.

Minimum sample rate =
DAC rate

I
(4.7)

Where: DAC rate = DAC sample conversion rate of 128 M samples/sec.
I = the maximum interpolation rate of 512.

The minimum rate of 256 ksamples/sec translates to 256 samples/ms. In other words,
256 samples are required for a signal duration of 1 millisecond. The test application uses
an interpolation rate of 500 to produce 256 complex samples (256 I and 256 Q samples)
which represent a 1 millisecond long chirp pulse.

Note that the interpolation rate set in the GNU Radio Python script is actually a combi-
nation of 2 interpolation rate values on the USRP. The AD9860 chips are set by default
to interpolate at a value of 4. Therefore, the user must select an interpolation rate that is
divisible by 4. The relation between the interpolation rate and the pulse length is defined
as follows:

Pulse length =
N

32e6
interp

31

Where: Pulse length is in seconds
N = the number of complex samples
interp = is the selected interpolation rate (any multiple of 4 between 4 and
512)

For example, a sample set of 256 complex samples and an interpolation rate of 200 would
produce a pulse length of 1.6 milliseconds. This sample rate of 256 000 samples/sec is
well above the 80 000 samples/sec minimum determined by the Nyquist Rate applied to
the 40 KHz centre frequency of the chirp pulse.

But why the combination of 256 000 samples /sec and an interpolation rate of 500 to pro-
duce a 1 ms pulse? The reason is the operation of the USB 2.0 standard. For the proposed
sonar application, it is convenient to produce 256 real and 256 imaginary samples which
together, equate to 2 USB 2.0 burst packets.

If the sample set size did not total one USB 2.0 packet of data, then there would be samples
that would be left in the transfer buffers, which would affect the size of the transmitted
pulse and the operation of the system in general. Thus, if a non-matching sample set is
produced, it has to be padded to ensure that the entire set is transferred.

In the diagram below, CASE 1 shows a successful sample set transfer. CASE 2 shows
what happens when the size of the sample set is not matched to the USB 2.0 transfer
packet size. Part of the second packet (darker shade) is left at the sender, waiting for extra
data to fill the packet size.

Figure 4.1: Basic diagram showing the interaction between the USB 2.0 standard and the
GNU Radio sample sets.

It is possible to implement padding and obtain greater flexibility in usable sample set sizes.
For the purpose of this test application however, the simpler more limited functionality is
sufficient.

32

Once the sample set is ready, it is transferred to the USRP FPGA and stored in a 2 kB
RAM module implemented in the FPGA’s onboard memory. The RAM module holds
the complex samples in their interleaved state. From here, the same signal can be sent
continuously at periodic intervals determined by the Pulse Repetition Frequency (PRF).

Pulse Repetition Frequency Definition

Currently, the Pulse Repetition Interval (PRI) of the sonar system is 10 milliseconds. The
PRI is simply the reciprocal of the PRF. Using registers to set the PRI is limited by the
size of the FPGA registers, which is 32 bits. The maximum PRI is therefore 67.108863
seconds. The minimum is simply governed by the pulse length, and metrics such as range
and Doppler ambiguity. [3]

Gain Definition

The signal gain can be adjusted both in the software and the hardware domain with the de-
fault system. In software, users have access to signal gain via adjusting sample amplitudes
with multiplication blocks. These provide a simple way to adjust the signal amplitude.
This is determined before the sample set is generated however, and as such the sample
amplitude value persists once the waveform is created and it cannot be altered without
generating a new sample set. Analogue gain is achieved via the programmable gain am-
plifier (PGA) located in the AD9860 DSP chips. These allow amplification of the signal
output from the DAC by up to 20 dB.[15]

In summary, the transmitter settings the user can adjust in the sonar application are:

• The waveform (i.e. waveform type, bandwidth and centre frequency).

• The pulse repetition rate.

• The digital signal amplitude.

• The programmable gain amplifier (AD9860).

33

Figure 4.2: Diagram showing the sonar application setup and transmit process.

4.3.2 GNU Radio Receiver Overview

Receive Window Definition

The receive window is synonymous with the look time of the sonar. The user defines a
particular time for the sonar to receive data following the PRI pulse. The GNU Radio
program then resolves this requested value into a counter setting, which controls the win-
dow by regulating the number of samples that cross the USB link during reception. These
received sample windows are relative to the PRI trigger pulse.

Digitisation Delay Definition

The user is able to define a digitisation delay period after the PRI pulse. This allows the
receiver to be blinded for a particular near-field range, which is particularly useful for
radar. This delay in combination with controllable hardware front-ends such as the FLEX
series daughterboards, protects the receiver from the high energy of the transmitting pulse,
and prevents the ADCs from saturating. This also allows the signal processing to be
focused on particular ranges. This can ease processing by reducing the resultant overall
data rate.

34

Like the receiver window parameter, the digitisation delay is set as a finite time value by
the user. The GNU Radio program resolves this time into a number of samples to discard
before activating transfer over the USB link.

The reason for this implementation is that the FPGA cannot control the activation or deac-
tivation of the ADCs within the AD9860 chips. Thus, the sample flow must be regulated
within the USRP FPGA. With other daughterboards such as the RFX series, it becomes
possible to control the signal flow before the ADCs, which would protect them from satu-
rating. This functionality is not available with the Basic Rx board used for this particular
project. It is not necessary however, due to the robustness of the front-end hardware being
used, and the relatively low power signals being transmitted and received.

Data Capture and Processing

The current implementation of this sonar application uses non-real time data processing.
The GNU Radio script is configured to gather received complex samples into a binary file
for processing in Matlab.

Upon launching the program, a graphical plotting window is generated which shows re-
ceived signal activity. In addition, console outputs are used to give debug messages to
show the stage of operation the program is executing. Among the real time plotting op-
tions for viewing the raw received data are an oscilloscope type plot indicating signal
levels, and an FFT plot to show the frequency content of the received data.

The received data is finally processed in Matlab. The processing done includes match
filtering using a waveform sample set generated by GNU Radio, correlated with the re-
ceived data. The tests that were performed and their results will be presented in the next
chapter.

35

Figure 4.3: Diagram showing the sonar receiver process.

4.4 FPGA / Verilog Modifications

As with the GNU Radio source files, the Hardware Description Language (HDL) files
for the USRP FPGA are also Open Source. This allows designers to examine the inner
workings of the FPGA and to make modifications. Every time a GNU Radio application
which uses the USRP is launched, the GNU Radio subsystem will program the FPGA
using a pre-compiled binary file. Either the default binary file is loaded, or another custom
file of the user’s choosing (set within the GNU Radio program).

Custom binary files are compiled from Verilog source files in Altera’s Quartus program[20].
The default Quartus project directories used by the USRP are packaged along with the
GNU Radio source files. Developers can use this as a basis for modifications. The cus-
tom FPGA binary files used for this thesis were developed by using the free web edition
of Quartus. They can be viewed on the attached compact disk, the file directory of which
can be seen in Appendix C.

The following sections will fully describe the modifications that had to be made to the
default USRP FPGA configuration. The changes will be explained in terms of the transmit
functionality and the receive functionality.

36

4.4.1 FPGA Transmit Chain Modifications

The PRF is generated by a counter which counts down from a register value determined
by the user. On the positive edge of the PRF signal, the transmission of a chirp pulse
begins. The PRI is determined in clock cycles.

The Tx buffer module has also been modified. It was decided to partially retain this
module because it contains the basis for bridging the FPGA and Cypress FX2 chip clock
domains. Where normally this module would both adjust the samples rates and do de-
interleaving, it is now just used to buffer and transfer the samples that must be transmitted.
The buffering is done in a First-in-First-Out (FIFO) queue, which does consume memory
space that might be otherwise utilised. The de-interleaving process has been moved to the
RAM control module, which will be explained below.

