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Abstract

The scope of this thesis project is the design and implementation of a digital quadrature
demodulator for a stepped frequency ground penetrating radar. This dissertation
presents a theoretical model of the demodulator, simulations characterising the
demodulator performance, as well as the design, construction, and measurement of the
prototype demodulator.

The demodulator estimates the amplitude and phase of the intermediate frequency
signal of a time-interleaved dual-channel heterodyne radar receiver. A demodulator
model is developed from a survey of the relevant literature, paying particular attention
to errors introduced in sampling. Simulations predict the demodulator performance in
the radar system, suggesting coherent integration improves accuracy by reducing the
effect of random sampling errors. The design of the prototype and characterisation of
its performance are briefly reported.

Measurements confirmed that coherent integration increased the demodulator
accuracy. Timing jitter was found to be the most significant cause of error, due to
phase noise in the IF signal. The simulations predicted that the demodulator would
not meet the specified performance; measurement determined the prototype’s accuracy
to be within specification, although the test signals were of higher quality than the

expected radar IF signal.
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Nomenclature

ADC - Analogue-to-digital converter
AHDL - Analogue hardware design language
CPLD - Complex programmable logic device
Dacs - Data capture system

dc - direct current

DNL - differential nonlinearity

FPGA - field programmable gate array

GPR - ground penetrating radar

I - in-phase

IC - integrated circuit

IF - intermediate frequency

JTAG - Joint Test Access Group

Q - quadrature

LO - local oscillator

LOS - local oscillator synthesizer

Opamp - operational amplifier

PC - personal computer

RF - radio frequency

rms - root mean square

RRI - ramp repetition interval

SFCW - stepped frequency continuous wave
SNR - signal-to-noise ratio

SRAM - static random access memory

TXS - transmit synthesizer

VHDL - Very High Speed Integrated Circuit Design Language
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Chapter 1
Introduction

1.1 Summary

The scope of this MSc project is the design and implementation of a digital quadrature
demodulator for a new ground penetrating radar, known as Venus, which is an upgrade of an
existing radar, MercuryB [1]. The demodulator is one module of the data capture system,
abbreviated to Dacs, which is also responsible for controlling the radar and communicating with

external computers.
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Figure 1. Inputs and outputs of the digital quadrature demodulator

A model of the quadrature demodulator was developed from the literature, and was simulated
using the Monte Carlo technique. The simulations estimated the contribution of various error
mechanisms and gauged the effectiveness of coherent integration in improving the accuracy of the
demodulator output. Demodulator performance in the radar system was predicted by simulation.

A working prototype was produced; Figure 2 is a system block diagram. The prototype
demodulator performance was tested, and found to satisfy the specifications, although the signal
generators used in the tests limited the precision of the results.

The most significant conclusion is that phase noise in the radar receiver’s IF signal limits the

demodulator accuracy, which exceeds the specified error allowance.

1.2 Ground penetrating radar research at UCT

Ground penetrating radar (GPR) is a sensing technique that uses electromagnetic energy to
produce an image of an underground target area [2]. The radar is usually in close contact with
the earth’s surface, looking into the ground, or it may be placed in a borehole or mineshaft.
Ground penetrating radar is commonly used in landmine detection, mining, civil engineering, and

archeology [2][3].
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Figure 2. Block diagram of the Dacs board

The Radar Remote Sensing Group (RRSG) at the University of Cape Town began researching
ground penetrating radar in 1988 [4], and has developed a radar system using a stepped frequency
continuous wave architecture, housed in a portable enclosure [1][5]. The current version of this
radar system is designated MercuryB, and is to be superceded by a new, upgraded design, Venus.
The Dacs board, containing the digital quadrature demodulator, is one module of this radar.

The MercuryB radar hardware has a modular design, with synthesizer modules operating over
the bands 200 to 1,600 MHz [1] and 800 to 3,200 MHz. A PC, communicating with the radar
over a fibre-optic data link, acts as an operator interface, allowing for configuration of the the
radar, measurement capture, and processing, display, and storage of the captured data. The radar
data can be distributed over a network: observers at remote stations can receive the data stream
for individual processing and interpretation [6].

The suitability of the MercuryB GPR system for various applications, such as surveying buried
civil engineering structures and detection of non-metallic landmines has been examined in several

field trials [1].

1.3 Dissertation outline

This dissertation describes two related work areas: the design, construction, and testing of the
new Dacs circuit board, and the development and simulation of a theoretical model of the digital

quadrature demodulator.
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Chapter 2 is the literature review and shows the top-down development of a behavioural model
for the digital quadrature demodulator. The demodulator is placed in the context of the Venus
stepped frequency continuous wave radar system, emphasizing the measurement of relative phase
using two time-interleaved channels. A simple architecture for a digital quadrature demodulator
that exploits the SFCW waveform is shown, then the implementation of the demodulator using
real components is examined. Coherent integration is examined as a technique to improve the
demodulator accuracy.

Chapter 3 discusses the simulation of the demodulator model using the Monte Carlo technique.
The significant contributors to demodulator error are examined individually and their effect on
the output error estimated; the potential improvement available through coherent integration is
assessed. The model parameters are then set to match the prototype demodulator and the actual
radar signals. Simulations using this model predict the performance of the demodulator in the
radar system.

Chapter 4 is an overview of the design and development of the circuit board, programmable
logic, and software, and begins with a brief requirements analysis. The chapter then shows the
conceptual design of the data capture system, and concisely explains the design of the hardware,
programmable logic, and software. The results of performance tests on the demodulator complete
the chapter - the imprecision of the signal generators limited the value of these tests.

The final chapter presents an analysis of the simulations and measurements of the prototype
demodulator performance. Simulations of the demodulator in the radar system show that
phase noise in the IF signal causes the demodulator error to exceed the specified limits. The
measurements demonstrate achieved performance within the tolerable limits, although the test
signals had lower phase noise than the radar IF signal. A brief summary of the main results is
followed by the conclusions and recommendations for future work.

Appendix A shows the derivations of some of the simulation parameters, and lists the
parameters used for each series of simulations. Appendix B explains the tools used to compile the
microcontroller software and program the flash memory on the prototype. Appendix C describes

the tests performed on the prototype hardware, software, and programmable logic.
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Chapter 2
Literature review: digital quadrature
demodulation

This chapter is an overview of the literature relevant to the design and implementation of a digital
quadrature demodulator for a stepped frequency continuous wave radar system, and focusses on

digitisation of the IF signal and the attendant imperfections.

2.1 Architecture and operation of SFCW radar systems
2.1.1 Stepped frequency continuous wave radar

The stepped frequency waveform consists of a sequence of discrete, usually equally-spaced
frequencies, each transmitted for a fixed time, known as the dwell time, 7T},.; [7]. The ramp

repetition interval is simply the number of frequency steps n multiplied by the dwell time.
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Figure 3. Stepped frequency continuous radar waveform

One method for the stepped frequency processor to construct a synthetic range profile is by
performing an inverse Fast Fourier Transform on the received waveform [8]. The synthetic range
profile is similar to the range display produced by conventional pulse radars.

2.1.2 The Mercury and Venus SFCW ground penetrating radar systems

The Venus radar was under construction at the time of writing, so this dissertation will refer
to its predecessor, Mercury, as the same principles apply to both radars. The Mercury ground

penetrating radar system detects the SFCW pulse using a heterodyne receiver [S]. The received
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Figure 4. Architecture of the Venus SFCW radar system

signal is downconverted by mixing it with the local oscillator (LO) signal, producing an
intermediate frequency (IF) signal at 2 MHz, with a bandwidth of 100 kHz [5].

The transmit frequency of the Mercury radar ranges from 200 to 1,600 MHz, or 800 to 3,200
MHz, depending on which synthesizer modules have been installed [1]. The RF components used
in the transmitter and receiver do not have linear amplitude and phase responses over the operating
bandwidth, corrupting the synthetic range profile [5]. The problem is solved by employing a
time-interleaved heterodyne architecture: there is an extra channel between the transmitter and
receiver. The signal through this extra channel contains the same corruptions as the signal through
the transmit-receive channel, and is used as a calibration signal, allowing the amplitude and phase
nonlinearities in the received signal to be removed [5]. The time interleaving is implemented by

switches, as shown in Figure 4.

2.2 Digital quadrature demodulation

Traditional demodulation schemes derive the in-phase and quadrature (I and Q) components by
demodulation to baseband by two oscillator signals separated by 7 rad (i.e. in quadrature); each
IF signal is then filtered individually and sampled by a separate ADC [9]. The components of the
two channels are not perfectly matched and introduce an imbalance between the channels, which
can cause phase errors as high as 2 to 3 degrees [10]. In direct digital demodulation, however,

the downconverted carrier signal is digitised at a rate exceeding the Nyquist rate, after which the
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digital signal is demodulated by two digital filters. The channel imbalances no longer exist, since
the I and Q channel samples pass through the same analogue components [11].

2.2.1 Architecture of a simple digital quadrature demodulator
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Figure 5. Signal flow in the digital quadrature demodulator

A simple system for digital quadrature demodulation of a modulated carrier signal is shown in
Figure 5 [12]. The carrier signal has been mixed down to a suitable intermediate frequency,

wrr = 27 frr. We write the intermediate-frequency signal as

s(t) = A(t)cos(wrrt + @) (1)
= I(t).cos(wrrt) — Q(t).sin(wrrt) )
where
I(t) = A(t).cos(¢t) 3)
Q) = A(t).sin(¢t) “

are the in-phase and quadrature components respectively [12]. We now digitise the IF signal
s(t) by sampling at f; = 4 f;. Considering one period, this gives us a digital signal, s[n|, which
is s(t) sampled at

t=— n=0123 (5)

Digital filters process the sample sequence s[n| to give the the I and Q components [12]:



I(t) = s[0] - s[2] (6)
Q) = s3] —s[1] ()

The amplitude and phase of the carrier signal are then just

Alt) = VI +Q(t)? ®)

b(t) = arctan (%) 9)

Since the amplitude A(t) and phase offset ¢(¢) of the IF signal are constant during each
frequency step in the SFCW waveform, we will denote them as the constants A and ¢ for
convenience.
2.2.1.1 Sampling errors introduce inaccuracies into the demodulator outputs
The sample sequence s[n] in a real system contains errors since the electronic components
employed are imperfect. We therefore introduce time-varying error terms €, () and €q(¢) into
the in-phase and quadrature components derived from these samples, writing the components as
I'(t) = I+ €(t) and Q'(t) = Q + €q(t) respectively, where I and () are the ideal values, so that

the demodulator amplitude and phase outputs are given by

At) = U +el0)? +(Q+ cqlt))? (10)

¢'(t) = arctan (?I—:ii?) (11)

and now contain errors that change with time; Figure 6 depicts this as a vector diagram. It
is easily seen that the significance of the errors depends on the amplitude of the input signal:
error terms €; and €¢ of a given magnitude will cause greater inaccuracies for smaller signal
amplitudes. It is also worth noting that the sensitivity of the phase output depends on the input

phase, in particular on the ratios <+ and %.
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Figure 6. Errors in the I and Q components translate into amplitude and phase errors

2.2.2 Measuring the phase of the IF signal

The Mercury SFCW radar system has a 16 MHz oscillator which provides the reference for both
the transmit and local-oscillator frequency synthesizers (abbreviated TXS and LOS respectively)
and the quadrature demodulator. The IF signal, produced by mixing the received signal with the
LO signal, is at a center frequency of 2 MHz. Quadrature demodulation requires a sampling

frequency f; to be four times the input frequency f;,: the reference oscillator is divided down to

produce the 8 MHz sampling clock.

