The Design and Implementation of a

Radar Simulator

Rolf Lengenfelder

A dissertation submitted to the Department of Electrical Engineering,
University of Cape Town, in fulfilment of the requirements

for the degree of Master of Science in Engineering.

Cape Town, September 1998

Declaration

I declare that this dissertation is my own, unaided work. It is being submitted
for the degree of Master of Science in Engineering in the University of Cape
Town. It has not been submitted before for any degree or examination in any

other university.

Signature of Author......... . .

Cape Town
September 1998

Abstract

This dissertation describes the design and implementation of a radar simulator
called Sarsim2. The radar simulator was originally developed to produce syn-
thetic range profiles (SRPs) of complex aircraft models. It was then expanded
and upgraded to generate simulated synthetic aperture radar (SAR) data.

Over the last few years a substantial amount of work has been carried out by the
Radar Remote Sensing Group (RRSG) at the University of Cape Town (UCT)
to produce SRPs of aircraft targets using an L-Band search radar of Reutech
Systems. The high range resolution that can be obtained from SRP processing
makes it feasible to extract characteristic features from a profile obtained from an
aircraft. The ultimate aim of producing SRPs is to use these extracted features
for non-cooperative target recognition (NCTR), i.e. to be able to identify an
aircraft type from the echo signal received by the radar. The radar simulator
was written to produce SRPs of aircraft models, which could then be used to

investigate the feasibility of various aircraft-identification algorithms.

The stepped-frequency processing required to obtain SRPs of aircraft targets
has initiated further research in the RRSG into more efficient stepped-frequency
processing techniques, and the radar simulator has been used extensively to

generate simulated data.

The RRSG group is also actively involved with SAR processing techniques, and
the radar simulator has been invaluable in providing necessary simulation data

to test various processing algorithms.

One of the main objectives of this simulator was to have an easy-to-use graph-

ii

ical interface, which can show results in real-time. This requirement makes it
necessary to find some way of reducing the required computation. The solution
implemented may be called WYSIWIC (what you see is what is calculated). This
means that the data is only calculated to a resolution depending on the screen
resolution. Only when the data is saved to disk will it be calculated and written

with the required sampling rate.

Some of the features of the radar simulator include:

e Chirp, monochrome and user-defined pulse modulations

e Stepped-frequency implementation with constant or user-defined frequency

increments
e Independent moving platforms with user-defined paths
e Generation of text script files
e Configurable A/D conversion
e Angle dependent radar cross section (RCS) of point targets
e Rotating antennas, spot mode SAR
e Point target and platform motion errors
e All user-defined functions can be imported by a separate text file
e Powerful image viewer which can display SAR files of practically any size

The program has been kept flexible so that features (for example using real-life

antenna gain patterns) can be loaded with ease.

The graphical frontend of the simulator was initially written in C++ using the
Object Windows Library (OWL) of Borland C++ 5.0, but was then rewritten
with Borland C++ Builder, which made the development much easier. Borland
C+-+ Builder (BCB) can be considered as the best Rapid Application Develop-

ment (RAD) tool currently available, offering visual components combined with

iii

the flexibility and speed of C++. The simulator exploits the protected memory
model of 32 bit programs which has the advantages of crash protection and prac-
tically no memory restrictions. It therefore has to run under either Windows 95
or Windows NT 4.0. For portability reasons all the code (except the windows
front end) has been written in ANSI C++. All processor intensive calculation
routines have been written as threads. This makes other tasks running in the
background more responsive and also enables the user to abort a calculation at

any time.

A second program has been included, which is basically the same program with-
out the graphical frontend. This program is portable as it is written in pure
ANSI C++. Tt performs like a compiler which reads the script files (text files)

and writes the required simulation files to disk.

v

Acknowledgements

I would like to thank the following people in the Radar Remote Sensing Group
at UCT, who have all contributed to this dissertation in one way or another,
be it through discussion, giving advice, finding bugs in the radar simulator, or

simply just by providing a fun and stimulating environment to work in:

Mike Inggs
Jasper Horrell
Richard Lord

Andrew Wilkinson

Gavin Doyle
Yann Tremeac
Grant Carter
Alan Langman

Leon Alexander
Gordon Farquarson
Candace Rennie

Adam Isaacson

My sincerest thanks go to my supervisor, Prof. M.R. Inggs, for his guidance,
advice and financial support, and ultimately for his encouragement to write up

my simulator manual into this dissertation.