The RAM control module contains the counters governing the PRF, the receiver window,
the digitisation delay, and the RAM module access. This control module also handles de-
interleaving data from the USB link. Because this system only implements one complex
channel, the de-interleaving process only splits the I-Q sample streams to their respective
Tx chain modules.

Samples forming the pulse to be transmitted are stored in a RAM module implemented
in the FPGA. The RAM module is larger than the size required to store the transmit
waveform. This is to make it functional for longer pulse lengths which would require
more signal samples. From the waveform stored in the RAM, the same pulse can be
triggered continuously. Ideally the user should be able to control the number of samples
that forms the signal to be transmitted, thereby controlling the length of the transmitted
waveform.

As the sample stream leaves the RAM module, it is sent to the Tx chain module. A
cascaded integrator comb filter is used to interpolate the sample stream. The rate that
samples enter this stage is controlled by an interpolation strobe generated in another part
of the FPGA. This rate is calculated by the GNU Radio software using the interpolation
rate that the user requests. The samples are then sent to the AD9860 DSP chip. The
Verilog code for the Signal Control Module, depicted in the diagram below, can be viewed
in Appendix B.

37

 TX Chain Module

CIC
interpolator

CIC
interpolator

TX Buffer
Module

TX
4k FIFO

From FX2

To DACRAM module

PRI counter
(set via register)

Trigger transmit

 RAM
Module

 Signal Control Module
32e6/interp samples/sec

32e6 samples/sec

32 bit user controlled register

32e6/interp samples/sec 32e6 samples/sec

16 bit samples

interleaved

Figure 4.4: Diagram showing a system level view of the modified FPGA transmit func-
tionality.

4.4.2 FPGA Receive Chain Modifications

In the FPGA, most of the receiver modules are left unchanged. It was decided that the
best place to control the data flow was just before the USB buffer stage. The ADC offset
correction and Rx chain modules are left to run continuously. The NCO in the Rx module
is disabled as the signal is being received and processed at baseband.

Because the ADC sample rate cannot be dynamically controlled, the full 64 MHz of data
is being collected, even though only 2 kHz of bandwidth is required. The CIC decimators
are set to reduce the sample rate to 256 ksamples/second. From here, the sample stream
is connected to the USB buffer module.

In the buffer module control signals are gathered from the transmitting RAM module.
When the PRF signal triggers transmission, then the delay counter activates. The Rx
window counter initiates once this counter expires. Upon the PRF signal occurring, full
amplitude scale samples are inserted into the receiver data stream travelling across the
USB link. The beginning of these marker samples indicates when the PRI signal occurred,
relative to the receiver data that is about to arrive.

Once the delay counter expires and the Rx window counter begins, the receiver data
stream is re-linked to the ADC output. The samples that arrive from the ADC after the
decimation stage are counted by the Rx window counter.

Once the number of received samples equals that of the user determined Rx window size,
then the ADC data link to the USB buffer module is interrupted. Samples from the ADCs
are no longer routed to the host computer after the Rx window counter expires. The
receiver process is repeated at the next PRI signal.

38

CIC decimator

CIC decimator

CORDIC

CORDIC

 RX Chain Module RX Buffer Module

RX
4k FIFO

To FX2

From ADC

Enable Enable EnableRX Delay counter
(set via register)

RX Window counter
(set via register)

32 bit user controlled register

32 bit user controlled register

16 bit I - samples

16 bit Q - samples

64e6 samples/sec

64e6 samples/sec

64e6/decim samples/sec

64e6/decim samples/sec

Figure 4.5: Diagram showing a system level view of the modified receive functionality
within the FPGA.

4.5 Daughterboards

4.5.1 Transmit Daughterboard

The daughterboard being used in the application is the Basic Tx board. It contains no
analogue hardware other than an output transformer and a SMA connector. The output
from this board is connected to a small analogue front-end which provides some gain and
voltage level adjustment to drive the ultrasonic transducers.

Figure 4.6: Picture of a Basic Tx daughterboard for the USRP.

4.5.2 Receive Daughterboard

On the receiver side, the basic Rx daughterboard is used. The sonar centre frequency is
low enough for no additional mixing hardware to be required.

39

Figure 4.7: Picture of a Basic Rx daughterboard for the USRP.

4.6 Front-end Hardware

4.6.1 Transmitter Circuitry

The transmitter circuit posed some challenge in development for producing a suitably
amplified voltage to drive the transducers. This was also important to provide as much
transmitted pulse power as possible, since the pulse length would be short for an acoustic
wave. It was also found that inexpensive opamps such as the LF347 [21] could not provide
enough driving voltage for a pulsed signal to be detectable over any significant range
(beyond 10 cm). Such opamps did have sufficient Gain Bandwidth Product (GBWP)
values for operation at 40 kHz, which made them ideal for circuit filters.

Initially, a pre-built driver circuit constructed for another project similar to the system
described in [22, 23, 24] was tested. It utilised switched capacitor filters, and the LM3886
[25] audio amplifier. While the driver circuit was effective, it was cumbersome and con-
tained much circuitry that was unnecessary for this project. Many components used (such
as filters and mixers) may have contributed signal interference due to the overall circuit
construction and layout.

While attempting to use a less expensive and less power consuming amplifier, a RF trans-
former was designed in order to maximise the transducer driving voltage. Using design
notes from [26, 27], a RM core was selected as it could achieve high inductance at ul-
trasonic frequencies with a relatively low number of turns. [28, 29] The transformer was
wound to match the initial capacitance of the ultrasonic transducer before it reached res-
onance.

A turn ratio of 1:10 was selected in order to keep current demands on the driving opamp
manageable. This would allow the cheaper LM380 [30] audio amplifier to be used. The
circuit built was based on design notes in [30].

40

It was found however, that the use of a transformer resulted in distortions in the transmit-
ted pulse over a significant portion of its duration. This was related to the rapidly forming
and collapsing magnetic field in the transformer core due to the short pulsed transmission
required.

To minimise the distortion, a more rigorous transformer design would be required, which
was beyond the scope of this project. In testing it was found that the transformer would
be a more viable option for continuous wave (CW) transmission applications, or a pulsed
application using much longer pulse durations (greater than 10 ms), where the finite time
distortions would be more tolerable.

A much simpler driver circuit was developed that was modified from [22, 23]. This
utilised a simple opamp based bandpass filter depicted below.

Figure 4.8: Circuit diagram of transmitter circuit filter.

This filter utilised the relatively inexpensive LM358. The filter’s passband was calculated
as 19.4 - 58.8 kHz using equations 4.8 and 4.9.

Low frequency breakpoint =
1

2Π×R1×C1
(4.8)

High frequency breakpoint =
1

2Π×R2×C2
(4.9)

41

The gain of this stage was kept to unity so as not to strain the opamp’s GBWP. The final
driving stage was built around the LM3886 with a gain of 56. The circuit is depicted
below.

Figure 4.9: Circuit diagram of the Tx transducer driving circuit.

4.6.2 Receiver Circuitry

The receiver circuit is derived from the Murata ultrasonic transducer datasheet [31] as
the suggested circuit for receiving and amplifying signals from an ultrasonic transducer.
A single supply LF347 circuit is used instead of the recommended opamp. The circuit
combines amplification by and bandpass filtering.

The two transducers are positioned to face the same area. They are linked to the front-end
circuitry with shielded cables to minimise electrical signal coupling between the trans-
mitter and receiver circuitry.

4.7 Prototype Development Summary

An overall system view of the sonar application is depicted in figure 4.10.

42

Figure 4.10: System level diagram of the USRP based sonar application.

The FPGA modifications were completed and were able to perform to the specifications
listed in 4.1. Fully variable pulse durations by changing the sample size could not be
implemented. Varying the pulse duration is possible through the interpolation rate, as
will be shown in 5. As testing revealed however, this method of pulse duration control
produces undesirable effects and should not be used.

The following functionality was finally achieved:

• User-defined waveform generation using GNU Radio processing blocks.