Sit)
time

sample clock A B C D

Figure 7. The clock edge associated with the sample s[0] is ambiguous

There are four clock edges per input signal period (Figure 7), and the choice of reference edge
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is arbitrary, but the output phase depends on the reference edge choice. The problem is avoided by
a fortunate result of the interleaved architecture: measuring the relative phase difference between
the calibration and transmit-receive channels means the arbitrary reference edge is the same for
both channels. Although the absolute phase values may change by a multiple of 7 rad after a
power-cycle, the relative phase difference remains constant.

2.2.3 Coherent integration improves demodulator performance

Coherent integration is the averaging of an ensemble of observations of a noisy signal with the
same expected value, and reduces the noise power [13]. The variance of the noise signal, o2, is

reduced by the factor N when successive observations are uncorrelated:

2
o= (12)

where 0%, is the variance of the noise signal after coherent integration over ensemble length
N [13]. Since the signal-to-noise ratio of a sinusoid in the presence of white noise is simply
the signal variance over the noise variance [14], the signal-to-noise ratio is also improved by the
factor N. The standard deviation of the noise, or how far the noise voltage deviates from the
mean, is only reduced by a factor of v/N.

This “one-upon- N rule does not hold for time averages in systems where the sampling rate
is high enough to avoid aliasing, since the noise in successive observations is then correlated to
some extent [13] - the variance 0% tends towards o3 as the sample-to-sample correlation of the

noise increases.

2.2.4 Subsampling reduces the sampling rate

All four samples required for quadrature demodulation are usually taken in one period of the input
waveform at a sample rate of f; = 4f;,. Subsampling arises from the simple observation that the
sampling points occur at identical phases in each period, and will therefore have identical values
if the input signal is periodic, allowing the use of a lower sampling frequency and a cheaper ADC
[1]; the penalty is that the samples must be taken over several periods of the input waveform. The
actual sampling frequency required for subsampling is

4 in
factual - % (13)

where P = 3,5, 7, ... is the number of periods.

The prototype demodulator was constructed with an ADC capable of sampling at 8 MSa/s, so
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subsampling is superfluous. The demodulator model is independent of the sampling frequency,
and predicts that subsampling offers no performance improvement; this claim was verified

empirically (Section 4.7.3.4.)

2.3 Modelling the digital quadrature demodulator

The digital quadrature demodulator is implemented using analogue and mixed-signal circuitry to
digitise the input and digital logic to process the samples. Numbers in a sampled-data system are
represented with finite precision, which can introduce errors due to truncation or rounding [15];
the word length in this application is sufficient that these errors are negligible in comparison to
errors introduced in sampling; only multiplication (by a power of 2) is performed on the FPGA;
the 32-bit results are converted to floating-point representation on a PC and then divided.

2.3.1 Top-level model of the demodulator

=_thit)

Amplituds estimate

IF =ignal
i1l ants]
2 MHz

Sample Quartizer . Coherert . Guuadrature

Gain ancd Hold Intecrator Dremodulator

Phagze estimate

Sarmple

IF source and sample
clock are phase-locked 3 MHz

RER-S clock

Figure 8. High-level block diagram of the demodulator

The demodulator structure is shown as a block diagram in Figure 8. The model for each
analogue or mixed-signal component is expanded below; the coherent integration and quadrature

demodulation operations are implemented digitally.

2.3.1.1 Approaches to modelling the analogue-to-digital converter in the demodulator
There is an extremely large body of literature on analogue-to-digital conversion, stretching

as far back as the realisation that pulse-code modulation was in effect digitisation [16]. An
important category within this literature is concerned with modelling ADCs and their error

mechanisms. Aimed at chip designers, these papers generally produce analytical descriptions of
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the converter. As ADCs become more and more integrated, including large amounts of digital
circuitry, modelling and simulating the chip in analogue simulation programmes becomes very
time-consuming [17]. One solution is to model the behaviour of the components in the time
domain, using statistical descriptions for random phenomena. ADCs have been modelled and
simulated in languages from Matlab [18], [19], [20] to AHDL and even VHDL [17], a language
designed for describing digital logic.

Correction of systematic converter errors by processing the ADC output data is also a
well-covered topic. A common approach is to model the ADC as an ideal converter with an error
source described by a dynamic error function [21]. An error correction algorithm or table is
programmed using parameters obtained from calibration, and then used to remove errors from the
ADC output. No a priori knowledge of the converter structure is assumed.

The primary purpose of the following sections is to investigate the error mechanisms and how
they affect the demodulator. This leads to a simplified model using a combination of analytical
and behavioural descriptions in the time domain. The model is also independent of the converter
architecture, useful since little information was available for the THS1408 selected for the
prototype. Although modelling the demodulator and converter at an abstract level sacrifices some
accuracy in predicting performance, the omitted errors are relatively small - the most significant
sampling errors are caused by aperture jitter and thermal noise [22], which are included in the

model.

2.3.2 Thermal noise in the input signal

Real devices introduce thermal noise into signals. The received radar signal is already noisy, and
processing by the downconverter introduces more thermal noise [5].

2.3.2.1 Modelling thermal noise

Thermal noise s, (t) is modelled as a band-limited, Gaussian noise process having flat power
spectral density, zero mean, and constant variance th - that is, as white noise. This is an
adequate model for many significant noise sources in RF circuits [23]. The noise signal is
superimposed on the ideal sinusoidal signal; the signal quality is indicated by the signal-to-noise
ratio: SNRy, = 10 log(%) in decibels, where P, and P, are the signal and noise powers
respectively [14].

2.3.3 REF transformer

The single-ended IF signal is converted into a differential signal by an RF transformer. We
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simplify the demodulator model by representing the transformer as a single-ended component,
modelling it as an ideal opamp representing the insertion loss (i.e. the gain is less than unity.)

2.3.4 Differential amplifier with programmable gain

The signal chain contains a differential amplifier with programmable gain, but this analysis will
assume a constant gain setting. Opamp gain depends on frequency, but the input signal is at a

constant frequency so the differential amplifier should have constant gain.
2.3.4.1 Model of the amplifier
Opamps generally have internal frequency compensation networks to ensure stability over the
whole range of input frequencies, although these limit the rate at which the output can slew [24];
the minimum slew rate needed for a sinusoid of amplitude A and frequency f;, 1S rge, = 2T A fir,
[24], giving a minimum requirement for this application of 25V/us. Although the THS1408
datasheet does not specify the slew rate, a survey of recent PGA datasheets suggests that the
opamp slew rate will not be a serious limitation - the slew rate of the AD603 PGA is at least
275V/us [25], and Maloberti et al. use a slew rate of over 1000V/us in their simulations [20].
The amplifier adds thermal noise to its output signal - this converter model refers all thermal
noise to the input signal for simplicity, so the amplifier will be considered noiseless. Other
errors are assumed to be either neglible or - especially gain and offset errors - removed through
compensation [26][27]. The differential amplifier is represented as a single-ended component
with fixed gain GG, and offset v, set to 0.
2.3.5 Sample-and-hold circuit

Analogue-to-digital converters sample the input at regular intervals and then quantize the sampled
voltage (supposedly held constant by the SNH.)
2.3.5.1 Model of the sample-and-hold circuit

The sample-and-hold model described here is a vastly simplified version, consisting of an ideal
sample-and-hold with aperture jitter [28]. It excludes classic sources of dynamic error such as
droop, limited slew rate, and feedthrough [29]. The limited slew rate of sample-and-hold circuits
causes errors that worsen with increasing input frequency, but this is no longer a significant

limitation in recent ADC designs [30].

Aperture delay and aperture jitter In an ideal sample-and-hold circuit the input will be
sampled exactly on the rising edge of the clock. But practical converters have a small delay

from the clock edge to the time the input is completely disconnected from the hold capacitor.
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The average delay is called aperture delay, or aperture time [31]. Power supply induced noise
and variation of digital thresholds by thermal noise cause aperture jitter, which is cycle-to-cycle
variation in the aperture delay; power supply noise can be effectively eliminated by judicious

filtering [28]. Aperture delay and aperture jitter cause the sampling instant to deviate from the

ideal and thereby introduce an amplitude error into the sampled voltage (Figure 9.)

e
t voltage
., error

aperture delay time

Figure 9. Aperture delay introduces an error into the sampled voltage

Modelling aperture delay and jitter Aperture delay €,;(¢) is modelled as a stationary
Gaussian random process with the mean corresponding to the aperture delay and a small variance
corresponding to the aperture jitter. The delay is effective from the rising edge of the clock signal.
The input signal is sampled at instants ¢ = nT + €,;(t)|i=n7, Where n = 0, 1,2, ...and T} is the
clock period. The aperture delay is of course the same when the calibration and transmit/receive
channels of the radar are selected; we are interested in measuring relative phase difference
between the channels, and so set the mean delay to zero.

2.3.5.2  The effect of aperture delay and jitter on sampling

Kobayashi et. al. consider the case where a sinusoidal input s(t) = Asin(27 f;,t) is sampled at
time ¢ = nT + €,,(t), where T} is the sampling period and €,;(t) is the aperture jitter, assumed
to follow a Gaussian distribution with zero mean and a standard deviation of 0,,;. The amplitude

error due to aperture jitter is then
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ds(t)
TR - (14)

which has a maximum when the sampling instant occurs at a zero-crossing, where the input

A‘/;lj ~ Eaj (t)

slope is maximum, giving

AV, = €,;(t)A27 fiy, (15)
where it is assumed that 27 f;,,0,; << 1 [32] [33].

2.3.6 Clock oscillator and timing jitter

An oscillator is an autonomous system producing a periodic output, s,s.(t): an ideal oscillator’s
output depends only on time, but random events (noise) in real oscillators perturb the oscillator
output, causing phase and amplitude deviations [34]. A sampled-data system using a square-wave
oscillator output as its clock signal experiences these deviations as timing jitter: the transitions
of the sampling clock occur at times deviating from the ideal. Timing jitter is exacerbated by
mechanisms other than oscillator phase noise when the clock signal is passed through digital
logic. In particular, the finite rise-time of logic signals and unstable digital logic thresholds
worsen the jitter experienced at the sample-and-hold clock input [35].

2.3.6.1 Modelling timing jitter

One can write the oscillator output, including the phase and amplitude disturbances, as

Sosc(t + a(t)) + y(t) (16)

where «(t) is the phase deviation, and y(t) is the amplitude deviation [36].

The amplitude deviations y(t¢) are small and transient, and are compensated for by amplitude
limiting mechanisms in the oscillator itself [37] - these deviations are therefore negligible and will
be ignored.

The phase deviation «(t) is the most important effect of oscillator noise; «(t) will, in general,
keep increasing with time as the effect of the phase perturbations is cumulative [36]. Further,
a(t) is a Gaussian random variable with constant mean and a variance that increases linearly with
time [36, p. 3]. The jitter variance of a square-wave oscillator therefore increases linearly with
time as the oscillator output deviates further from the ideal the longer the oscillator runs [36]. In
the quadrature demodulator, however, the input signal and the sampling clock are derived from

the same oscillator, so the input and clock signals will only experience small, short-term phase
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shifts, but will maintain a steady phase relationship over time. The delay between the received
signal and the local oscillator signal is very short for ground penetrating radar, so the phase noise
of the received signal is correlated with that of the LO signal [1]. Timing jitter is dependent on
the target range: the received signal is delayed more for more distant targets, and the oscillator
phase noise is integrated over a longer period of time, giving rise to worse jitter. The dependence

of jitter on range was not explicitly examined.