I would also like to give special thanks to Richard Lord, Jasper Horrell and
Andrew Wilkinson for all their help, advice and discussions that enabled me to

write, debug and enhance the radar simulator.

Contents

Declaration i
Abstract ii
Acknowledgements v
Contents vi
List of Figures X
List of Tables xiii
List of Symbols xiv
Nomenclature XV
1 Introduction 1
1.1 Background and User Requirements 1

1.2 Simulator Features 2
1.3 System requirements oL 3
1.4 Development of Dissertation 4

2 Radar Theory applied to Simulator 6
3 Getting Started 10
3.1 Thestart-up window L 10
3.1.1 The “EARTH” coordinate system 11

vi

3.1.2 Placingobjects oL
3.1.3 Editing objectso
3.1.4 Deleting objects oL
3.2 Asimpleexample
4 Command Summary
4.1 Main Window
4.1.1 Overview e
4.1.2 Mouse Commands
4.1.3 Menu Commands
4.2 New Target Window
4.3 New Platform Window
4.4 New Radar Window
4.5 Simulation Window
4.5.1 Overview
4.5.2 SavingData
4.5.3 Data file structure
4.6 User-defined Functions
4.6.1 The data entry window
4.6.2 Externaldatafiles
4.7 Viewing Simulation Files 0oL
4.8 Looking at Script Files L.
4.9 Changing Focus L
4.10 Investigating the Geometry for every Pulse
4.11 Help e
5 Script Files
5.1 User-defined functions
5.2 The $STARGET command
5.3 The $SPLATFORM command
54 The $SRADAR command
5.5 The $SIMULATION command

6 Sarsim Internals

vii

19
19
19
20
21
22
23
25
30
30
32
35
36
36
39
40
43
43
44
45

46
47
48
48
49
49

55

6.1 General Function and Variable Definitions

6.2 Pulse Calculations
6.2.1 FindPulseSendTime Function
6.2.2 FindPulsesInRange Function
6.2.3 FindPlatformPosition
6.2.4 FindPlatformVelocity
6.2.5 FindPlatformRotation
6.2.6 The frequency of each pulse
6.2.7 The time when each pulse is transmitted
6.28 Rangedelay o
6.2.9 CalcGeometry Function
6.2.10 CalcOnePulse Function

7 Example Files

7.1 A typical C-band SAR Application
Conclusions
8.1 Future work

Examples for Sarsim II
A1l Introduction

A.1.1 Simulation results on Excel
A.1.2 Simulation Results in Matlab
A.1.3 Simulation Resultsin IDL
A.2 A stationary point target L.
A21 Setup
A22 Results.

A23 Analysis
A.3 A moving point targeto

A3.1 Setup
A32 Results.
A4 Search Radar,
A4l Setup

64
64

69
69

A42 Results.
A.43 Range Compression

B Software Source Code

Bibliography

1X

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

A simple radar setup L 7
Pulsed operation oo 7
An example of a simulation output of a moving point target . .. 8

Main window oL 11
The toolbar L 13
Radar setup window (1/2) 15
Point target setup window Lo 16
Return signal of a single point target 17
Raw return after zoomingin 18
Main window oL 20
New target dialog L oo 23
New platform dialog 24
New radar dialog - Page 1 26
Pulseenvelope 27
User-defined PRFs 27

4.7 New radar dialog- Page2 29

4.8 A typical simulation window 31
4.9 “Save Data” dialog Lo 33
4.10 Data file structure Lo 35
4.11 A user-defined function oL 37
4.12 The different interpolation methods 38
4.13 Load filedialog 41
4.14 The image viewer window (showing slices in azimuth) 42
4.15 The script file viewero oo 43
5.1 Flow diagram for user-defined function block 47
5.2 Flow diagram of the $TARGET command 50
5.3 Flow diagram of the $PLATFORM command 51
5.4 Flow diagram of the SRADAR command (1st part) 52
5.5 Flow diagram of the SRADAR command (2nd part) 53
5.6 Flow diagram of the $SIMULATION command 54
6.1 Simulation window L oL 56
6.2 The “PulseSendTime” 57