• Successful waveform sample set transfer to, and storage within the FPGA.

• Accurate transmission of the waveform stored in the FPGA.

• Fully adjustable PRI controller.

• Accurate triggering of the transmission process governed by the PRI.

• Adjustable digitisation delay.

• Fully adjustable receive window.

• Accurate reception of received data transferred to the host computer from the USRP.

• Successful gathering and archiving of received data using GNU Radio processing
blocks.

• Development of driver and filter circuitry that was able to adequately perform for
sonar testing purposes in a lab environment.

The following chapter will describe the system tests performed and the sonar experiments
that were done with this USRP based monostatic sonar system.

43

Chapter 5

Tests and Results

The following chapter covers the tests that were performed with the USRP, GNU Radio
and the sonar application that was developed. The purpose of the first few tests is to verify
the existing functionality which GNU Radio and the USRP include by default and then
go on to basic tests of the functionality that was created and incorporated as part of this
thesis project. Later tests will further depict the capability of the developed functions
through using the sonar to detect a target. The system’s ability to capture useful received
data accurately will be proved. The captured data will then be processed to show that the
range of the detected target from the sonar transmitter can be correctly calculated.

In all tests with the receiver subsystem, only the real channel was gathered from the
front-end circuitry. The Basic RX boards do not contain I-Q phase shifting, and this func-
tionality was omitted from the constructed front-end circuitry for simplicity. In addition,
even though the low system bandwidth, low environmental acoustic noise and short pulse
periods negated the need for chirp waveform tests, these were none the less carried out
to show that such waveforms could be readily produced, and that the receiver subsystem
could recover them.

The test results and comments on these results are included.

5.1 System Performance vs. Specifications Tests

Purpose:

To confirm specified and expected performance limits of the system’s software-defined
transmitter sections, and to demonstrate the gain control available on the USRP.

44

Description:

The USRP Tx output is connected directly to an oscilloscope input. Chirp pulses are then
emitted with varying application parameters. The transmitted pulses with different set-
tings are recorded with the oscilloscope. The parameters which are altered are: software
gain, PGA gain, PRI and pulse length.

Figure 5.1: Diagram depicting performance versus specifications test setup.

5.1.1 Software Gain Test

The objective of the software gain test is to demonstrate the control in sample ampli-
tude available from GNU Radio for the sonar application, considering the daughterboards
being employed.

Settings: Interpolation rate = 500
tpri = 10 ms
τ = 1 ms
∆ f = 39-41 kHz
PGA gain = 20 dB

45

Figure 5.2: Trace showing software gain reduced to 4000. Vpp = 46mV.

Figure 5.3: Trace showing maximum software gain. Setting = 32767. Vpp = 364 mV.

Test Summary

The average step size for software gain to output voltage is approximately 11.2 µV . Doc-
umentation indicates that the AD9860 chips are capable of delivering 2 Vpp to a 50 ohm
load. The reason this value could not be attained could possibly be attributed to reduction

46

in bit gain through the FPGA implemented CIC interpolator. It was also noted that at
the sonar operating frequency, the output transformers of the basic daughterboards were
expected to attenuate the signal. The low frequency breakpoint was documented at 100
kHz. The signal amplitude was still sufficient however for the purposes for which the
sonar was used. Reducing the software gain effectively mutes the output.

5.1.2 PGA Gain Test

The objective of this test was to demonstrate the gain control provided by the user con-
trolled PGA in the AD9860 chip on the USRP.

The PGA value range for the daughterboard plugged into the USRP can reported within
GNU Radio via a program class method. The reported value range for the Basic Tx board
is -20 to 0 in step sizes of 0.0784313. The default setting is maximum PGA gain of 20 dB
(represented by value 0) while the minimum is 0 dB gain (indicated by value -20). The
user selects the PGA gain as a dB value.

Settings: Interpolation rate = 500
tpri = 10 ms
τ = 1 ms
∆ f = 39-41 kHz
SW gain = 32e6

Setting the PGA to its maximum of 20 dB gain with software gain set to 32e6 yielded
356mV as depicted in figure 5.3.

47

Figure 5.4: Trace showing output when PGA is set to 0 dB (minimum). Vpp = 32 mV.

Figure 5.5: Trace showing output when PGA is set to 10 dB.Vpp= 100 mV.

Test Summary

The PGA behaved as expected. For the tests following in the chapter, the values of soft-
ware gain and PGA gain were kept at their maximum settings.

48

5.1.3 PRI Settings Test

The objective of this test is to demonstrate the functionality and expected limits of the
PRI function added to the FPGA.

The PRI counter within the FPGA is a standard counter module and is able to operate as
such without restriction other than the capabilities of the FPGA itself. For the purposes of
radar and sonar, a practical limit is set by the transmitted pulse duration. The maximum
possible value is limited by the width of the counter as described in section 4.3.1.

Settings: Interpolation rate = 500
τ = 1 ms
∆ f = 39-41 kHz
SW gain = 32e6
PGA = 20 dB

Figure 5.6: Trace showing tpri = 2 ms (2τ).

49

Figure 5.7: Trace showing tpri = 1 ms. PRI = τ , thus the output waveform has become
continuous.

Test Summary

The tests showed that the PRI trigger generation in the FPGA functions as intended. As
shown in 5.7, reducing the PRI to match the pulse duration results in a continuous wave
output. Recording the maximum possible PRI for display purposes proved difficult with
the measuring equipment used. However, tests with PRI of up to 1 second still showed
accurate trigger pulse timing. Using such long PRIs was not required for the testing to
follow in this chapter however, the functionality to produce long PRIs does exist.

5.1.4 Pulse Length Test

The objective of this test is to show the limits of the control of the transmitted pulse du-
ration. The correct functionality of the pulse duration control via variant samples lengths
is shown. The maximum capacity of the RAM implemented on the FPGA could not be
tested. In addition, the zero padding features of the transferred sample sets were not yet
functional in the tested system. As a result, the tested system was limited to 1 ms and
500 µs pulse durations. These two periods are determined by the sample set size which is
impacted by the USB standard as described in 4.3.1. Ideally, variable pulse lengths would
be attainable by forming sample sets of varying lengths.

50

Variable sample set size:

In this test, the size of the sample set transferred to the USRP’s FPGA is varied. The
expected effect on the output pulse duration is depicted.

Settings: Interpolation rate = 500
∆ f = 39-41 kHz
SW gain = 32e6
PGA = 20 dB
tpri = 10 ms

Figure 5.8: Trace showing τ = 1 ms (512 complex samples).

51

Figure 5.9: Trace showing τ = 500 µs (256 complex samples).

Test Summary

Altering the pulse duration by changing the sample set size performed as expected. Al-
tering the interpolation rate also changes the pulse duration as expected. It was found
however that this functionality caused undesirable distortions (such as changes in centre
frequency and pulse shape) in the output signal. It is recommended to only alter pulse
lengths via variable sample set sizes and to determine the interpolation rate according to
the desired pulse length.

5.2 Transmitter/Receiver Direct Coupling Tests

Purpose:

To determine how severe the direct signal coupling between the transmitting and receiving
transducer is in the physically constructed system. Using the information from this test,
the direct coupling should then be minimised. This is primarily achieved via various kinds
of physical screening placed between the transducers.

52

Description:

Chirp pulses are transmitted into an unobstructed area where no echoes may occur. The
terminals of the receiver transducer are monitored with an oscilloscope. Transmitted sig-
nals that are directly coupled into the receiver are recorded.

Figure 5.10: Diagram depicting transmitter/receiver direct coupling test setup.

The items used to attempt to isolate the transmitter and receiver transducers included a
solid wooden shape placed between them and a similarly shaped construction made of
foam. Various simple orientations of these items between the transducers was attempted.

Settings: Interpolation rate = 500
SW gain = 32e6
PGA = 20 dB
∆ f = 39-41 kHz

53

Figure 5.11: Trace showing the directly coupled signal detected at the receiver.