Timing jitter can be derived from oscillator phase noise Timing jitter is the effect of oscillator
phase noise observed in the time domain; the phase noise for a given oscillator is usually specified
by a plot of single-sideband noise spectral density L(f) in the frequency domain. Noise spectral
density can be integrated over a particular frequency range to obtain the phase noise power over
the chosen bandwidth, from which the rms timing jitter can be calculated by treating it as the

equivalent sideband power of a phase modulator [38].

Model used for simulations Timing jitter ¢,;(¢) was modelled as a Gaussian random variable
with zero mean and constant variance, a reasonable approximation since the input and clock
signals are derived from the same source. The standard deviation o; of the timing jitter was
specified in units of time - typical values, gauged from the simulations performed by Maloberti
et al., are standard deviations ranging from 1 to 10ns [20]. The effects of logic gate jitter are
assumed to be allowed for by choosing a jitter variance larger than than that of the oscillator alone.
2.3.6.2  The effect of timing jitter on sampling

Timing jitter introduces an amplitude error into the sampled value in exactly the same way as
aperture jitter - the error can be calculated by substituting €;; for €,; in (15).

2.3.7 Quantizer introduces quantization noise

The quantizer converts the analogue sample-and-hold output into a digital code: each code
represents a unique reconstruction level. Since the quantizer has a fixed number of reconstruction
levels and the input signal has an infinite number of possible values, the quantized output is
necessarily an imperfect copy of the input signal.

2.3.7.1 Model of a mid-tread uniform quantizer

The quantizer is modelled as an ideal quantizer, which can be defined as consisting of a set of
contiguous intervals or cells on a partition of the real line. Each cell has a reproduction level or
code, placed in the middle of the cell. The quantizer output is then simply the reproduction level

or code closest to the input [16]. The transfer function is a staircase function when plotted on
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Cartesian axes, and can be described mathematically as

-5 ($-15)a<s
qz) =< kA; (E—05)A<z<(k+0.5); (17)
(-3 A; z< (-5 +05)A

2
where M is the number of reconstruction levels, and A is the width of the reconstruction cells,

or the bin width, and the index k£ has the range k = (—% + 1) yeee (% = 2) [39].

Quantizers in real ADCs are clocked at the sampling frequency, so that the output code changes
only on clock edges. In practice, the output code is represented as a binary word of width b bits,
so the number of levels is M = 2°. A quantizer is uniform if the quantization levels are equally
spaced, and is known as a mid-tread quantizer if a reconstruction level exists at exactly 0 volts,
and each reconstruction level is a multiple of A from the z-axis.
2.3.7.2  Quantization noise
The quantizer error ¢, is defined as ¢, = Q(x) — z. The quantizer output is expressed as the sum
of the input signal and the quantizer noise. Since the quantizer input is generally a sequence
of samples z(n), the quantizer noise process is €,[n1s| = Q(z[nTs]) — x[nT}], and is often

characterised statistically [39].

Quantization error in synchronous sampling causes spurious signals The nominal ratio of

signal to quantization noise is

SNRuom =6.02b4+1.76  (dB) (18)

where b is the number of quantizer bits [40]. Coherent sampling, or synchronous sampling,
occurs when the ratio of the sampling frequency to the input frequency is an integer larger than
1 (i.e. fs = mf;,; m a natural number >1) [40]. The quantization error due to synchronous
sampling is deterministic, and (18) no longer holds. The deterministic quantization noise causes
spurious signals, observable in FFT plots of sampled data [40]; the quantization noise process is
distinctly periodic, and can be described by a Fourier series for simple inputs [39]. The third
harmonic will usually have the highest amplitude since it is the odd harmonic with the lowest
order, especially when the input amplitude is low [41].
2.3.7.3 Dithering improves data converter performance
Dithering is the addition of a random signal to the input of an ADC and can be achieved by
simply averaging successive quantizer output values if the input signal already contains random

noise- this is known as nonsubtractive dithering [42]. Dithering is implemented in this design
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by coherent integration, which produces four averaged sample values for every /N periods. The
random signal is provided by the thermal noise in the input signal; Gaussian noise causes the
quantization error to be approximately uniform even when the quantization step size A is as large

as the standard deviation of the noise [43].

Dithering reduces quantization error Dither can, in theory, reduce quantization error to a
negligible quantity and minimize coherent signal spurs caused by the nonlinear quantizer transfer
function, at the cost of reduced converter bandwidth [44]. In practice, however, dither usefully
removes small-scale (i.e. localised) linearity errors, but large-scale errors must be removed by a

look-up table or compensation algorithm [45].

Dithering reduces differential nonlinearity error The cell width A varies slightly from code
to code in practical converters, a property expressed by the differential linearity, the difference
between each cell’s actual width and the ideal value [46]; some codes are good and some codes
are bad [30]. Differential nonlinearity causes spurious signals, which can be reduced by dithering,
which effectively randomizes the errors so that the averaged output contains less error than if the

input exercised only a bad code [30].

2.4 Summary

SFCW radars produce a series of discrete tones, measuring the amplitude and phase of the received
signal at each frequency step. The Mercury and Venus SFCW radars use a time-interleaved
heterodyne architecture to compensate for errors in the RF components; this also removes the
ambiguity in the sampled phase. A digital quadrature demodulator measures the radar IF signal
amplitude and phase by sampling at twice the Nyquist rate and filtering the samples to produce
estimates for the in-phase and quadrature components, avoiding the imbalances which plague
analogue demodulation schemes.

The IF signal samples contain errors, causing inaccuracy in the demodulator outputs. Coherent
integration promises to reduce the effect of random errors, at the expense of increased conversion
time.

A model of the demodulator was produced for use in computer simulation of the demodulator
performance. The model shows that thermal noise and clock jitter are the most significant sources
of random errors in sampling; systematic errors can be compensated for, and are also attenuated

by dithering, implemented in this case by coherent integration.
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Chapter 3
Simulating the digital quadrature
demodulator

This chapter presents a behavioural model of the complete demodulator that includes analogue,
mixed-signal, and digital components, and describes the simulations predicting the harmful effect
of component errors on the demodulator outputs. These simulations assisted in defining the

system design parameters (sampling rate, coherent integration factor.)

3.1 The digital quadrature demodulator model

3.1.1 Components of the model

=_thit)

Amplitude estimste
IF zignal =(1)

E Satnple " . Coherent . Quadrature
;nr'u::; \_/ and Hold Quantizer Integrator Detnodulatar

Gain

Phasze estimate

\ Sample
IF zource and sample N clock

clock are phase-locked & MHz

Figure 10. Block diagram of the demodulator model

The demodulator was simulated in the discrete-time domain, with timestep 7 equal to the clock
period, 125 ns; the equations are written as functions of discrete time ¢,,, the timestep variable n

ranging from 0 to NV ax.
3.1.1.1 Oscillators

The 2 MHz oscillator is an ideal oscillator, with output

sltn] = Acos(2m finTs + @) ;n=0,1,2, .. Npax
where A and ¢ are the amplitude and phase parameters, and the frequency f;, is 2 MHz.
The 8 MHz clock oscillator is modelled as an ideal oscillator with random timing jitter,

assumed to be Gaussian. Following the form used by Awad [47], we let the rising edges of the
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clock signal occur at

terk(tn] = nTs +€5[n] ;n=0,1,2, .. Npax
where the timing jitter €;[n] is the jitter random variable associated with the nth sampling
instant; €;[n| are identical and independent Gaussian random variables with zero mean and a
variance of o7 [47].
3.1.1.2  Gaussian white noise
The white noise signal s;5t,,] is a Gaussian random process with zero mean and a variance of afh.
The noise power is set directly by the signal-to-noise ratio, SN Ry, using the IF signal power as

numerator (see Appendix A.)

3.1.1.3 Gain

The transformer and amplifier were combined and modelled as a single gain, G,:

Sa [tn] = Ga(S[tn] + S [tn])
3.1.1.4 Sample-and-hold
The sample-and-hold was an ideal sample-and-hold, and the output was calculated as the IF signal

value at the sample time including jitter, including the noise voltage:

Ssnnltn] = sq[nTs + €;[n]]
= Gu(s[nTs + €[n]] + swltn]) ;7 =0,1,2, .. Nyax
3.1.1.5 Quantizer
The quantizer was as an ideal midtread quantizer Q(z), with 22 reconstruction levels; the number

of bits B and the quantizer range were specified as parameters. The quantizer output was

xq[tn] = Q( Sonnltn] )
3.1.1.6 Coherent integrator

The coherent integrator is simply nonsubtractive dithering implemented individually on the
sample streams corresponding to each of the four sampling phases, with the coherent integration

factor NV as the ensemble length. The accumulator outputs after /V periods are therefore
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Taceo[t] = (2g[iNT) 4 24[(iN + 4) T3] + z4[(iN + 8)T5] + ...)/N
Tacaa[t] = (xg[(iN 4+ 1)T,] + 24[(iN + 5)Ts] + z4[(iN +9)T] + ...) /N
Tace2|t] = (xg[(iN + 2)T,] + x4[(iN + 6)Ts) + x,[(¢N + 10)T,] + ...) /N
Taceall] = (@g[(iN + 3)Ts| + x4[(iN + T)Ts) + x,[(:N + 11)T| + ...) /N

where the index ©+ = 0,1,2..L — 1 is the number of completed sets of N sinewave periods,
and L is a parameter specifying how many contiguous measurements (each requiring N periods)
should be taken.
3.1.1.7 Quadrature demodulator
The coherent integrator outputs are averaged sample values of the input signal at phases & = %’r;
k =0,1,2,3. The in-phase and quadrature components are calculated as an intermediate step

(the voltages are referred to the demodulator input by dividing by the amplifier gain):

Laccd [Z] — Tace2 [Z]

I = s (19)
o Lace3 [Z] — Zaccl [Z]
Qn = =t 0)

The amplitude and phase outputs are then:

Al = VI + Q{[i]g (21
¢'[i] = arctan (C}%[[Z]]) (22)

A complete simulation therefore produces L estimates for the amplitude and phase, respectively
A'li] and ¢'[7], for each combination of parameters.

3.1.1.8 Error signals
The simulation aims to investigate the errors in the demodulator outputs, so the amplitude and
phase errors were recorded to file, for statistical analysis in Matlab. The error signals were

calculated as

eoli] = ¢l —o



21

3.1.2 Simulation in the time domain using Python

The time-domain behaviour of the demodulator model was simulated on computer using Monte
Carlo techniques in Python, an open-source, interpreted language [48]. Each simulation run
was specified by supplying a set of values for each parameter. The parameters were varied in
sequence, such that L experiments were performed for each parameter combination. The errors
show some dependency on the input phase, so more than one value for ¢ was used; the mean of

the rms error over the phases was taken, reducing the effect of input phase on the results.