6.3 Point target at the start of the pulse and at the centre of the pulse 62

6.4 Positioning of pulseinrange L. 63
7.1 Geometry setup 65
7.2 Point target setupo oL 66

xi

7.3 Simulation windowo oo
7.4 TImage after processing

7.5 Shortened script file for C-band SAR example

A1 Raw Return Window
A.2 Excel Worksheet for Simulation
A.3 Graph of Magnitude and Phase against Slant Range
A.4 Graph of Magnitude against Slant Range
A.5 Graph of Magnitude and Phase against Slant Range
A6 Geometry Setup
A.7 Magnitude against Slant Range for Raw Return
A.8 Magnitude against Slant Range for Range Compression
A9 Geometry Setup
A.10 Frequency against time domain waveform
A.11 Simulation Window for Real Part of Raw Return
A.12 Magnitude of Signal after Range Compression
A13Phaseshift
A.14 Magnitude gain pattern for a beamwidth of 10 degrees
A.15 Geometry setup Lo
A.16 Graph of Magnitude against Sample Number for Raw Return

A.17 Magnitude against Sample Number for Range Compression.

xii

List of Tables

3.1 Simulation Parameters
4.1 Distance and radial velocity for each point target

7.1 Radar Parameters

xiii

List of Symbols

Transmitted RF bandwidth

Speed of light

Distance between radar and target

Radar centre transmit frequency

Transmit antenna gain

Receive antenna gain

Boltzmann’s constant (= 1.38 - 10-2* Joules/degree)
Noise power

Transmitted power

Received power

Equivalent receiver noise temperature in Kelvin
Pulse width

Time elapsed between transmitting and receiving a pulse
Chirp rate of linear FM waveform

Wavelength

Cross section area of point target

xiv

Nomenclature

Azimuth—Angle in a horizontal plane, relative to a fixed reference, usually

north or the longitudinal reference axis of the aircraft or satellite.

Beamwidth—The angular width of a slice through the mainlobe of the radia-

tion pattern of an antenna in the horizontal, vertical or other plane.
Burst—-Set of all frequencies required to produce a synthetic range profile.
C-band—The frequency range centered around 5 GHz.

Chirp—A pulse modulation method used for pulse compression, also called lin-
ear frequency modulation. The frequency of each pulse is increased or decreased

at a constant rate throughout the length of the pulse.
Coherence—A continuity or consistency in the phases of successive radar pulses.

Corner reflector—A radar reflector that reflects nearly all of the radio fre-
quency energy it intercepts back in the direction of the radar which is illuminat-

ing it.
Dilute—If individual scatterers on a target can be resolved, the target features

are said to be dilute.

Doppler frequency—A shift in the radio frequency of the return from a target

or other object as a result of the object’s radial motion relative to the radar.

“Earth” platform—Stationary, unshifted, non-rotating coordinate system, iden-

tical to the visible axes on the main screen.

XV

Encounter—Set of all profiles while target in sight, acquired over a number of

scans.
Isotropic—Non-directional.

Ku-band—The frequency range centred around 14 GHz.
LSB-—Least significant bit.

MTI—Moving target indication.

Nadir—The region directly below the satellite position.
NCTR—Non-cooperative target recognition.
NSCAT—NASA Scatterometer.

OWL—Object Windows Library.

Platform—A user-defined coordinate system which can move independently on
any path seen relative to the “Earth” coordinate system. All point targets or
radars defined on that platform will be stationary as seen from that coordinate

system.

Point Target—Infinitely small point which reflects electromagnetic energy. The

amount of reflection depends on its surface area and its directional vector.
PRF—Pulse repetition frequency.

PRI—Pulse repetition interval.

Profile—A single synthetic range profile of a target.

RAD—Rapid Application Development.

Radar—Actual energy-transmitting device. Can be positioned onto any plat-

form, however the position is always at the origin of that platform.
Range—The radial distance from a radar to a target.

RCS—Radar cross section.

xXvi

RRSG—Radar Remote Sensing Group.
Scan—=Set of pulses received during illumination time.

Specular—Highly directive, i.e. the power returned from a specular reflector

depends very much on the direction of illumination.
SRP—Synthetic range profile.
Swath—The area on earth covered by the antenna signal.

Synthetic Aperture Radar (SAR)—A signal-processing technique for im-
proving the azimuth resolution beyond the beamwidth of the physical antenna
actually used in the radar system. This is done by synthesising the equivalent of

a very long sidelooking array antenna.