Test Summary

In the image, the directly coupled signal can be seen, having a signal amplitude of ap-
proximately 4 mVpp .

A separation of 32 mm between the transducers and shielded wires appeared to min-
imise detectable coupling. Screening with different materials did not reduce the visible
coupled signal. Even completely physically obstructing the receiving transducer from re-
ceiving any signal did not reduce the signal depicted in 5.11.This suggests that the signal
is electrically coupled. Thus, it may be reduced with more careful circuit layout. For the
purposes of the tests that would be performed with the developed sonar, the existence and
magnitude of the detected coupled signal was tolerable.

5.3 Receiver Circuit Tests

Purpose:

Determine the echo shape of a flat plate and a trihedral target in the analogue domain.
This is simply to provide some reference for visual comparison with the sampled received
signal in order to assess the digital receiver’s fidelity. This test is also to provide a simple
means of determining which of the two target types (the flat plate or the trihedral) was

54

more suitable for the range tests. This would be assessed by which target was easier to
accurately erect, and which provided the strongest and visually clearest reflected signal.

Description:

Chirp signals are transmitted against a flat plate target, and the analogue reflected signal
is recorded with a Tektronix TDS5052B digital phosphor oscilloscope. This is repeated
for a trihedral corner reflector. The targets are positioned at various ranges orthogonally
to the sonar transducers.

Figure 5.12: Diagram depicting the receiver circuit test setup.

Settings: Interpolation rate = 500
SW gain = 32e6
PGA = 20 dB
∆ f = 39-41 kHz
tpri = 10 ms
τ = 1 ms
Range to target = 0.5 metre

55

Figure 5.13: Trace showing the analogue echo from a flat plate target 0.5 metre, as mea-
sured after the front-end.

Figure 5.14: Trace showing the analogue echo from a trihedral corner reflector positioned
0.5 metre from the sonar, as measured after the front-end.

Test Summary

Clear images of the acoustic reflections were successfully captured using the oscilloscope
capture functionality. The traces (seen above) did not show any striking difference be-

56

tween the two target types in these particular tests. The flat plate target was easier to erect
and position accurately. Therefore, it was used exclusively for the tests that follow.

5.4 Data Capture Tests

Purpose:

Prove the digital receiver system specifications and functionality. This will demonstrate
the user control over the implemented FPGA modules and show their capability. This
covers the effects of varying the receiver window or look time of the sonar. Also covered
are the effects of varying the time delay between the PRI trigger pulse and the initiation
of the digitisation and data transfer process. This is when receiver data is digitised and
transferred to the host computer for archiving and processing.

Description:

Sample received echoes showing the effect of varying the sonar Rx window (look time)
and varying the start of digitisation time relative to the PRI trigger pulse. The experiment
setup is identical to that depicted in figure 5.12, with the receiver circuit and USRP Rx
daughterboard being employed. The captured data is written to a binary data file. These
data files are processed in Matlab which is used to generate the plots seen in the sections
below. In all tests with the receiver subsystem, only a real channel was gathered from
the front-end circuitry. The Basic RX boards do not contain I-Q phase shifting and this
functionality was omitted from the constructed front-end circuitry for simplicity.

Settings: Decimation rate = 250
PGA = 20 dB
∆ f = 39-41 kHz
tpri = 10 ms
τ = 1 ms
Range to target = 0.5 metre

5.4.1 Receiver Window Test

This test shows the effect of varying the size of the receive window setting.

57

Figure 5.15: Plot showing the unfiltered response from a flat plate target. Rx window is 5
ms. The maximum viewing range is 0.85 m. Digitisation start time setting is 0 ms.

Figure 5.16: Plot showing received data with Rx window adjusted to 2 ms. The resultant
viewing range is 0.34 metres. The target is no longer visible.

58

Test Summary

The control of the receiver window functioned as expected. By simply adjusting the look
time, the maximum range that the sonar could detect targets could be predictably altered.
As shown in 5.16, the target position has not been changed however, it is now beyond the
sonar’s viewing range.

5.4.2 Digitisation Start Time Test

The following plots depict the effect of changing the start of the data capture process
relative to the PRI trigger event.

Figure 5.17: Plot showing the response from a flat plate target. Digitisation start time is
4 ms. Rx window = 5 ms. Adjusted start time discards 0.68 metres of range data. The
target response is truncated.

Test Summary

As expected, a truncated target response is received as the target range falls inside the
minimum detectable distance. It was noted in testing that the start time setting does not
proportionally alter the Rx window as expected. An alternate implementation of this
specific feature within the FPGA would correct this functionality. It was not critical to
the sonar application developed in this thesis, though it would have to be corrected if

59

radar applications are to be implemented. The data sets are relatively small and easy to
control via the Rx window parameter. Additionally, the receiver circuitry is very robust
and relatively low signal levels allow the system to operate within the ADC saturation
values.

5.5 Data Processing Tests (Stationary Target)

Purpose:

To demonstrate the ability to capture and archive sonar data. The captured data should be
usable to make accurate range calculations.

Description:

Capture reflected signal data sets for a stationary flat-plate target. Perform tests for differ-
ent target ranges and utilise various system parameters to show predictable and accurate
system behaviour. Captured data is processed in Matlab to produce spectrum plots. Cap-
tured data is also match filtered and output plots displayed. Due to the fact that only real
channel data is gathered from the receiver circuitry, the matched filter plots depict only
real signal correlations in every test. The experiment is repeated using a linear frequency
chirp waveform, and an unmodulated pulse waveform. The test setup is identical to that
shown in figure 5.12.

5.5.1 Linear Chirp Pulse

Settings: Interpolation rate = 500
Decimation rate = 250
PGA = 20 dB
∆ f = 39-41 kHz
tpri = 10 ms

The match filters used in the following tests were created using sample sets generated
from the modulator block in GNU Radio. This same code block was used to generate the
chirp pulses used in the sonar application.

60

(a)

(b)

Figure 5.18: Plots showing the frequency spectrums of the sample sets used to generate
the match filters for the chirp waveforms. (a) Spectrum of the set used to filter the 500 µs
chirp pulses. (b) Spectrum of the set used for the 1 ms chirp pulses.

61

(a)

(b)

Figure 5.19: Plots showing the monotonic pulse sample set frequency spectrums. (a)
Spectrum of the set used to filter the 500 µs pulses. (b) Spectrum of the set used for the 1
ms pulses.

The following plots show the responses from a flat plate target placed 0.5 metre from the
sonar. The first test used a τ = 1 ms. The second uses τ = 500 µs.

62

(a)

(b)

Figure 5.20: (a) Plot showing the match filtered result of the data set gathered from the
test in section 5.4. (b) Plot of the response spectrum. τ = 1 ms, Rx window = 5 ms.

63

(a)

(b)

Figure 5.21: (a) Plot showing the unfiltered response from a flat plate target. (b) Plot of
the response spectrum. τ = 500 µs, Rx window = 5 ms.

64

Figure 5.22: Plot showing the match filtered response from a flat plate target. τ = 500 µs,
Rx window = 5 ms.

The following tests were performed for a flat plate target positioned 1 metre from the
sonar. The Rx window value was modified for the new range, and two tests were per-
formed with different pulse lengths.

65

(a)

(b)

Figure 5.23: (a) Plot showing the unfiltered response from a flat plate target. (b) Plot of
the response spectrum. τ = 500 µs, Rx window = 8 ms.

66

Figure 5.24: Plot showing the match filtered response from a flat plate target. τ = 500 µs,
Rx window = 8 ms.

67

(a)

(b)

Figure 5.25: (a) Plot showing the response from a flat plate target. (b) Plot of the response
spectrum. τ = 1 ms, Rx window = 8 ms.

68

Figure 5.26: Plot showing the match filtered response from a flat plate target. τ = 1 ms,
Rx window = 8 ms.