3.2 Simulating the demodulator with individual error sources
3.2.1 Simulating thermal noise

Thermal noise was simulated in two phases: the first phase covered a wide set of parameters but
used only one value for input phase ¢ to reduce computation time; the second phase examined a
narrower set of parameters in more detail, using 11 different ¢ values (see Section A 2.1.)
3.2.1.1 Simulation results for a single phase value

Simulated rms amplitude and phase errors are shown in Figures 11 and 12 for a 14-bit quantizer.
Coherent integration reduces the amplitude and phase errors by a constant ratio at lower
signal-to-noise ratios; the error tends to an horizontal asymptote (typically for N > 64) at

a threshold SNR; and coherent integration has no effect at the highest signal-to-noise ratios.
Random thermal noise and deterministic quantization noise respond differently to averaging:
coherent integration reduces the error contribution of white noise, but, at as the SNR rises, the
noise voltage becomes much smaller than the quantizer step size and dithering has no effect; the
output error is now due to quantization alone and will not be removed by averaging.

Coherent integration starts to show diminishing returns at a threshold SNR roughly
corresponding to the theoretical noise floor due to quantization noise, as per (18). The
relationship is illustrated in Table 1. This happens when the additive noise starts to become too
small to cause dithering; the noise standard deviation, oy, is about one-quarter of the quantizer
step size at the threshold.
3.2.1.2 Simulation results for several phase values
The second phase of the simulations used a larger set of input signal phase ¢ values, resulting in a
larger data set in which the effects of input phase could be averaged out.

Figures 13 and 14 show the simulated rms amplitude and phase error versus coherent
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Figure 11. Simulated rms amplitude error versus coherent integration factor for 14-bit quantizer
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Figure 12. Simulated rms phase error versus coherent integration factor for 14-bit quantizer
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i Rms Amplitude Error vs N, 40dB SNR
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Figure 13. Simulated rms amplitude error versus coherent integration factor for SNR=40 dB

. Rms Phase Error vs N, 40dB SNR
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Figure 14. Simulated rms phase error versus coherent integration factor for SNR =40 dB



24

Quantizer Bits Quant. Noise Floor Threshold SNR

8 -50 dB 50 dB
10 -62 dB 60 dB
12 -74 dB ~75dB
14 -86 dB 90 dB
16 -98 dB 100 dB

Table 1. Threshold SNR and quantization noise floor against number of bits

integration factor NV for an input signal-to-noise ratio of 40 dB. The error is independent of the
quantizer step size, indicating that the error is caused by thermal noise.
The rms amplitude and phase error, €4 and €4 respectively, maintain a constant ratio of
improvement as NV increases logarithmically. The reduction in standard deviation of the additive
a1 Ny

noise predicted by (12) is 7+ = /7,

where 07 and o, are at N; and N, respectively. The
simulation results show i—; RS \/%:f , where the two rms error values, €; and e, are at N; and Ns
respectively (see Table 2). The root mean square of the variance of the amplitude and phase error
ensembles also approximates the relationship predicted by (12), which is that the ratio of the two
variances should equal to /V.

Figures 15 and 16 show the simulated rms amplitude and phase errors for an input signal-
to-noise ratio of 80 dB. Coherent integration provides no improvement for 8-, 10-, and 12-bit
quantizers, indicating the predominance of quantization noise. However, the errors for 14- and
16-bit quantizers are very similar, suggesting that random noise is here the deciding factor. This
is confirmed by the constant ratio of improvement due to coherent integration. The additive

noise here has a standard deviation of 714V, while the 14- and 16-bit quantizers have a maximum

quantization error less than 61, V. The results for 14 and 16 bits have the property that two rms

Na

error values, €; and €5 at N; and N respectively, have the ratio i—; SRV

3.2.2 Simulating timing jitter

Figures 17 and 18 are log-log plots of the rms amplitude and phase error signals for a 10-bit
quantizer, with separate curves for each o; value. The results for 12-, 14-, and 16-bit quantizers
are similar. The severity of the errors is notable.

The most striking feature is the different effect of coherent integration on the amplitude and
phase errors. The amplitude error tends towards an asymptote as /N increases, especially for
larger o ; values. The phase error, however, maintains a constant ratio of improvement as [V rises.
The amplitude and phase are calculated from the same samples, so the difference in the error

signals response to coherent integration must be explained by the demodulator equations. The
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Rms Amplitude Error vs N, 80dB SNR
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Figure 15. Simulated rms amplitude error versus coherent integration factor for SNR=80 dB

Rms Phase Error vs N, 80dB SNR
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Figure 16. Simulated rms phase error versus coherent integration factor for SNR=80 dB



26

sigma = 5e-10
sigma = 1e-9
sigma = 2e-9
sigma = 4e-9
sigma = 8e-9
sigma = 16e-9

: Rms Amplitude Error vs N, 10 Bits
10 T T T

=
=)
i

s

-
o

rms amplitude error, uV, log scale

L L | S A | R T | I S " Lovvv vy Loy | TR T
1 4 16 64 256 1024 4096
Coherent Integration Factor N, log scale

Figure 17. Simulated rms amplitude error versus coherent integration factor for 10-bit quantizer

Rms Phase Error vs N, 10 Bits

10 T T T T al
sigma = 5e-10 |4
— sigma = 1e-9
—— sigma = 2e-9
—— sigma = 4e-9
—— sigma = 8e-9
\\ —— sigma = 16e-9
10° S,
E ™
% = \\\\
I e=
© -~ A
L S
2 i T
S10'E b .
-
» e,
& T
= E
T0%k : "
10'3 ! ! ! ! ! 1
1 4 16 64 256 1024 4096

Coherent Integration Factor N, log scale

Figure 18. Simulated rms phase error versus coherent integration factor for 10-bit quantizer
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B €AN=1 €4 N=1 var.of €x n=1 var.of €s N=1
€A,N=4096 €$,N=4096 Var.of €a N—a006 Var.0f €4 N—4096

8 63.3 64.3 4017 4107

10 63.8 65.3 4055 4273

12 64.4 65.8 4096 4302

14 63.7 66.0 4097 4404

16 64.0 59.7 4092 3540

Table 2. Simulated rms errors for 40 dB SNR

phase output is less sensitive at large input amplitudes.

The rms amplitude and phase errors are proportional to the timing jitter (the relationship is
clearer for larger N), clearly indicating that the error is caused by timing jitter, although the
effects of quantization can be seen for low o; values. Plotting the results for different quantizers
with constant o, as in Figures 19 and 20, shows that the rms amplitude error is independent
of quantizer step size, except at higher N in this case - the error is completely independent of

quantizer step size for larger timing jitter. The phase error is the same for all quantizers.

3.3 Simulating the complete demodulator

The simulations described above were performed with the quantizer number-of-bits parameter
ranging from 8§ to 16; unfortunately, a converter capable of sampling at 8 MSa/s with 16-bit
precision was not available commercially. The 14-bit converter used in the prototype system
has a dynamic range exceeding the specified 70 dB [49]. The following simulations aimed to
investigate the performance of the prototype demodulator in the radar system. The simulation
parameters are therefore set to match the prototype Dacs board.

3.3.1 Simulation parameters

3.3.1.1 Dynamic range

The demodulator should have a minimum dynamic range of 70 dB; this translates into an input
voltage ranging from 1 Vp,_p; to 316.2 1Vy,_pi. The smallest input has an amplitude of only
a few quantizer steps (A is 61 1V when referred to the transformer input.) Simulations were

performed for the maximum and minimum input amplitudes.

3.3.1.2  Signal-to-noise ratio

The maximum signal-to-noise ratio at the transformer input was chosen as 80 dB, based on the
radar receiver performance [5]. The thermal noise standard deviation was only oy, =1.12 1V,
much smaller than the quantizer step size (referred to transformer input.) The signal-to-noise

ratio with the smallest input was then 10 dB. The simulation was also performed for a noise
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Rms Amplitude Error vs N, sigma = 1e-9
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Figure 19. Simulated rms amplitude error versus N for o; = 12107
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Figure 20. Simulated rms phase error versus N for o; = 1210~?
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standard deviation of 70.5 'V ;_pk, slightly larger than the quantizer step size; the signal-to-noise

ratio was 74 dB with the maximum input and just 4 dB with the minimum input.
3.3.1.3 Timing jitter

The frequency synthesizers used to generate the transmit and local oscillator signals have a
worst-case rms phase noise of 2.2° [5]. Assuming the same instability in the IF signal, i.e. 2.2°,
the rms phase noise in the 2 MHz input signal is 3.3ns. The Dacs prototype contains a 16 MHz
Vectron TO-330 temperature-compensated crystal oscillator; integrating the phase noise over
the 10 kHz bandwidth for which the manufacturer specifies it, we find that the rms timing jitter
is less than 60 ps (Appendix A.) We consider phase noise to be effectively timing jitter, so the
simulations were performed with a timing jitter parameter of o; = 2 ns, 3 ns, and 4 ns - the

simulation results should bound the achieved performance.

3.3.2 Simulation results

The errors are nearly identical for both signal-to-noise ratios at the maximum input amplitude
(see Table 3.) Coherent integration reduces the rms amplitude error towards an asymptote, more
pronounced for larger timing jitter; this behaviour indicates that timing jitter is the most significant
contributor of error - even at N=1024, the rms amplitude error is several times larger than the
standard deviation of the thermal noise. This is not surprising, as (15) predicts a maximum
voltage error of 12.5 mV when the input signal is sampled with timing jitter ¢;; of 2ns; this is
orders of magnitude greater than the magnitude of the thermal noise. The phase error also shows
a clear dependence on the timing jitter, but is more reduced by coherent integration. Table 3

shows some of the results for A=999 mV,,_, and ;=3 ns.

TAN= N
SNR AN= o= €AN=1 | €A,N=1024 | €p,N=1 | €4, N=1024
€EAN=1024 | €4 N=1024
74 dB | 14.8 32.8 5.9mV | 400 uV 1.4° 0.04°
80dB | 14.6 32.8 5.8mV [ 396 uV 1.4° 0.04°

Table 3. Rms error values for input amplitude of 499 mV and timing jitter std. dev. of 3 ns

In contrast, the rms error at the minimum signal amplitude depends strongly on signal-to-noise
ratio, the errors for a SNR of 4 dB being about twice the magnitude of the errors for a SNR of 10
dB. The errors are the same for all three timing jitter values, in accordance with the prediction
from (15) that the sample error is about 8 1V when the input signal is sampled with timing jitter
€;; of 4ns - this is much smaller than the quantizer step size. Coherent integration improves both

the rms amplitude and phase error by approximately 32 as /V increases from 1 to 1024, matching
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Rms Amplitude Error vs N, 999 mVpp input, 74 dB SNR
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Figure 21. Simulated rms amplitude error; amplitude = 999 mV;_,, and SNR = 74 dB

Rms Phase Error vs N, 999 mVpp input, 74 dB SNR
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Figure 22. Simulated rms phase error; amplitude = 999 mV,;_,, and SNR = 74 dB
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Rms Amplitude Error vs N, 316 uVpp input, 10 dB SNR
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Figure 23. Simulated rms amplitude error; amplitude = 316 1tV pi_,r and SNR = 10 dB

Rms Phase Error vs N, 316 uVpp input, 10 dB SNR
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Figure 24. Simulated rms phase error; amplitude = 316 11V, and SNR = 10 dB
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€A N=1

€ N=1

SNR €AN=1 | €A N=1024 | €4, N=1 | €4 N=1024
€A,N=1024 €4, N=1024

4 dB 31.7 37.1 52 uvV 1.6 uvV 21° 0.6°

10dB | 31.9 32.4 28 uv | 10° 0.3°

Table 4. Rms error values for input amplitude of 158 uV and timing jitter std. dev. of 3 ns

the theoretical improvement due to dithering; the dithering is effective even for the lower noise
voltage (10 dB SNR.) Table 4 shows some of the results for A=316 11V, and 04;=3 ns.
The rms phase error is very large without coherent integration, as much as 21°, illustrating the

sensitivity of the phase output when the input amplitude is only a few A.