UCT—University of Cape Town.

xvii

Chapter 1

Introduction

1.1 Background and User Requirements

The radar simulator (also called Sarsim2) described in this dissertation was orig-
inally developed to produce synthetic range profiles (SRPs) of complex aircraft
models. It was then expanded and upgraded to generate simulated synthetic
aperture radar (SAR) data.

Over the last few years a substantial amount of work has been carried out by the
Radar Remote Sensing Group (RRSG) at the University of Cape Town (UCT)
to produce SRPs of aircraft targets using an [-Band search radar of Reutech
Systems [14, 15, 16, 17]. The high range resolution that can be obtained from
SRP processing makes it feasible to extract characteristic features from a profile
obtained from an aircraft. The ultimate aim of producing SRPs is to use these
extracted features for non-cooperative target recognition (NCTR), i.e. to be able
to identify an aircraft type from the echo signal received by the radar [26]. The
radar simulator was written to produce SRPs of aircraft models, which could then

be used to investigate the feasibility of various aircraft-identification algorithms.

The stepped-frequency processing required to obtain SRPs of aircraft targets

has initiated further research in the RRSG into more efficient stepped-frequency

processing techniques [9, 11, 20, 21, 32, 33|, and the radar simulator has been

used extensively to generate simulated data.

The RRSG group is also actively involved with SAR processing techniques [3,
4,12, 13, 22, 24, 27|, and the radar simulator has been invaluable in providing

necessary simulation data to test various processing algorithms.

1.2 Simulator Features

One of the main objectives of this simulator was to have an easy-to-use graph-
ical interface, which can show results in real-time. This requirement makes it
necessary to find some way of reducing the required computation. The solution
implemented may be called WYSIWIC (what you see is what is calculated). This
means that the data is only calculated to a resolution depending on the screen
resolution. Only when the data is saved to disk will it be calculated and written
with the required sampling rate. The exact method will be explained in detail
in Chapter 6.

Some of the features of the radar simulator include:

e Chirp, monochrome and user-defined pulse modulations

e Stepped-frequency implementation with constant or user-defined frequency

increments
e Independent moving platforms with user-defined paths
e Generation of text script files
e Configurable A/D conversion
e Angle dependent radar cross section (RCS) of point targets
e Rotating antennas, spot mode SAR

e Point target and platform motion errors

e All user-defined functions can be imported by a separate text file

e Powerful image viewer which can display SAR files of practically any size

The program has been kept flexible so that features (for example using real-life

antenna gain patterns) can be loaded with ease.

1.3 System requirements

The graphical front-end of the simulator was initially written in C++ using the
Object Windows Library (OWL) of Borland C++ 5.0, but was then rewritten
with Borland C++ Builder, which made the development much easier. Borland
C++ Builder (BCB) can be considered as the best Rapid Application Develop-
ment (RAD) tool currently available, offering visual components combined with
the flexibility and speed of C++. The simulator exploits the protected memory
model of 32 bit programs which has the advantages of crash protection and prac-
tically no memory restrictions. It therefore has to run under either Windows 95
or Windows NT 4.0. For portability reasons all the code (except the windows
front end) has been written in ANSI C++. All processor intensive calculation
routines have been written as threads. This makes other tasks running in the
background more responsive and also enables the user to abort a calculation at

any time.

A second program has been included, which is basically the same program with-
out the graphical front-end.. This program is portable as it is written in pure
ANSI C++. Tt performs like a compiler which reads the script files (text files)

and writes the required simulation files to disk.

The simulator needs 16 Mb of RAM to work efficiently (32 Mb recommended
with Windows NT'), and it is recommended to use a graphics card displaying at
least 256 colours, but 65k is preferable. A screen resolution of 800 by 600 or

higher is necessary.

The following files are required to run the radar simulator:

3

1. sarsim2.exe
2. sarsimhlp.hlp
3. sarsimhlp.gid

The last two files are necessary to access online help. All the necessary dll files
have been linked into the executable. However if some of the dialogs are displayed
incorrectly when the simulator is executed, there might be outdated libraries on
the computer system. In this case copy the files in the supplied \dll directory

into the \system32 subdirectory of the windows directory.

The geometry setup and all simulation parameters are saved as a text file with
the extension “scr”. External data files normally have the extension “dat”. Note

that long filenames and directory names are supported.