5.5.2 Unmodulated Pulse Tests

Settings: Interpolation rate = 500
Decimation rate = 250
PGA = 20 dB
f = 40 kHz
tpri = 10 ms

To show the system’s ability to function with other waveform types, tests were also con-
ducted using unmodulated pulse waveforms centred at 40 kHz and using the same hard-
ware.

69

(a)

(b)

Figure 5.27: (a) Plot of the response from a flat plate target at 1 metre range. (b) Plot of
the response spectrum. τ = 1 ms, Rx window = 8 ms.

70

Figure 5.28: Plot showing the match filtered response from a target at 1 metre range. τ =
1 ms, Rx window = 8 ms.

71

(a)

(b)

Figure 5.29: (a) Plot showing the response from a flat plate target at 1 metre range. (b)
Plot of the response spectrum. τ = 500 µs, Rx window = 8 ms.

72

Figure 5.30: Plot showing the match filtered response from a flat plate target at 1 metre
range. τ = 500 µs, Rx window = 8 ms.

5.6 Summary of Results

The output gain control, both in the software domain (GNU Radio) and the hardware
domain (PGA on the USRP), performed as expected in the experiments. It was noted
though that full range output from the AD9860 was not achieved from the daughterboard
output connections. This was attributed to the output transformers located on the Basic
Rx and Tx daughterboards, which are documented to attenuate signals below 100 kHz.
This attenuation was tolerable for the testing purposes of this thesis and was unavoidable
due to more suitable daughterboards being unavailable. For operation at the maximum
possible gain limits of the USRP, at frequencies around 40 kHz as used in this sonar
project, the LFRX and LFTX daughterboards are more suitable. These daughterboards
are also available from the USRP developers and they are specifically designed to operate
from DC - 30 MHz.

73

The PRI control functioned exactly as predicted. Users can freely choose their desired
setting at a resolution of 15 ns. The pulse duration control was limited to two values
(1 ms and 500µs) in the final system, though continued development in the FPGA code
would certainly remedy the limitation. Control of the pulse duration could also be exerted
through the selected interpolation rate, though this is strongly not recommended as it
causes variations in gain and distortion in the output waveform amplitude and frequency
over the pulse duration.

The receiver coupling tests showed no significant direct coupling between the transmitter
and receiver transducer which could be effectively eliminated with physical screening.
Some signal coupling through to the receiver signal was detected, but this was attributed
to circuit design and layout. For the purposes of the experiments performed in this thesis,
the degree of signal coupling was tolerable.

The software-based receiver functionality developed in this thesis for the FPGA func-
tioned mostly as expected. A fault was found in the implementation of the digitisation
process initiation, which created variances in the relative time calculated with the receiver
sample rate and the number of samples captured. Since this functionality was not needed
for this particular sonar project, it did not affect the other tests described in this chapter.
It would however be required to be functional for future radar applications.

The development of the data processing tests revealed an inaccuracy in the GNU Radio
modulator block output. As seen in the plots of the modulator frequency response, there
exists an offset of up 1kHz which may not be consistent. The impact can be seen in the
match filtered responses, as even though the response amplitude significantly increases,
the waveform remains relatively spread in time. It also meant that the transducers were
not optimally driven with the most power over their resonant frequency. This would cause
non-optimal power output from the transducers, which would mainly affect the maximum
range the system could achieve. Due to the nature of the tests required to demonstrate the
sonar concept, this non-optimal output was tolerable. This would however suggest that
for expanded and more reliable control over the waveforms generated for transmission, a
custom GNU Radio block would have to be developed. Such an approach would even be
preferable as it allows the set of producible waveforms to be expanded.

74

Chapter 6

Conclusions and Recommendations

6.1 Summary

In this project, the following has been done:

• The advantages of implementing radar systems which use telecommunication com-
ponents and SDR have been discussed.

• The GNU Radio framework and specifics of its functionality have been investigated.

• The operation of the USRP has been explored.

• A small scale sonar prototype for simulating a larger radar system has been devel-
oped.

• A GNU Radio program for the purpose of testing sonar and radar based GNU Radio
applications has been developed.

• Various FPGA configurations have been compiled for the USRP to achieve monos-
tatic Radar/Sonar functionality and to assist in the development of netted radar, and
Passive Coherent Location (PCL) radar prototypes using the USRP.

• Front-end circuitry has been developed to support the use of ultrasonic transducers
with the USRP. A short range ultrasonic sonar prototype based on the USRP has
been tested.

75

6.2 Discussions and Conclusions

The software components of the sonar application developed in this thesis functioned as
expected. The FPGA modifications also proved successful. The USRP can therefore
be successfully modified from its original telecommunications purpose. By means of
very little modification to the GNU Radio framework, a very basic non-real time sonar
application could be developed. The USRP demonstrated that it was reliably able to
capture the desired transmitted pulses.

The application did reveal certain shortcomings with the GNU Radio processing block
components. In particular the modulator block was shown to be inaccurate in reproducing
the requested signal. Frequency plots of the block’s output showed errors that would be
significant in high frequency radar systems. This indicates that development of custom
processing blocks is vital if the system is to be expanded to a radar prototype. In addition,
The GNU Radio framework proved to be slightly more complex to modify for pulsed,
time controlled data transfer than initially expected. This problem could well be remedied
however by the new GNU Radio version that is currently under development.

In looking at the theoretical abilities of the USRP and GNU Radio, they did include many
features that made for interesting comparison to the UCL netted radar prototype nodes
outlined in section 2.4. The available RFX range of daughterboards allow for operation
in the same 2.4 GHz frequency range. While the USRP itself is unable to produce a high
frequency synchronising clock, it does provide the means to override its onboard clock
circuitry to enable several USRPs to be slaved to a common clock (which can be provided
by one USRP in the system).

The bandwidth of 50 MHz is difficult for a USRP-based system to achieve. As shown
in chapter 3 the standard USRP configuration can only achieve 8 MHz for one complex
channel. The primary cause of this is the USB link, which cannot sustain a relatively
high throughput. This can be eased by reducing the sample size, where selecting 8 bit
samples instead of 16 bit would allow the successful real time transfer of 16 MHz of
complex bandwidth. Such compromises come at the cost of dynamic range however. A
more elegant solution to this problem would come in the form of the new USRP being
planned for release, which replaces the USB bus with an Ethernet link.

The modifications made to the USRP in this project would allow it to achieve variable
PRFs comparable to 1- 10 kHz using the implemented counter system. Pulse durations
of 10 - 20 ns are also well within the capabilities of the modifications made to the USRP,
where over sampling necessitated by the AD9860 chips on the USRP should produce well
defined waveforms.

76

Below is a reiteration of the design goals listed in Chapter 2, along with a comparison
with the system capabilities eventually achieved:

• Definition of known radar waveforms: This was achievable via the modulator block
native to GNU Radio. Waveforms could be defined mathematically has numerical
arrays corresponding to desired instantaneous frequency output. The waveforms
implemented using this approach included a linear chirp waveform, and a mono-
tonic pulse. It was noted however, that the centre frequency of the output wave-
forms from the modulator was not completely reliable, and showed a slight offset
when the frequency spectrum was viewed. This may be related to the specifics of
the algorithm used within the modulator block, which implements a phase angle
accumulator to produce a rotating phase vector to generate the desired frequency.

• Accurately produce a radar waveform: The tests within the scope of this thesis only
covered low frequency waveforms, though the modulation of these waveforms and
the eventual outputs generally behaved as expected. It was noted also during re-
search into the USRP’s capabilities, that the modulation schemes within the USRP
and particularly the AD9860 chips was more than capable to accurately produce
waveforms up to intermediate frequencies.

• Provide precise PRF definition and control: this vital functionality of a pulsed radar
or sonar was successfully implemented. The counter modifications were able to
produce timing resolution of 15 ns.