3.4 Summary

Computer simulations were performed to determine the relationship between sampling errors
and the accuracy of the digital quadrature demodulator output and the effectiveness of coherent
integration in improving the accuracy. The discrete-time simulations were performed in Python
and the results were analysed using Matlab.

The first series of simulations examined the effects of thermal noise and timing jitter in
isolation. Coherent integration was found to reduce the output errors due to thermal noise,
provided the noise standard deviation was at least an eighth of the quantizer step size. The
reduction corresponded well to that predicted by (12). Timing jitter caused more severe errors,
and coherent integration failed to reduce the amplitude error by the factor predicted as N
increased. The amplitude and phase errors, moreover, were independent of the quantizer step
size for jitter with standard deviation greater than 1 ns. The amplitude and phase errors were
proportional to the timing jitter, as expected.

Simulation of the prototype demodulator driven with the radar IF and clock signals was
intended to predict whether the required performance would be achieved. Timing jitter caused the
predicted performance to fall short of the specification at the maximum input amplitude; the phase
error exceeded the tolerance at the lowest input amplitude due to the relatively large quantizer step
size.

The link between simulations of the demodulator performance and the prototype system has
already been established in the last simulation series, which matched the simulation parameters to
the prototype. The following chapter describes the design and implementation of the hardware,
programmable logic, and software used to implement the demodulator, and describes the

measurement of the prototype performance.
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Chapter 4
Design and implementation of the
prototype

This chapter briefly describes the design and implementation of the Dacs circuit board and
software. The Dacs board is placed in the context of the Venus radar system, and a brief
requirements analysis is then elaborated. This is followed by a discussion of the design and
implementation of the hardware, programmable logic, and software, which emphasizes the

significant features. Finally, the performance of the digital quadrature demodulator is measured.

4.1 Dacs in context of radar architecture

Swich
I Tx ' T}{
U| Synthesizer - ™, Antenna
Calibration channel
¥
Reference N 1o / Rx
Czcillatar T Synthesizer Antenna
Swich
IF Signal
Processing
y
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* Quadrature
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Figure 25. Architecture of the Venus radar system

The data capture system (Dacs) is one module of the Venus ground penetrating radar system. The
Venus GPR uses a stepped frequency continuous wave architecture, described in more detail in
Chapter 2. Most of the Venus radar’s component systems have a single function. The Dacs unit,
however, integrates several important functions onto one circuit card:

(1) Digital quadrature demodulation. The IF signal is digitised by synchronous sampling, and
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the sample sequence is then processed by special algorithms. These suppress some of the
noise in the digitised signal and perform digital quadrature demodulation to extract the input
signal’s amplitude and phase.

(2) Radar control. The Dacs controls the operation of the entire radar system by setting
parameters of other systems in the radar, such as the frequency synthesizers and the
downconverter. The Dacs also directs their operation.

(3) Communication. An operator controls the radar using a computer connected to the Dacs
board; the computer sends commands to the Dacs and receives status information and
captured data.

4.2 Statement of key user requirements

4.2.1 Digital quadrature demodulation

4.2.1.1 Profile rate

The data capture system must capture a minimum of 10 full profiles per second, with at least 100
frequency steps per profile. The ramp repetition interval (RRI) must therefore not exceed 100
ms, and the dwell time cannot exceed 1 ms. Amplitude and phase measurements of both the
transmit-receive and the calibration channels must be taken at each frequency step.

4.2.1.2 Dynamic range

The dynamic range must be at least 70 dB (this specification is derived from the Mercury radar
[5]); the maximum allowed input voltage is 1 V,;_px. The IF input impedance should be 500 (2
to ensure compatibility with the AD603 programmable gain amplifier which drives the IF signal
input on the Dacs [25].

4.2.1.3 Accuracy

The phase output should have a rms output error no larger than 0.2°; this is the same as the error
specification for the frequency synthesizers of the Mercury radar [5]. The rms amplitude error
should be no larger than 120 1V, which is equivalent to 2A (quantizer step size) for a 14-bit
analogue-to-digital converter.

4.2.2 System control

Dacs requires a microcontroller to implement system control and communications functions.
The microcontroller software will execute from Flash memory and use SRAM as a temporary
store. Although the microcontroller should eventually execute an operating system, targetting
the microcontroller with code written in C is sufficient for test purposes. Only the functions

necessary for testing the digital quadrature demodulator will be implemented.
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4.2.3 Communication

The Dacs must communicate with other systems in the radar through a backplane interface. These
systems include the two frequency synthesizers, the RF/IF board (downconverter), and the RF/IF
motherboard. These functions will not be implemented on the prototype.

4.2.4 Electro-mechanical

Each system of the radar, including the Dacs, must be contained on an Eurocard-sized circuit

board. The circuit board will be mounted onto a backplane in the enclosure.

4.3 System design

The data capture system consists of a printed circuit board populated with semiconductor and
passive components. The functionality of the programmable logic devices is described in VHDL,
and the software running on the microcontroller is written in C. Both the programmable logic
devices and the microcontroller and its flash memory are programmed in-circuit.

The components can be grouped by function, as in Figure 26, which depicts only the major

modules.

4.4 Hardware design and implementation

4.4.1 Design

4.4.1.1 Analogue-to-digital conversion

The ADC device was selected on the basis of resolution and sampling speed. A survey of
available devices indicated that the fastest 16-bit converters, from Maxim and Analog Devices,
ran at a sampling rate of 1 MSa/s - not fast enough for this application [50][51]. So a 14-bit
analogue-to-digital converter was specified.

The Texas Instruments THS1408 is a 14-bit differential-input ADC and includes a
programmable gain amplifier (PGA) with gain adjustable from 0 to 7 dB, and samples at speeds
up to 8 MSa/s [49, p 5]. The ADC has a pipeline latency of 9.5 periods; ambiguity in dividing the
reference clock makes the latency irrelevant. The THS1408 contains several control registers,
which allow a programmable offset to be subtracted from the sample value and the PGA gain to
be set.

A centre-tapped transformer converts the single-ended IF signal into a suitable differential

signal. The maximum IF input is 1 V,,_p ac, producing a 4 V,,;,_,;, signal at the ADC input; the
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quantizer step size is thus 61 'V referred to the transformer input. The datasheet for the THS1408
specifies a typical spurious-free dynamic range as 80 dB, for f;,, = 4 MHz and f; = 8 MHz [49].
4.4.1.2 Digital signal processing in the FPGA

The digital signal processing is performed in a Xilinx Spartan-II field-programmable gate array
with 200,000 gates. The processing modules are coded in VHDL and loaded into the FPGA chip

after power is applied.

4.4.1.3 Reference clock for digital quadrature demodulator

The Dacs design provides three sources of reference clock for the demodulator. The first two are
on-board oscillators: a 16 MHz temperature-compensated crystal oscillator (TCXO) or a 32 MHz
crystal oscillator. A connector provides an input port for an external oscillator, such as the HP
33120A signal generator used during testing.

4.4.1.4 Microcontroller controls system operation

The Dacs board contains an Atmel AT91M40400 microcontroller, which integrates an
ARMT7TDMI processor core, several on-chip peripheral devices, and a 16-bit external bus
interface. The microcontroller boots off a 512K x 16-bit flash memory IC, and uses an 256K x
16-bit SRAM chip for temporary storage. The AT91M40400 executes 32-bit instructions, but the
external bus interface is 16-bit so the processor executes instructions at half the bus rate.

4.4.1.5 Bootstrap configuration CPLD

A small CPLD (Xilinx XC9572) controls the boot mode of the microcontroller; this CPLD routes
several signals between peripheral devices, the microcontroller, and the FPGA.

4.4.1.6 Communication interfaces

The Dacs board has several communication ports, linking it with other components of the radar
system and with external devices. The Dacs board has two serial ports: one is implemented as
an RS232 serial port, the other is a slot requiring a special add-on transceiver card. These serial
ports provide a simple interface to external computers. A Crystal CS8900A Ethernet transceiver
chip implements a 10BaseT Ethernet port, but was not placed on the prototype. The expansion
bus interface is based on the 16-bit ISA synchronous bus; this is the link to other systems within
the radar enclosure, which share a common backplane, and was also not placed on the prototype.

4.4.2 Implementation

The hardware design was captured as a set of schematic diagrams in Protel 99SE. The artwork for

the printed circuit board was also drawn in Protel 99SE, and sent to a PCB production house, Trax
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InterConnect (Pty) Ltd, who fabricated the circuit boards to specification - it is worth noting that
the printed circuit board stretched the limits of the available fabrication technology, especially in
terms of via size and track width/spacing in certain sections. The bare circuit board was populated

by another contractor, Rhomco (Pty) Ltd.

4.5 Programmable logic design and implementation

The Dacs board contains three programmable logic devices: an FPGA used mainly for signal
processing, a small CPLD assisting with boostrap configuration, and a large CPLD used for the
expansion bus interface. Firmware was not produced for the expansion bus as this was outside the
thesis scope.

4.5.1 Programmable logic implemented in the bootstrap configuration CPLD

The logic within the configuration CPLD is implemented as simple combinatorial logic. It
configures the microcontroller boot mode at power-on, configures the FPGA programming mode
at power-on, routes 1O signals between the microcontroller, FPGA, and CS8900A Ethernet
transceiver, and performs some simple logic functions on the reset signals.

4.5.2 Programmable logic implemented in the FPGA

The prototype board was used to test the demodulator, and was not integrated into the radar. The
Dacs prototype was therefore programmed to take a sequence of measurements at a constant input
amplitude and phase.

4.5.2.1 Structure

The functions implemented in the FPGA were decomposed into modules defined in terms of
their behaviour and interfaces. This top-down design approach provided similar advantages to
an object-oriented approach to software: reduced coupling between modules made modifications
simpler, there was a clear mapping between modules and their functions, and the completed

modules lend themselves to reuse [52].

Controller for analogue-to-digital converter The ADC controller is the interface between the
FPGA and the ADC chip: it loads configuration parameters into the ADC, and reads sample values
from the ADC, over a half-duplex, parallel bus. The ADC amplifier gain, the programmable

offset, and the control register can be set.

Digital signal processor The digital signal processor acts as an accumulator, the first step in
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Figure 28. Block diagram of the VHDL code for the FPGA

coherent integration (division and demodulation were performed on the PC to avoid introducing
round-off errors; it was also convenient to have the complete set of sample values available for
analysis.) The number of samples to integrate, /V, and the ensemble length, L, (the number of
measurements to be taken in sequence) are parameters.

There are four accumulators, one for each sample phase needed for demodulation - the timing
of the accumulator writes relative to the ADC controller output samples is shown in Figure 29;
writes to accumulators 0 to 3 are represented by assertion of signals WR[0:3].