1.4 Development of Dissertation
This dissertation develops in the following way:

e Chapter 2 gives a brief introduction to general radar theory and discusses

how this theory is applied in the radar simulator.

e Chapter 3 introduces the radar simulator by setting up and going through

a very simple simulation.

e Chapter 4 gives a complete description of all windows and dialogs appearing

in Sarsim?2.

e The structure of the script files is explained in Chapter 5. Script files can
be used to automate certain tasks. They are effectively text files containing

a description of the simulation setup.
e In Chapter 6 the formulas used in Sarsim are described in detail.

e Chapter 7 describes various examples for different applications.

4

e Chapter 8 summarises conclusions reached and discusses future work.

e Appendix A describes various simulation examples to illustrate the func-

tioning of the radar simulator. This work has been co-authored by Helvin

Gunputh.

Chapter 2

Radar Theory applied to

Simulator

This chapter gives a very brief overview of radar theory and how it is implemented

in the simulator.

Radars are electromagnetic devices used for detection of targets by radiating
electromagnetic energy and examining the reflected energy. A target can be
described as an object which interferes with the transmitted wave and reflects
part of its energy. For this simulator, targets occupy an infinitesimally small
space, therefore they are called point targets (PTs).Most radars work in pulsed
mode, i.e. they send out short burst of energy, with relatively long delays in-
between. The period between these pulses is called the pulse repetition interval
(PRI), but usually the reciprocal, namely the pulse repetition frequency (PRF),

is specified.

Consider the setup shown in Figure 2.1 with a single point target. A pulse is

sent out at time tg and the return is received after At seconds:

_2.d

Cc

At (2.1)

where c is the speed of light and d is the distance to the target. For this simulator

the received signal will be a replica of the transmitted signal, although the power

Antenna
Transmitted Wave

@ Point Target

< >
Distance d

Figure 2.1: A simple radar setup

will be a fraction of the original pulse. The received power P,, of the reflected

signal at the radar will be

_ P.GG N0

Py 3
(47m)” d*

(2.2)

where P, is the transmitted power, GG; and GG, the transmit and receive antenna
gain, A the wavelength, o the cross section area of the point target and d the

distance between radar and target.

Normally many pulses are transmitted as shown in Figure 2.2.

Range Gate Range Gate Range Gate
Pulse 1 FotTTTTtttti o Pulse 2 TTTTTTTTTTTTG Pulse 3 r=-========"
|—| i Return1 ! |—| ; Return 2 ! |—| ; '
B » T|me
PRI

Figure 2.2: Pulsed operation

The point target will return an echo after some time At which depends on the
distance of the target from the radar according to Equation 2.1. Usually one
is not interested in the complete range between two pulses, but only a small
fraction of it, which is set by a range gate. Obviously the range delay and

returned power can be calculated by hand for simple stationary targets, but it

7

will get very tedious for moving targets, especially with the addition of noise and

motion jitter.

This simulator is capable of generating an array of complex values which corre-
spond to the output of the radar at a certain timespan. For this simulator the
nomenclature of SAR literature has been used, so the interval for which data will
be sampled (range gate) is called slant range. The time range for which pulses
are sent out and the return is sampled is called azimuth range. An example of a
single point target which moves with constant velocity past a radar is shown in

Figure 2.3.

. Raw Return Simulation L=18]x]

ity i ajal

Cinet P Y
Fotei =] || imagmay WA
Sampina Fecuerey || € Magntuce| 007514
o atvnin || e WA
| ‘
o M
ML
W
f
Mot
A Al
ik :/«rw

|
T

6702 | 1o [1820105

[| o [oosE
Showl Tagets

==
2l

m2se

TYavii
W

L

25m 750m a75m T 1.125kn 1.25km 1.375km 15k 1825k 1.75km

By sovedaa | [Oose 00212817

Slent Range

Figure 2.3: An example of a simulation output of a moving point target

A target moves past the radar, being closest at time ¢ = 0. The z-axis repre-
sents distance from the radar, and the y-axis represents time. In this case chirp
modulation has been used with a very low (unrealistic) chirp bandwidth. The
simulation shows the raw return (no range compression applied). Note that the

signal magnitude decreases as the distance to the radar increases.