• Control over the digital receiver subsystem including accurately defining receiver
windows and controllable start of digitisation times: Both of these functions were
successfully linked to the PRF, producing relative timing controls which could be
compared with sample rates to resolve the precise relative times. While the receiver
window behaved as expected and could be verified in the digitised data, the delay
control did not function entirely as expected most likely due to a bug within the
modified FPGA code. This should be resolvable however with slight changes to the
implemented code.

• Provide timing control relative to the PRF: As mentioned above, this control relative
to the PRF was achieved and behaved accurately in the case of the receiver window
control. The sonar application tests that were performed were able to confirm that
reasonably accurate range data could be resolved from the received data and using
knowledge of the USRP internal sample rates as predicted.

• Provide means of reliably archiving and displaying data: The task of using GNU
Radio to image received data could not be achieved. The GNU Radio synchronising
thread control could not be easily accessed and new software threads could not be

77

readily added. This prevented correct imaging of data using the existing graphing
modules, as the incoming data stream could not be properly segregated in real time
to display a single return pulse window plot. This lack of external program thread-
ing ability will most likely be corrected in later releases of GNU Radio, though its
absence in the version employed in this thesis project was certainly a hindrance.
The system was able to very easily archive data however, and could be used to form
data files which were processed in non-real time using Matlab.

• Provide means of accurately processing received data: As mentioned above, the
inability to control threading within GNU Radio prevented many of its powerful
processing blocks from being effectively used. The time periods between process-
able data arrivals, which occur in pulsed radar are the key difference compared
to the streaming data telecommunications function for which GNU Radio was de-
signed. In this sense, the USRP proved a great deal easier to modify (to perform
pulsed radar applications) than GNU Radio.

6.3 Recommendations

The current version of the sonar application is non-real time, with all post-processing
done in Matlab. This does not make use of the true power of the GNU Radio framework,
in terms of its ability to do real time processing in software. Development of custom
processing blocks and output blocks, would expand the system’s functionality, and would
make it a powerful teaching tool for radar subjects. As mentioned above, this would prove
difficult with no easily available access to GNU Radio’s synchronising thread. Newer
versions of GNU Radio where application implementation is in C ++ level code should
be favoured.

The above may be more viable as work in the online community which develops for GNU
Radio continues, particularly the developments of the message block functionality in new
versions of GNU Radio. The message block tools allow for inband signalling to take place
over the USB link. This has the potential for not only making data capture and display
easier, but also for adding more advanced radar functionality. Particularly capabilities like
dynamic PRFs, and the ability to change transmit waveform characteristics dynamically,
would make the simulation of much more advanced radar systems possible.

Newer versions of the USRP itself are also under development. These more powerful
variants provide more for radar and sonar developers, particularly in terms of:

• Overall functionality.

• More powerful FPGAs capable of performing faster calculations.

78

• Larger FPGAs which can do more processing.

• Faster USRP to desktop links which can provide higher signal bandwidths.

An investigation into various means of accelerating GNU Radio’s operation may also be
very worthwhile for the development of more powerful radar systems using this device
later on. By running various processing algorithms such as signal correlation in add-on
hardware such as a graphics card’s Graphical Processing Unit, a system running a GNU
Radio based radar application may be able to achieve much more processing capability.
Handling more rigorous processing algorithms without a loss in performance would be-
come possible. By using more intensive post-processing techniques, it becomes possible
to gain performance in some cases, even if limited hardware such as the USRP is being
used.

Development of custom daughterboards for the USRP is also an interesting possibility.
This gives the chance to achieve more tailored or better performing systems. It also allows
for adding more desirable functions for the purpose of radar or sonar systems.

Development of USRP based prototype radar systems is the larger goal of which this
project only forms a part. Development of PCL and netted radar systems is the next step
from this project, as it would allow for important tests to be conducted into these radar
research fields.

79

Appendix A

GNU Radio Script File

This file is setup to use the custom FPGA builds. By placing it in the rev4 folder in
/usr/local/share/usrp, rev 4.0 usrps should be able to load it. Currently it produces a chirp
which sweeps from 39 to 41 kHz. To change this, modify the vec1 vector. This vector
determines what signal the gr.frquency modulator block produces. This block will take in
the vector (which defines the real part) and output a complex signal. Currently, the FPGA
build will only accept sample set sizes of 512 and 256.

#!/usr/bin/env python

from gnuradio import gr, gru

from gnuradio.wxgui import stdgui, fftsink, form, slider, scopesink

from gnuradio import eng_notation

from gnuradio import usrp

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import wx

import math

import sys

import Numeric

import usrp_dbid

from usrp_fpga_regs import *

import experi_plot2

//

class ptt_graph(stdgui.gui_flow_graph):

def __init__(self, frame, panel, vbox, argv):

stdgui.gui_flow_graph.__init__ (self, frame, panel,

vbox, argv)

self.frame = frame

#

print "GUI building"

self._build_gui(frame, panel, vbox, argv, options.no_gui)

def set_transmit(self, enabled):

self.txpath.set_enable(enabled)

self.rxpath.set_enable(not(enabled))

def _build_gui(self, frame, panel, vbox, argv, no_gui):

self.panel = panel

vbox.Add(wx.Button(panel, -1, 'Button1'), 1, wx.ALL | wx.ALIGN_CENTER |

wx.EXPAND, 5)

vbox.Add(wx.Button(panel, -1, 'Button2'), 1, wx.ALL | wx.ALIGN_CENTER |

80

wx.EXPAND, 5)

vbox.Add(wx.Button(panel, -1, 'Button3'), 1, wx.ALL | wx.ALIGN_CENTER |

wx.EXPAND, 5)

panel.SetFocus()

class transmit_path(gr.hier_block):

def __init__(self, fg):

interp = 500 #interp rate to produce 1 ms waveform

nchan = 1 #number of complex channels

#duc1 set to zero because the waveform is being created at baseband.

#Change this value to make use of the mixer in the AD9860.

duc1 = 0

fs = 256e3 #2nd sample rate usb -> dac

max_dev = 32e3 #1st sample rate

self.gain = 32e3

self.pri_time = 0.01 #pri in seconds

self.pri_ticks = int(self.pri_time*64e6)

k = 2 * math.pi * max_dev / fs

#

#monochromatic pulse 40kHz [1.28]*256

vec1 = Numeric.arange (1.248, 1.312, 0.00025)

#vector source block takes in linear array to make chirp.

vsource = gr.vector_source_f(vec1, False)

thr1 = gr.throttle(gr.sizeof_float, fs)

#fmmod generates chirp samples

fmmod = gr.frequency_modulator_fc (k)

#self.amp adds software gain

self.amp = gr.multiply_const_cc(self.gain)

#creates sink and specifies custom FPGA build to use.

usrp_tx = usrp.sink_c (0, interp, nchan, fpga_filename =

'usrp_std_27-11-07(2).rbf')

#setup to use BASIC_TX_B daughterboard

tx_subdev_spec = usrp.pick_tx_subdevice(usrp_tx)

m = usrp.determine_tx_mux_value(usrp_tx, tx_subdev_spec)

self.subdev = usrp.selected_subdev(usrp_tx, tx_subdev_spec)

self.subdev.set_gain(0) # set max Tx gain

usrp_tx.set_mux(m)

#sets IF for mixer on AD9860.

usrp_tx.set_tx_freq (1, duc1)

#sets rx window size in terms of rx samples

usrp_tx._write_fpga_reg(usrp.FR_USER_12, 2048)

#sets maximum samples to send. related to padding.

usrp_tx._write_fpga_reg(usrp.FR_USER_13, 256)

#sets prf value. 20 bit was 16ms.

usrp_tx._write_fpga_reg(usrp.FR_USER_14, self.pri_ticks)

#sets delay value in rx samples to discard after the prf has occured.

usrp_tx._write_fpga_reg(usrp.FR_USER_15, 0)

#setup and enable debug output(disabled).