Once the full set of samples in a measurement have been loaded, the accumulator values are
clocked into a set of registers and transferred into the dual-port memory while the accumulators
are reset for the next measurement - the timing of this process is shown in Figure 30; the
accumulators are cleared when the CLR signal is asserted, and the 8 writes to the dual-port
memory occur while the MEM_WR signal is asserted. The coherent integration factor /N must
be at least 3 if more than one measurement is taken contiguously to allow enough clock cycles for

the accumulator values to be written into memory.

Dual-port memory The 2048 x 16-bits dual-port memory is the bridge between the two clock
domains: the sampling and signal processing modules run at the sample clock frequency and the

host port interface runs at the microcontroller clock frequency (32.768 MHz.) This memory is
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only used for storing the accumulator values, and has a capacity of 128 periods.

Host port interface to microcontroller The FPGA is memory-mapped on the microcontroller
system bus. The microcontroller reads and writes configuration parameters from/to the
configuration registers, and reads accumulator values from the dual-port memory. The
microcontroller is bus master and initiates all transactions. The host-port interface implements

the 16-bit bus protocol of the Atmel AT91M40400 microcontroller with 4 wait states.

Configuration registers Simple registers store the configuration parameters, namely the
coherent integration factor IV, ensemble length L (fixed at 128 for testing), ADC amplifier gain,
ADC offset register value, and the ADC control register value (which should only be set to
0x0000.)

FPGA system controller The FPGA system controller directs the other modules’ operation by
asserting enable signals at the appropriate times and monitoring status signals from these modules.
The FPGA system controller changes state under stimulation from the microcontroller.

The sampling and coherent integration must be synchronised to the IF signal if the phase
estimate is to remain consistent across successive measurements. The first sample in each
measurement must be taken at the same phase, which means that a measurement can be
commenced only on every fourth clock edge. The FPGA system controller performs this
synchronisation as the START signal from the microcontroller is asynchronous.
4.5.2.2  State machine logic
The FPGA is programmed as a state machine, expressed in Figure 31 - the diagram is simplified
to enhance clarity. The FPGA system controller traverses this state machine in response to the
RESET and START inputs from the microcontroller; the trigger conditions for each transition are
shown. Microcontroller access to the configuration registers and dual-port memory is independent
of the system controller state, with the exception that the dual-port memory cannot be read while
the system controller is in the RESET state.
4.5.2.3 Implementing the programmable logic
The behaviour of the programmable logic for the FPGA and CPLD was specified in VHDL using
a modular approach. The VHDL was synthesized and compiled in Xilinx ISE 4.1 on a Pentium II
PC running Microsoft Windows 2000. The bit files were downloaded to the target devices using
a special JTAG in-system programmer; all the programmable logic devices share a JTAG chain

accessed via a single connector.
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Figure 31. State machine representation of the FPGA system controller

4.6 Software design and implementation

The primary functions carried out in software are control of the FPGA state, configuration of the
FPGA and ADC parameters, provision of a user interface, and digital quadrature demodulation.
Software is executed on the Dacs board microcontroller and on a PC, the two computers linked by
a high-speed serial port.

4.6.1 Software design

The software design partitions the functions according to which processor - microcontroller or PC
- they will be executed on (Figure 32.) The microcontroller reads the sets of accumulator values
from the memory-mapped FPGA and transmits them to the PC, which performs digital quadrature
demodulation to estimate the amplitude and phase of the sampled signal.

The PC software also provides a simple user interface. Figure 33 shows a typical sequence.

4.6.2 Microcontroller software

The microcontroller code, written in C, has a simple structure. A few preliminary instructions
configure the microcontroller peripherals, while the main routine is an infinite loop. The loop
calls a few high-level functions to accomplish its tasks, namely configuring the FPGA, executing
the measurement sequence, or running a test routine.

4.6.2.1 Behaviour

The microcontroller software idles in an infinite loop, waiting to receive a command over the
serial port. The microcontroller jumps to the data reception, configuration, measurement, or a test

procedure, contingent on the command. Control returns to the main loop once the procedure is
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complete.

The PC software sends the configuration parameters to the microcontroller in a stream of bytes.
Reception of the configuration command causes the microcontroller to place the FPGA into the
RESET state. Once the parameters have been loaded into the FPGA, the FPGA is placed into
CONFIGURE state; the FPGA enters the IDLE state after configuration. The FPGA state is set to
SAMPLE if the sample command is received; once the FPGA indicates that sampling is complete,
the microcontroller reads the data from the dual-port memory and transmits it to the PC.

4.6.3 PC software

The software on the PC is the user interface, and also performs digital quadrature demodulation
on the data received from the Dacs. The software was implemented in Python [48], an
object-oriented, open-source scripting language chosen for its ease of use. Python runs on
GNU/Linux or Microsoft Windows 2000. The program for interfacing to the Dacs board runs in

a MS-DOS window on Windows, but some of the features were ported to Linux during testing.

4.6.3.1 Behaviour
The PC software presents a command-line interface to the user, who can set the configuration
parameters to be programmed into the FPGA, cause the FPGA to be configured, or have a set of
measurements taken. Once an operation has been completed the user may choose another.

The FPGA is configured and measurements are taken in cooperation with the microcontroller

on the Dacs, with communication over the serial port.

4.7 Measuring the performance of the demodulator prototype

The performance of the Dacs board was measured once the prototype hardware and software were
working satisfactorily. The test equipment limited the precision of the performance tests, so the
tests aimed to establish the effectiveness of coherent integration and subsampling in improving
the demodulator output rather than measuring absolute accuracy. The demodulator performance
was therefore measured in terms of statistical properties rather than absolute accuracy.

4.7.1 Test setup

The prototype Dacs board was connected to a pair of HP 33120A signal generators, phase-locked
using the HP 33120-90005 kit. These provided the sampling clock and the 2 MHz IF signal.
The HP 33120A signal generators used digital-to-analogue converters with an amplitude

resolution of 12-bits [53], whereas the device under test used a 14-bit analogue-to-digital
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converter. The signal generator’s harmonic distortion for a sinusoidal output at 2 MHz was
specified at —35 dBc, and amplitude accuracy was given as no better than +1%, with flatness
of a sinusoidal output given as £3.5% over the voltage range of interest [53]; in other words,
measurements were limited by the signal sources. The generators had not been calibrated in
years, so their performance was likely even worse than specified.

4.7.2 Test method

The device under test (DUT) is considered as a black box, with inputs for clock and IF signals,
and outputs for amplitude and phase. The imprecision of the signal generators meant that the
amplitude and phase of the input signal were not known accurately. Several ensembles of 128
contiguous amplitude and phase measurements were taken, then one of the parameters was
changed and the process repeated. The recorded data was analysed in MATLAB: the root mean
square errors of the amplitude and phase ensembles were calculated. The exact amplitude and
phase of the input were unknown, so the rms errors were calculated by taking the mean of each
amplitude and phase ensemble as a baseline and defining the error signal as the deviation from the
mean.

4.7.3 Performance test results

4.7.3.1 Linearity of demodulator outputs

Amplitude linearity This experiment aimed to determine the linearity of the demodulator output,

A’. The input signal amplitude A;, was stepped in equal increments of 25 mV, over the range 25
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mV to 500 mV; the phase was fixed at 45 degrees. The coherent integration factor was 1024 and
the ensemble length 128. Eight amplitude ensembles were recorded at each amplitude, and the
average of the ensemble means was taken as the output amplitude.

Figure 35 is a plot of the ratio %ﬂ, and shows that the output is quite linear, although the
exact ratio varies somewhat unpredictably. The HP 33120A signal generator changes its output
amplitude by switching attenuators into and out of the signal path[53], and is likely the source
of some of the nonlinearity. The average ratio of the output to input amplitude is 0.9085: this is
less than 1 because of input impedance mismatch - the input impedance is not exactly 50 €2 - and
insertion loss in the RF transformer.

The difference in output amplitude step size between consecutive input amplitude steps is
plotted in Figure 36. The differential step size falls within a 200 'V range except for 3 points,
errors attributed to the signal generator; an error band of 200 1V corresponds to slightly more than
3 A, the quantizer step size - so the demodulator output amplitude is fairly linear. The differential

step size is slightly larger than the rms amplitude error measurements reported below.

Phase linearity The purpose of this experiment was to measure the linearity of the demodulator
phase output, ¢’. The input signal phase was incremented in steps of 10° from 0° to 350°, at a
constant amplitude of 1000 mV ;... The coherent integration factor was 1024 and the ensemble
length 128. Four phase ensembles were recorded at each phase, and the average of the ensemble
means was taken as the output phase.

The differential step size - the difference between consecutive phase outputs, minus the nominal
step size of 10° - is plotted in Figure 37. The differential step size is within £0.1° - that is, the
demodulator phase output is linear within £0.1°, with the exception of 1 data point, an error most
likely due to the signal generator. However, the differential step size is an order of magnitude
larger than the rms phase error measurement reported below, a discrepancy attributed to the phase
linearity of the signal generator. The differential step size is also discernibly periodic, repeating
four times over the 350° input range, again this is most likely caused by the signal generator.
4.7.3.2 Influence of coherent integration on estimated rms amplitude and phase errors
This experiment investigated the relationship between coherent integration and the rms
demodulator output errors. The amplitude and phase of the IF signal were fixed, and 8 ensembles
were recorded for each coherent integration factor; the experiment was repeated for amplitude

settings of 100, 500, and 1000 mV ;_,, with the phase set to 45 degrees. The rms error signals
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are plotted on logarithmic axes in Figures 38 and 39, showing the effect of coherent integration.
The measured amplitude error is clearly improved by coherent integration: a sharper initial
improvement flattens out as NV increases, similar to the simulated results for significant timing
jitter, although the improvement ratio for 100 mV;_,, amplitude remains more constant. The
amplitude error is greatest for an input amplitude of 1000 mV,;,_,, explained by the dependence
of the voltage error due to timing jitter on the input amplitude, as shown in (15).
We expect coherent integration to reduce random errors: the rms amplitude errors €; and
€2 at N7 and N, respectively should be related by E—; ~ \/%:f, a relationship confirmed by the
simulations. Table 5 shows that this relationship holds for an input amplitude of 100 mV,;_,,

but not for the larger amplitudes.

Vm IOOmVpk,pk SOOmVpk,pk IOOOmVpk,pk

4,16 2 1.99 1.88 1.86

4,64 4 4.03 3.43 2.93
4,256 8 8.20 5.68 4.84
4,1024 16 15.16 9.49 7.06
4,4096 32 27.11 12.22 9.15

Table 5. Effect of coherent integration on amplitude error for different input amplitudes

The rms phase error has a much less predictable behaviour. The error is largely independent of
the input amplitude, except for the initial points on the 100 mV,_,. curve. Coherent integration
has little effect on the rms error - in fact, the curves are nearly horizontal: only the region between
N = 256 and N = 1024 shows much improvement. The error is worse for the first few points
of the 100 mV;_, curve. Simply estimating the rms timing jitter from the measurements, we
obtain an answer of about 0.01°, or 14 ps, which seems incredibly small. Equation (15) suggests
the resulting amplitude error for an input amplitude of 1000 mV,_, is about 78 1V, which is not
contradicted by the rms amplitude measurements shown in Figure 38, the largest of which is less
than 50 V.
4.7.3.3  Consistency of error measurements
The instability of the ADC output is noted in Appendix C (see Figure 42), and attributed to the
signal generator. The rms amplitude and phase error measurements described above are quite
small: the amplitude error is less than 50 1V and the phase error is less than 0.01°. Since the
actual amplitude and phase were not known, the ensemble mean was used, and the deviation from

the mean was used as the error signal. The results showed a high degree of repeatability.
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The experiment to measure the drift of the ADC output recorded 256 amplitude and phase
ensembles, with an input amplitude of 1000 mV,_,: and coherent integration factor of 1. The
mean rms amplitude error was 71 pV, with a standard deviation of 14 V. The mean rms phase
error was 0.017°, with a standard deviation of 0.002°. Both of these results agree with the
measurements plotted in Figures 38 and 39, which were recorded with higher values of V.