This radar simulator therefore creates 2-dimensional arrays of complex numbers

corresponding to the output of range versus time for a specific radar. It calculates

8

the relative distances between the radar(s) and point targets for the specified
time period. Depending on these distances, scaled copies of the defined pulse
are inserted into the output array. The raw return can be range compressed,

i.e. every pulse is convolved with its replica.

Chapter 3

Getting Started

This chapter introduces the radar simulator by setting up a very simple simula-

tion.

3.1 The start-up window

Start the program by executing “sarsim2.exe” either from the command prompt
or by double-clicking on the icon in Windows. A screen with a coordinate-system

on the right and a list of objects on the left will appear as shown in Figure 3.1.

This radar simulator uses three different kinds of objects: platforms, point targets

and radars.

e Platforms are user-defined coordinate systems which can move indepen-
dently on any path seen relative to the “Earth” coordinate system which
will be explained below. All point targets or radars defined on that plat-

form will be stationary as seen from that coordinate system.

e Point targets are infinitely small points which reflect electromagnetic
energy. The amount of reflection depends on their surface area and their

directional vector. This will be explained in more detail in Chapter 4.

10

& Sarsim Il - J:ASARSIM2A\EXAMPLE S\Movtarg.scr O] x|
File Geometry Simulation Display View Help

e Taiget | N F"Iatfurml Radar | e

Time [s) |1 7.000
= Fd
; i = |ater I

Azimuth : 3

Elevation : | 32°

Objects

Platform:E arth
PT:4500,0,0
PT:4200,100,0
PT:4200,-100,0

Platform:Plane
Fadar:Radar

Platform:Car
PT:-30,30,0
PT:-30,-30,0
PT:30,30,0
PT:30,-30,0

Figure 3.1: Main window

e Radars are the actual energy-transmitting devices. They can be positioned
onto any platform (however their position is always at the origin of that
platform), and there are numerous parameters to be set which will be

explained in Chapter 4.

3.1.1 The “EARTH” coordinate system

The coordinate system shown on the start-up window is the most fundamental
one and all other objects will be positioned relative to it. It is conveniently
called “Earth”. The origin of the “Earth” coordinate system is at x =0, y = 0

and z = 0 with the red, green and blue lines representing the z-axis, y-axis

11

and z-axis respectively. The labelled ends are pointing in the positive direction.
There are distance marks on the axes (for example 10km) to give some sense
of scale. Below the top border of the window, the azimuth and elevation angle
of the current viewpoint are shown. Using the mouse, one can manipulate the

coordinate system in three ways:

1. Rotate: To rotate the axes, push and hold the left mouse button and move
the mouse in the required direction. Moving it up and down will change

the elevation angle, moving it left and right changes the azimuth angle.

2. Zoom: To zoom in or out, push and hold the right mouse button and move

it up or down. The distance marks on the axes should start moving.

3. There is a way of changing the focus point (the point around which the

coordinate system turns). This is described in Section 4.9.

In the top-left corner the current simulation time is given, i.e. what one sees is a
snapshot at that given time. This helps visualising the position of point targets
and platforms at specific times. The time instance can be changed by entering a
time into the edit-box or by clicking on the left/right scroll buttons just to the
right of the edit-box.

On the left, a box containing a list of all objects is given. The order depends
on the relative positioning, i.e. all objects placed on a platform will appear (in-
dented) just below it.

3.1.2 Placing objects

To place a new object (point target, radar or platform), select the required object
from the “Geometry” menu. A dialog with a whole set of parameters will appear.
All of the parameters are set to some default value and most of them don’t have
to be changed for most of the simpler simulations. Use the Tab key or the mouse

to navigate through the dialogs. By clicking on the OK button, the object will

12

appear on the screen (if in sight). A short-cut to create new objects is the toolbar

on top of the screen (see Figure 3.2).

}- Target | Js PIatforml Radar | e

Figure 3.2: The toolbar

3.1.3 Editing objects

There are two ways to edit objects. One is to double-click the object on the list
given on the left side, the other is to right-click the object itself in the coordinate
system. This only applies to point targets and radars—use the list to modify

platforms.

3.1.4 Deleting objects

To delete a point target or radar right-click it in the coordinate system and
choose “Delete Point Target” / “Delete Radar” from the appearing menu. To

delete a platform choose the required platform from the list.