#usrp_tx._write_oe(1, 0xffff, 0xffff)

#usrp_tx._write_fpga_reg(FR_DEBUG_EN, bmFR_DEBUG_EN_TX_B)

print "transmitter connecting now"

fg.connect (vsource, thr1, fmmod, self.amp, usrp_tx)

gr.hier_block.__init__(self, fg, None, None)

81

def set_enable(self, enable):

set H/W Tx enable

self.subdev.set_enable(enable)

if enable:

self.amp.set_k (self.gain)

else:

self.amp.set_k (self.gain)

class receive_path(gr.hier_block):

def __init__(self, fg):

build the graph

self.u = usrp.source_c(decim_rate=250, nchan=1 , fpga_filename =

'usrp_std_27-11-07(2).rbf')

filename = "output.bin"

nsamples = 128000

self.RX_fs = 256e3

rx_subdev_spec = usrp.pick_rx_subdevice(self.u)

self.u.set_mux(usrp.determine_rx_mux_value

(self.u, rx_subdev_spec))

determine the daughterboard subdevice we're using

self.subdev = usrp.selected_subdev(self.u, rx_subdev_spec)

input_rate = self.u.adc_freq() / self.u.decim_rate()

gain / mute block

self.io_gain = gr.multiply_const_cc(1)

self.head = gr.head(gr.sizeof_gr_complex, int(nsamples))

#filesink

self.dst = gr.file_sink(gr.sizeof_gr_complex, filename)

#dead = gr.null_sink(gr.sizeof_gr_complex)

fg.connect(self.u, self.io_gain, self.head, self.dst)

gr.hier_block.__init__(self, fg, None, None)

g = self.subdev.gain_range()

gain = g[0]

self.subdev.set_gain(gain)

freq = 0

r = self.u.tune(0, self.subdev, freq)

if r:

print "receiver ready..."

else:

sys.stderr.write('Failed to set frequency\n')

raise SystemExit, 1

def set_enable(self, enable):

self.enabled = enable

def main():

app = stdgui.stdapp(ptt_graph, "SONAR Application")

app.MainLoop()

if __name__ == '__main__':

main()

82

Appendix B

RAM Control Module Verilog Source
Code

`include "../../../firmware/include/fpga_regs_standard.v"

module ram_dual_alt

(input clock, input reset, input enable,

input wire [3:0] channels,

input [15:0] fifo_samples,

input txstrobe, input sample_strobe, input rx_strobe,

input wire tx_empty,

input wire [6:0] serial_addr, input wire [31:0] serial_data,

input wire serial_strobe,

output reg [15:0] tx_i_0, output reg [15:0] tx_q_0,

output reg [15:0] tx_i_1, output reg [15:0] tx_q_1,

output pulsing_enable, output alt_rx_en,

output transmitting, output [15:0] debugbus

);

parameter ADDR_WIDTH = 12;

parameter MAX_SAMPLES = 2048;

parameter PULSE_SAMPLES = 2048;

parameter WIDTH = 32;

parameter PULSE_DELTA = 4294967295;

wire [ADDR_WIDTH-1:0] wr_addr;

wire [ADDR_WIDTH-1:0] rd_addr;

wire [ADDR_WIDTH-1:0] maximum_samples; //set by user_reg_13

wire [WIDTH-1:0] prf_count;

wire [WIDTH-1:0] rx_count;

wire [WIDTH-1:0] rx_window_size; //set by user_reg_12

wire rd_enable, wr_enable;

wire RAM_Loaded, TX_Complete;

wire read_reset, write_reset;

wire start, dev_reset, prf_reset, delay_reset;

wire [31:0] set_prf; //set by user_reg_14

wire [31:0] set_delay; //set by user_reg_15

wire [31:0] delay_count;

reg [15:0] ramdata;

reg [15:0] dud;

reg [3:0] load_next;

reg [ADDR_WIDTH-1:0] addr;

83

//Assignments

assign rd_enable = ((load_next != channels) & tx_empty & RAM_Loaded);

assign wr_enable = (enable & ~tx_empty);

assign write_reset = (reset)?(1'b1):(wr_addr === 9'bx)?(tx_empty):1'b0;

assign read_reset = (reset)?(1'b1):(rd_addr === 9'bx)?1'b1:

(start === 1'bx)?1'b1:start;

assign RAM_Loaded = (wr_addr == maximum_samples);

assign TX_Complete = (rd_addr == maximum_samples);

assign dev_reset = ~RAM_Loaded;

assign start = (prf_count == 0);

assign pulsing_enable = RAM_Loaded;

assign prf_reset = (prf_count == set_prf);

assign delay_reset = (delay_count >= set_delay);

assign alt_rx_en = ((rx_count <= rx_window_size)

& RAM_Loaded & delay_reset);

assign transmitting = ~TX_Complete;

//

setting_reg #(`FR_USER_12) user_reg_12(

.clock(clock),.reset(reset),.strobe(serial_strobe),

.addr(serial_addr),.in(serial_data),.out(rx_window_size));

setting_reg #(`FR_USER_13) user_reg_13(

.clock(clock),.reset(reset),.strobe(serial_strobe),

.addr(serial_addr),.in(serial_data),.out(maximum_samples));

setting_reg #(`FR_USER_14) user_reg_14(

.clock(clock),.reset(reset),.strobe(serial_strobe),

.addr(serial_addr),.in(serial_data),.out(set_prf));

setting_reg #(`FR_USER_15) user_reg_15(

.clock(clock),.reset(reset),.strobe(serial_strobe),

.addr(serial_addr),.in(serial_data),.out(set_delay));

//

//prf counter set by user_reg_14

countert #(WIDTH, PULSE_DELTA, 0) prf_counter

(.clk(clock),

.enable(RAM_Loaded),

.reset(reset|prf_reset),

.out(prf_count)

);

//delay counter set by user_reg_15

countert #(WIDTH, PULSE_DELTA) delay_counter

(.clk(clock),

.enable(RAM_Loaded & rx_strobe),

.reset(reset|start),

.out(delay_count)

);

//rx decim is 250. rate is 256e3/sec -> 256/msec.

//Count 2560 samples for 10 msec

//RX Chain enable

countert #(WIDTH, PULSE_DELTA) receive_en

(.clk(clock),

.enable(RAM_Loaded & rx_strobe & delay_reset),

.reset(~TX_Complete),

.out(rx_count)

);

//advances write address pointer

countert #(ADDR_WIDTH, MAX_SAMPLES) wraddr_counter

(.clk(clock),

.enable(wr_enable),

84

.reset(write_reset),

.out(wr_addr)

);

//advances read address pointer

countert #(ADDR_WIDTH, PULSE_SAMPLES) rdaddr_counter

(.clk(clock),

.enable(rd_enable),

.reset(read_reset),

.out(rd_addr)

);

//output to the tx chains

always @(posedge clock)

if(reset|dev_reset)

begin

{tx_i_0,tx_q_0,tx_i_1,tx_q_1}

<= #1 64'h0;

load_next <= #1 4'd0;

end

else if(TX_Complete)

begin

{tx_i_0,tx_q_0,tx_i_1,tx_q_1}

<= #1 64'h0;

end

else

if(rd_enable)

begin

load_next <= #1 load_next + 4'd1;

case(load_next)

4'd0 : tx_i_0 <= #1 ramdata;

4'd1 : tx_q_0 <= #1 ramdata;

4'd2 : tx_i_1 <= #1 ramdata;

4'd3 : tx_q_1 <= #1 ramdata;

default : dud <= #1 ramdata;

endcase // case(load_next)

end

else if(txstrobe & (load_next == channels))

begin

load_next <= #1 4'd0;

end

//ram module

signal_ram signal_ram1

(.data(fifo_samples),

.wren(wr_enable), //???