4.7.3.4 Influence of subsampling on the amplitude and phase error
ca,N=4 ca,N=4

Subsampling Ratio o N—1096 A N—=1096 €A €A
Vm IOOmVpk_pk IOOOmVpk_pk IOOmVpk_pk lOOOmVpk_pk
P=1 27.11 9.15 BpVio <lpV 43V to 5uV
P=5 128.72 10.00 134V to 1uV 57V to 6V

Table 6. Effect of subsampling on amplitude error

The signal generators maintained a very poor phase lock when the subsampling ratio P was 3, but
the lock was significantly better with P = 5, so measurements were only taken for the latter value.
The procedure was the same as for the above measurements. Eight ensembles were recorded
for each coherent integration factor IV, at fixed input amplitude and phase; the experiment was
repeated for amplitude settings of 100, 500, and 1000 mV ;.

There were several differences between the performance obtained for P = 1 and P = 5,
summarised in Tables 6 and 7, which show results obtained with input amplitudes of 100 and
1000 mV pi_pp.

Coherent integration reduces the rms amplitude and phase errors to similar values whether
subsampling is selected or not. Since the acquisition time is 5 times longer when P is 5 than
when it is 1, it is more sensible to set P to 1, allowing a larger coherent integration factor given
the limited dwell time of the radar - subsampling should be discounted in favour of coherent

integration to obtain the lowest errors in a given acquisition time.

4.8 Summary

The prototype Dacs board contains a digital quadrature demodulator as well as several other
modules required to perform its roles in the Venus radar system. The key demodulator
requirements are a ramp repetition interval of 100 ms, a dynamic range of at least 70 dB, an
amplitude accuracy of at least 120 1V, and a phase accuracy of at least 0.2°.

A microcontroller directs the system operation, implementing the control logic and the

communications interface to an external computer. The IF signal is sampled at 8 MHz by a
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Figure 40. Rms amplitude error versus coherent integration factor, for P = 5

Measured Rms Phase Error vs N
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Figure 41. Rms phase error versus coherent integration factor, for P = 5
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€o,N=4 €y, N=4

Subsampling Ratio <, N—1096 <, N=1096 €p €
Vin IOOmVpk_pk lOOOmVpk_pk IOOmVpk_pk lOOOmVpk_pk
P=1 8.35 2.92 0.03° t0 0.004°  0.01° to 0.003°
P=5 64.07 3.93 0.22° 10 0.003°  0.01° to 0.003°

Table 7. Effect of subsampling on phase error

14-bit ADC, and the samples are processed in an FPGA. The microcontroller reads the processed
samples from a dual-port memory in the FPGA and transmits them to a PC.

The demodulator performance was measured using phase-locked signal generators to provide
the clock and IF signals, but the generators’ imprecision limited the accuracy of the tests. The
amplitude output was linear, with the differential error within a 3A band, while the phase output
was linear within 0.1°. Timing jitter was found to be the most significant source of sampling
error; coherent integration reduced the amplitude error considerably, while the phase error was
less susceptible to improvement. Subsampling was found to offer no benefit, as expected from
the theoretical model.

The simulation and measurement results are compared to the specifications in the next chapter,

which also presents the conclusions and recommendations for future work.



54

Chapter 5
Summary

5.1 Analysis of results

5.1.1 Analysis of simulation results

5.1.1.1  Isolated error sources

Simulation of thermal noise in the input signal confirmed the benefit of coherent integration
in improving the output accuracy. The simulations showed that dithering improved the output
accuracy even more than the accuracy achieved when the noise was so small, relative to the
quantizer step size, that no dithering occurred (Section 3.2.1.)

Timing jitter introduced significant errors into the demodulator outputs. The error was
independent of quantizer step size for timing jitter with a standard deviation larger than 1 ns.
Although both amplitude error and phase error improved with coherent integration, this was
subject to diminishing returns in the case of amplitude error, which quickly approached a limit
(Section 3.2.2.)
5.1.1.2  Simulated performance of the complete demodulator
Simulation also gauged the performance of a model representing the prototype Dacs hardware,
using a 14-bit quantizer, driven by the radar signals. The simulations were performed for an input
signal with 70 dB dynamic range (A=999 mV ,;_pi to 316 1V i_pr), for rms timing jitter o¢; from
2 ns to 4 ns, and for thermal noise standard deviations of 70.5 1V and 1.12 1V (corresponding to
SNR of 74 dB and 80 dB with the maximum input.) The amplitude and phase errors depended on
the input amplitude, although the significance of the errors, especially the phase error, was much
higher at small amplitudes. The dominant error contribution, for all but the smallest amplitudes,
was attributed to timing jitter; the main contributor of timing jitter is frequency synthesizer phase
noise, downconverted into the IF signal (Section 3.3.) The model includes only error sources
that depend on the input signal frequency, so predicted that subsampling - using a lower clock
frequency - should provide no benefit.

5.1.1.3  Predicted performance and the specifications
The specifications required a maximum rms amplitude error of 120 1V and a maximum rms phase

error of 0.2° (Section 4.2.1.) The simulations predict that the specified performance will not be
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A SNR | €4 specified | €A,N=1024 | €¢ specified | €4 N=1024
999 MV, _pr | 74dB | 120 uV 400 uV 0.2° 0.04°
316 Vpepe | 4dB | 120 4V 164V |02° 0.6°

Table 8. Simulated performance compared to specifications

achieved over the entire operating range. The dwell time limits the coherent integration factor
N to 1000, closely approximated in the simulations by N=1024. At input amplitude A of 999
mV,_pi the rms amplitude error exceeds the specification due to the large timing jitter, while
the phase jitter is acceptable; at an amplitude A of 316 1V ,;_pi the amplitude error is within the
required tolerance, while the phase error now exceeds the specification due to the small ratio of
input amplitude to quantizer step size (Section 3.3.)

5.1.2  Analysis of results from prototype demodulator

The performance of the prototype demodulator was measured in less than ideal conditions: the
input amplitude was guaranteed to only 1%; the input amplitude was not especially stable - the
signal generator amplitude drifted by several mV over periods of a few minutes; and the input
amplitude range extended down to only 50 mV,;_,,(Section 4.7.1.) A measurement campaign
was performed nonetheless; the error signal was taken as the deviation from the ensemble mean,
since the actual amplitude and phase of the input were not known precisely.

5.1.2.1 Performance of the demodulator

The demodulator outputs proved to be quite linear with a coherent integration factor N of 1024.
The amplitude input was stepped in 25 mV increments, and the resulting output steps had a
differential step size within £100 'V of the mean (the output step size was actually about 22.7
mV, showing the effect of transformer insertion loss.) The phase input was stepped in 10°
increments, and the differential step size of the output was within +0.1° of the expected 10°
(Section 4.7.3.1.)

Coherent integration was shown to reduce both the amplitude and phase error. The dominant
source of error appeared to be timing jitter, in agreement with the simulations; the rms timing jitter
was estimated from the measurements as less than 0.02° (Section 4.7.3.2.) Further in agreement
with the theory, subsampling was shown to introduce no improvement in the output accuracy
(Section 4.7.3.4.) Given the limited dwell time, subsampling should be discarded in favour of
increasing the coherent integration factor.
5.1.2.2 Measured performance and the specifications
The performance measurements proved to be highly repeatable, despite the less than ideal test
setup. Measurements could not be performed for input amplitudes less than 50 mV ;_,, so
the full dynamic range of the demodulator was not exercised. Simulation of the demodulator

and radar, however, predict that the phase error will exceed the specification (Section 3.3.)
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A €A specified | €A N=1024 | €¢ specified | €p,N=1024
1000 MV _py | 120 pV 6.2 uvV 0.2° 0.04°
100 mVy i _pi 120 uV 1.5 pv 0.2° 0.04°

Table 9. Measured performance compared to specifications

Measurement shows that the prototype demodulator performance was within the specified limits
(Sections 4.7.3.1, 4.7.3.2.) The dominant error contribution was from timing jitter, but the
measurements do not represent the performance achievable in the radar, since the timing jitter of
the test signals was much better than the expected phase noise of the radar IF signal. Reducing
the IF phase noise, by reducing the synthesizer phase noise, will improve the demodulator

performance.

5.2 Summary

This dissertation has described the design and implementation of a digital quadrature demodulator
for a stepped frequency ground penetrating radar system; the demodulator is part of the data
capture system board. The theoretical section began with an overview of the radar architecture
and operation, and how the interleaved dual-channel design allows the demodulator to overcome
ambiguity in the clock phase by making relative phase measurements. The demodulator design
was approached from a theoretical perspective, with the intention of elucidating the primary
causes of error in the demodulator output. After a suitable demodulator architecture employing
direct sampling of the IF signal was described, the potential of coherent integration to improve the
demodulator accuracy was examined. The theoretical section concluded by presenting models of
the individual components from which the demodulator was constructed. The primary sources of
error were found to be thermal noise and timing jitter. The short delay between the received signal
and the local oscillator signal meant that the phase noise of the two signals was correlated, but the
dependence of timing jitter on target range was not examined.

Computer simulations were performed on the demodulator model to determine the significance
of timing jitter and thermal noise in corrupting the demodulator output and the efficacy of
coherent integration in reducing these errors. Timing jitter was found to be the more serious
error mechanism. The performance of the demodulator inside the radar was also simulated using
signals with the signal-to-noise ratio and phase noise characteristics of Mercury radar system.
The simulations predicted that the demodulator would not meet its performance specifications

over the required dynamic range.
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The design and construction of the prototype demodulator began with a review of the key user
requirements, from which a design for the system was developed. The design of the hardware,
programmable logic, and software was explained in some detail, showing the operation of the
demodulator. The demodulator performance was measured and found to comply with the
specification, for the region of the dynamic range that was tested; it was noted, though, that the
clock and IF signals contained less phase noise or timing jitter than the signals expected in the

actual radar.

5.3 Conclusions

The following is concluded from the results obtained from the simulations and measurements:

(1) Timing jitter introduces the most error into the demodulator outputs. This is an especially
significant result since stepped frequency radars need frequency synthesizers which operate
over a very wide bandwidth, making low timing jitter over the entire bandwidth difficult to
achieve. Timing jitter, in the form of phase noise introduced by the frequency synthesizers,
prevents the demodulator performance from reaching the specified accuracy.

(2) The demodulator performance also deteriorated for signal amplitudes that were not much
greater than the quantizer step size (the smallest simulated input amplitude was less than 3A.)
The demodulator performance would not meet the specifications under these conditions, even
with coherent integration, as the demodulator phase output was sensitive to small errors.

(3) A prototype demodulator was constructed, and successful operation of the prototype was
demonstrated, using signal generators to supply the clock and IF signals.