.wraddress(wr_addr),

.rdaddress(rd_addr),

.rden(rd_enable),

.clock(clock),

.q(ramdata)

);

// Debugging Aids

//assign debugbus bits to signals you wish to monitor

//

endmodule

85

Appendix C

Project Files CD Directory Structure

Figure C.1: Project files directory structure on the accompanying compact disk.

Figure C.2: GNU Radio Scripts Folder - contains the sonar application script file
(sonar_app.py) in addition to other test scripts for generating signals using the GNU Radio
and the USRP, and testing the various blocks used in the project.

86

Figure C.3: Icarus Verilog Testbench Files - contains the Verilog test files used for testing
the logical functionality of the modified USRP FPGA files before implementing them in
the FPGA.

Figure C.4: Matlab Script Files - contains the files used to process data files generated by
the sonar application. The “read_binary...” function is first applied on the data files, and
then the “One_window” script file is used to calculate and display the desired parameters.

Figure C.5: Quartus Verilog Project Files - contains the main project and Verilog files
required by Quartus to compile a new FPGA bitstream image. In addition to this folder,
the register reference files are required from the firmware folder (which can be obtained
with a download of the latest GNU Radio compressed package file) to compile a new
image. Depicted are the contents of the ../top_lvl/usrp_std/ directory.

87

Figure C.6: Depiction of the contents of the sdr_lib folder.

The top level Verilog file which unifies all the subsystems implemented in the FPGA is
called usrp_std.v, and is located in ../toplevel/usrp_std/ . The bulk of the Verilog code files
that were modified and created to implement the pulsed radar functionality are located in
../sdr_lib/ . Appendix B is an extract from the ram_dual_alt.v file, located in the sdr_lib
folder.

88

Bibliography

[1] D. McCarthy, “Software-Defined Radio: Integration for Innovation,” RF Design,
vol. Software-Defined Radio, pp. 44–50, September 2005.

[2] R. N. Mutagi, “Understanding the Sampling Process,” RF Design, vol. Mixed Sig-
nal, pp. 38–48, September 2004.

[3] S. Kingsley and S. Quegan, Understanding Radar Systems. SciTech Publishing,
Inc., 1999.

[4] Y. Teng, H. Griffiths, C. Baker, and K. Woodbridge, “Netted radar sensitivity and
ambiguity,” Radar Sonar Navig., vol. 1, pp. 479–486, 2005.

[5] F. G. Stremler, Introduction to Communication Systems. Addison-Wesley Publishing
Company, Inc., 1992.

[6] S. Grossman, “Software Defined Radio poses major challenges for hardware and
software developers,” RF Design, vol. Defense Electronics, pp. 10–15, June 2005.

[7] A. Rudra, “FPGA-based Applications for Software Radio,” RF Design, vol. Signal
Processing, pp. 24–35, May 2004.

[8] T. Derham, S. Doughty, K. Woodbridge, and C. Baker, “Realisation and evaluation
of a low cost netted radar system,” Radar, 2006. CIE ’06. International Conference

on, pp. 1–4, 2006.

[9] T. Derham, K. Woodbridge, H. Griffiths, and C. J. Baker, “The design and develop-
ment of an experimental netted radar system,” Radar Conference, 2003. Proceedings

of the International, pp. 293–298, 2003.

[10] C. Baker, B. Bates, L. Williams, M. Inggs, L. Tao, Y. Hong, J. Zhu, W. Rossum,
A. Huizing, R. Lane, and S. Hayward, “Poster Session 1c: Multistatic Radar,”
RADAR 2007, pp. 6–7, 2007.

[11] E. Blossom, “An Introduction to Software Radio,” USENIX/Boston, June 2006.

89

[12] G. N. U. Radio, “USRP - GNU Radio - Trac,” 2008. Available: http://gnuradio.
org/trac/wiki/USRP [Accessed 25 July 2008].

[13] D. Shen, “Tutorial 4: The USRP Board.” June 2005.

[14] Altera Corporation, Cyclone Device Handbook, January 2007.

[15] Analog Devices, Mixed-Signal Front-End Processor for Broadband

Communications- AD9860, 2002. Rev. 0.

[16] M. Ettus, “Ettus Research LLC,” 2008. Available: http://www.ettus.com [Ac-
cessed 25 July 2008].

[17] M. P. Donadio, “CIC Filter Introduction.” For free publication by Iowegian, July
2000.

[18] K. Gentile, “Fundamentals of Digital Quadrature Modulation,” RF Design, vol. RF
Mixed Signal, pp. 40–47, February 2003.

[19] Komantech, “T/R40-16,” 2001. Available: http://www.komantech.com/

product/Ultra_T_R40_16.htm [Accessed 30 July 2008].

[20] Altera, “Quartus II Web Edition Software Version 8.0,” 2008. Available:
http://www.altera.com/products/software/products/quartus2web/

sof-quarwebmain.html [Accessed 25 July 2008].

[21] National Semiconductor, LF147/LF347, Wide Bandwdith Quad JFET Input Opera-

tional Amplifiers, August 2000.

[22] M. Trninic, Design and Construction of an Ultrasonic Radar Emulator. Undergrad-
uate Thesis, University of Cape Town, 2002.

[23] S. Korda, Design and Construction of an Ultrasonic Radar Emulator. Undergradu-
ate Thesis, University of Cape Town, 2002.

[24] N. Lewitton, Multiple Transducer Synthetic Apeture Sonar Interferometry for Emu-

lating SAR Interferometry. Master’s Thesis, University of Cape Town, 2007.

[25] National Semiconductor, LM3886 Overture - Audio Power Amplifier Series, High

Performance 68W Audio Power Amplifier w/Mute, October 2003.

[26] FERROXCUBE, Product Selection Guide 2001, 2001.

[27] Magnetics, Ferrite Cores: Section 8 - RM Cores, 2006. Rev. 1.

[28] Magnetics, Ferrite Cores: Section 4 - Power Design, 2006. Rev. 1.

[29] Mini-Circuits, RF Transformers, Wideband, 2007.

90

[30] National Semiconductor, LM380 - 2.5W Audio Power Amplifier, December 1972.
Application Note 69.

[31] Murata, Ultrasonic Sensors, MA40 Series, 2001.

[32] R. H. Hosking, “Use FPGA resources to boost radar system perfromance,” RF De-

sign, vol. Defense Electronics, pp. 16–19, October 2005.

[33] J. Baniak, D. G. Baker, A. M. Cunningham, and L. Martin, “Lockheed Martin Mis-
sion Systems: Silent Sentry Passive Surveillance,” June 1999.

[34] E. Nash, “IQ Modulators Advance Reconfigurable Radio,” RF Design, vol. Active
Components, pp. 32–40, June 2006.

[35] S. Tao, T. Ran, W. Yue, and Z. Siyong, “Study of detection performance of pas-
sive bistatic radars based on FM broadcast,” Journal of Systems Engineering and

Electronics, vol. 18, pp. 22–26, 2007.

[36] D. Shen, “Tutorial 6: Graph, Blocks and Connecting.” June 2005.

[37] T. Derham, S. Doughty, K. Woodbridge, and C. J. Baker, “Design and evaluation of
a low-cost multistatic netted radar system,” IET Radar Sonar Navig., vol. 1, pp. 362–
368, 2007.

[38] V. Vitchev, “Mathematical Basics of Bandlimited Sampling and Aliasing,” RF De-

sign, vol. Signal Processing, pp. 26–32, January 2005.

[39] Z. Jiabing, T. Liang, and H. Yi, “Study on moving target detection to passive radar
based on FM broadcast transmitter,” Journal of Systems Engineering and Electron-

ics, vol. 18, pp. 462–468, 2007.

[40] Airmar Technology Corporation, Ultrasonic Transducers, Application Notes, 2005.

[41] Ferrite Ceramics, RM8/I, RM Cores and Accessories, December 1999. (Datasheet).

[42] Phillips Components, Soft Ferrites and Accessories, April 2000.

91