(4) The signal generators were not precise enough to characterise the demodulator accurately,
but measurements showed the demodulator to be capable of meeting the performance
specifications, provided the phase noise of the input signals was low enough.

(5) Coherent integration was found to reduce the errors in the amplitude and phase outputs in the
presence of timing jitter and thermal noise. The simulations predicted that the error would be
reduced by the square root of the coherent integration ratio. Measurements of the prototype
performance found this was closely approximated by the amplitude error when the input
amplitude was 100 mV,_, (the error was reduced to less than %); the phase error did not
show as significant an improvement.

(6) Subsampling did not improve the demodulator performance, in accordance with theoretical
prediction. The demodulator should therefore be operated at a sampling frequency of 8 MHz,
allowing coherent integration of 1000 periods per channel (assuming the synthesizers have
negligible settling time.)

5.4 Recommendations

The following recommendations are made:

(1) The performance of the digital quadrature demodulator should be measured using signal
generators of greater accuracy than the HP 33120A generators.
(2) Calibration of the analogue-to-digital converter should be investigated, with the aim of
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removing systematic errors.

(3) Integration of the Dacs board with the Venus radar system should be started. This involves
implementing the Ethernet port and the radar backplane interface, porting an operating system
to the microprocessor, implementing the radar control software, and performing the digital
quadrature demodulation on the microprocessor rather than the PC which was used during
testing.
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Appendix A
Simulation of the demodulator

A.1 Digital quadrature demodulator model
A.1.1 Noise power calculations

The noise power is set directly by the signal-to-noise ratio, SN Ry,. The signal power into 1 €2 is

o2 = ATQ [14] and the noise power is calculated as

0,2

_ S

2

which follows from the fact that the signal-to-noise ratio is the ratio of the mean-square signal
to mean-square noise, which in the case of white noise is the simply the ratio of the variances
[14]; we can calculate the noise variance using the 1 2 powers since the signal-to-noise ratio is
independent of impedance.

A.1.2  Vectron TO-330 rms timing jitter

The Vectron TO-330 single-sideband phase noise is specified as -90 dBc at 100 Hz, -110 dBc at 1
kHz, and -130 dBc at 10 kHz [54]. The phase noise at 10 Hz was interpolated as - 50 dBc.

The output is a 2.0 V square-wave at 16 MHz; the output power is 40 mW into 1 2. The SSB
phase noise power, expressed in units of Watts, is then 4 x10~7 W at 10 Hz, 4 x10~* W at 100
Hz, 4 x10~ 2 W at 1 kHz, and 4 x10~ W at 10 kHz.

Following Adler [38], we integrate the phase noise power over the bandwidth, obtaining a
total power of 1.336x10~% W, giving an equivalent sideband level of -44.76 dB at 10 kHz offset.
Treating this as phase modulation yields an rms jitter of 0.33°, which is equivalent to an rms jitter

of 58 ps in a 16 MHz signal.

A.2 Simulation parameters
A.2.1 Simulating thermal noise

Phase one of the simulations used the following parameters:

(1) input signal amplitude A of 0.9987654 V,

(2) input signal phase ¢ of 0.1111 rad,

(3) signal-to-noise ratio SN Ry, of {20dB, 30dB, 40dB, 50dB, 60dB, 70dB, 80dB, 90dB, 100dB},
(4) amplifier gain of 1,
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(5) quantizer number of bits B of {8, 10, 12, 14, 16},

(6) quantizer range-1VtolV,

(7) coherent integration factor IV of {1, 4, 16, 64, 256, 1024, 4096},
(8) and ensemble length L of 128.

Phase two of the simulations used the following parameters:

(1) input signal amplitude A of 0.9987654 V,

(2) input signal phase ¢ of {(ﬁ) 2m; 1 =0,1,2..10} rad,

(3) signal-to-noise ratio SN Ry, of { 40dB, 80dB},

(4) quantizer number of bits B of {8, 10, 12, 14, 16},

(5) coherent integration factor NV of {1, 4, 16, 64, 256, 1024, 4096},

(6) and ensemble length L of 128.
A.2.2 Simulating timing jitter

The timing jitter simulations used the following parameters:

(1) input signal amplitude A of 0.9987654 V,

(2) input signal phase ¢ of %27? ;k=0,1,..5rad,

(3) standard deviation of timing jitter o;; of {500ps, 1ns, 2ns, 4ns, 8ns, 16ns},
(4) amplifier gain of 1,

(5) quantizer number of bits B of {10, 12, 14, 16},

(6) quantizer range of -1 Vto 1V,

(7) coherent integration factor NV of {1, 4, 16, 64, 256, 1024, 4096},

(8) and ensemble length L of 256.
A.2.3 Simulating the complete demodulator

The simulation parameter sets were chosen as

(1) input signal amplitude A of {499.5 mV, 158.113 uV},

(2) input signal phase ¢ of %27? ;k=0,1,..5rad,

(3) thermal noise standard deviation o4, of {1.12 uV, 70.5 uV},

(4) standard deviation of timing jitter o,; of { 2ns, 3ns, 4ns},

(5) amplifier gain of 4,

(6) quantizer number of bits B of 14,

(7) quantizer range of -2 Vto 2V,

(8) coherent integration factor NV of {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024},

(9) and ensemble length L of 256.
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Appendix B
Microcontroller software tools

B.1 Software libraries and tools

The source code was compiled and linked against a set of C libraries providing basic functions
including access to hardware peripherals. The linker also included an object file created from the
bootstrap code, which was written in assembly. The libraries and bootstrap code were adapted
from code used in a previous project in the Radar Remote Sensing Group [55].

The source code was compiled, linked, analysed, and converted using a set of programs
provided as open-source software by the GNU collective [56]. The programs were downloaded as
source code, compiled, and then installed on a PC running the Debian distribution of GNU/Linux.
The installation process necessitated some patches and bug fixes.

A small, open-source program called armtool [57] communicated with the Test Access Port
(TAP) on the AT91 microcontroller, allowing single instructions to be issued to the microcontroller
core, the microcontroller’s program counter to be set, and memory devices (including on-chip
registers) to be read. The armtool software was modified to work with a customised in-system
programmer: an Altera ByteBlaster modified to suit the Atmel AT91M40400’s JTAG port and
connected to the PC’s parallel port.

B.2 Cross-compiling the software

The software was written in C, except the bootstrap code which was written in assembly language.
The source code was cross-compiled and linked using the GNU compiler collection (arm-elf-gcc)
and GNU linker [56]. The compilation and linking process was controlled by GNU make and a
complicated makefile. This makefile was generated by writing a configuration script, then running
automake and autoconf against the script to produce a configure file; executing the configure
file in the build directory constructed the build tree and appropriate makefiles. The result of the
compilation process was a binary file targeted to boot the microcontroller from flash memory.
This file was in ELF format, and needed conversion into a raw binary file by the arm-elf-objcopy
binary conversion utility. Software was targeted to SRAM during testing - once the software

worked satisfactorily it was programmed into the flash memory.
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B.3 Programming the flash memory

The hardware and software for accessing the microcontroller’s Test Access Port via JTAG is
described above, and allowed the PC to download a binary file into the SRAM. A small program
to read a binary file from SRAM and write it to the flash memory IC was written to enable flash
programming. The programming process is:

(1) Download the target binary file (linked to boot from ROM) into SRAM on the Dacs, at a
certain base address.

(2) Download the flash programming application into SRAM (linked to run from SRAM), at
another base address.

(3) Instruct the microcontroller to begin executing from the start address of the flash programming
application; the target binary file will be programmed into the flash memory.

(4) Press the reset switch, causing the microcontroller to boot off the flash memory, which now
contains the new software.
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Appendix C
Testing the hardware and software

C.1 Hardware tests
C.1.1 Basic functions

The hardware was tested first, since a working circuit board was necessary to test the firmware
and software. The first test checked the functioning of the power supply, which worked correctly.

C.1.2 Programmable logic devices

The programmable logic devices were tested individually. The boot CPLD was programmed
with the firmware needed for normal operation and worked successfully. The FPGA was tested
by downloading some simple test logic; programming failed. The IC was removed and replaced
with one from another production batch, removing the problem. The expansion bus CPLD was
programmed simply to pass inputs from the FPGA bus to the expansion bus connector - these
signals were used in debugging the FPGA logic.

C.1.3 Microcontroller and memory

The microcontroller was first tested by connecting the microcontroller’s JTAG port to the PC’s
parallel port with the special cable and using the armtool software on the PC to read some of the
internal registers on the AT91 microcontroller. After communication was established between
the PC and the microcontroller, a small program was downloaded into the AT91’s internal SRAM
and executed. The external memory ICs were tested next; a design flaw in the interface between
the microcontroller and the SRAM IC was corrected. The flash memory IC was tested by
downloading a compiled application into flash and then booting the microcontroller from flash.
The microcontroller serial port successfully transmitted and received data.

C.1.4 Analogue-to-digital converter

The analogue-to-digital converter was tested once the firmware and software were working. The
ADC output contained a small dc offset of -8A; this was measured by removing the input signal
and averaging the ADC output codes. This offset was compensated by programming the Offset
register on the THS1408.
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C.1.4.1 Stability of the ADC output

The output of the ADC showed some drift over even short periods of time. The oscilloscope did
not have the resolution to show small changes in the signal generator output, so it was not possible
to ascertain whether this was due to the signal generator or to analogue-to-digital converter itself.

The drift is therefore assumed to be caused by the signal generator.

Mean Output Amplitude
T

0.4535 - i

0.453 &l

0.4525 - B

Mean demodulator output amplitude

0.452| =

1 1 1 1 1 1 1 I | 1
0 25 50 75 100 125 150 175 200 225 250
Run number

Figure 42. Mean output amplitude of 256 ensembles, N=1

Figure 42 clearly shows the instability of the ADC output - the output amplitude drifted by 2
mV over the few minutes required to capture the data. The plot is of the mean amplitude of 256
ensembles recorded consecutively; each ensemble consists of 128 amplitude measurements. The

input signal amplitude was set to 1 V,,_,;, and the coherent integration factor NV was 1.

C.2 Firmware tests

The firmware for the boot CPLD and expansion bus CPLD was simple combinatorial logic, and
was tested by toggling input signals and observing the output signals.
The FPGA firmware was more complicated. The logic was designed in discrete modules, each

of which was tested as a unit before being combined with the other modules.
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C.3 Software tests

The microcontroller software was developed in two stages. The first stage tested low-level
functions, like booting, access to interrupts, using the serial port, and memory access. The second
stage tested the application software itself. The major software functions - controlling the FPGA
operation, reading data from the FPGA, and communicating with the PC over the serial link -
were tested individually.

The library for writing data to the serial port had two serious flaws. The first was caused by
a routine attempting to interpret numeric data as a string: writing 0x00 to the port caused the
routine to interpret the character as the null character signifying the string end, and the character
was not transmitted. The second was that the blocking, designed to pause transmission if the port
was busy, did not work - the character to be transmitted was simply dropped. This problem was
circumvented by inserting sufficient delay between successive writes to the serial port.

The Python software, running on the PC, was tested at the same time as the microcontroller
software. Special attention was paid to checking the integrity of the data link over the serial
port. Data from the microcontroller was transmitted in packets, every byte in the packet being
duplicated; the PC software requests retransmission of any packets in which a transmission error

is detected.
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