3.2 A simple example

This section will show how to create a simple simulation with a single point

target. The simulation parameters are given in Table 3.1.

e Clear (if necessary) the current simulation by selecting File / New on the

menu.

e Create a new radar by selecting Geometry / New Radar (or by clicking on

the Radar button). A window as shown in Figure 3.3 will appear.

13

Type of pulse modulation | chirp pulse
B 50 MHz
fe 1 GHz
T, 5000 ns

PRF 1 kHz

Py 1 kW
antenna gain isotropic
d 3000 m

o 3 m?

Table 3.1: Simulation Parameters

Change the pulse type to “Chirp” by selecting the Chirp radio button
(circled in Figure 3.3). (Radio buttons are the round circles with one
having a black dot in it, meaning this option is selected). The remaining
parameters will have the correct parameters by default. Click the OK
button. A radar (dotted circle with a grey disc in it) will appear at the
origin of the Earth coordinate system. On the list at the left a “Radar:
Radar1l” entry under “Platform: Earth” will appear.

Create a point target by selecting Geometry / New Target (or the according
Target button).

Set the xz-coordinate to 3000 m and the radar cross section to 3m?2 as indi-
cated in Figure 3.4. Click on OK. A point target (red dot with black circle

around it) will appear.

Select Simulation / Raw return from the menu. Another window will open,

shown in Figure 3.5.

Shown on the right-hand side of this window is a colour-coded image of the

received waveform displayed as slant range (z-direction) in meter versus azimuth

time (y-direction) in seconds. As the point target is stationary, the position of the

point target in slant range stays constantly at 3000 meters. The colour palette

14

Page 1 I Page 2 I

RadarName IFIadaﬂ - I
Platform Name I Earth ~ l

Pulse Frequency

 Mono @+ Single Frequency [GHz) 1
Bandwidth (GHz) [0.05 Stepped Frequency
" Other Definition l Start Frequency [GHz) 1
Pulsewidth (ns) 15000 Frequency step size [GHz] [0.1
Envelope MNumber of Steps EE
' Rect Pulses / frequency 2
i ise tif ’D
¢ Linear Rise time [ns) Other Hacicr I
Fall time [ns] lD
¢ Other Definition l P
ower
Pulse Repetion Frequency Power Output (kW) 1
= Constant [Hz) "I 000 System Losses [dB) o
" Other Definition l Noise Temperature (K] o

X Cancel |

Figure 3.3: Radar setup window (1/2)

has been mapped such that light blue represents the highest positive value, black
represents zero and light red the highest negative value. The waveform is shown
at baseband, i.e. the frequency spectrum has been shifted such that the carrier
frequency is removed. Initially the pulse shown does not resemble a chirp pulse,
because aliasing takes place on the screen, i.e. it is necessary to zoom in, to see

the details of the chirp pulse.

On the left side the current radar, the simulation window (slant range / azimuth)

and the display type (real / imaginary / magnitude / phase) can be chosen.

To select a different radar, click on the desired radar on the list. For this simu-

lation only a single radar is defined.

The simulation window size (slant range and azimuth) can be changed in four

ways:

15

Target x|

Platform Name Earth = I

Position Reflectivity

K-coordinate [m) | @+ |sctropic

Y-coordinate (m) " Directional

Azimuth (deg.) o
X-coordinate std. dev. [m) 0 Elevation (deg.) ,U—

Y-coordinate std. dev. [m) 0 Azimuth std. dev. [deg.) IU

0
ID

Z-coordinate std. dev. (m) |U Elevation std. dev. (deg.) |U
|D

Z-coordinate [m)

Gain
Cross Section

@+ Cos

Radar Cross Section [m”2) | Other Definition I

RCS std. dev. [m"2)

X Cancel I

Figure 3.4: Point target setup window

1. Changing the values of the slant/azimuth range in the edit-boxes on the
left.

2. Zooming in by selecting an area on the image with the left mouse button.
This is done by pushing and holding the left mouse button on the desired
corner and releasing it on the opposite corner. The window will update

automatically.

3. Zooming out by a factor of two in either direction by right-clicking any-

where on the image. The window will also update automatically.

4. Showing all targets (i.e. selecting a slant range spanning from the closest

to the furthest target) by clicking on the Show all targets button.

If the azimuth scale is such that two pulses are separate by at least 20 pixels, the

actual waveform of the pulse will be displayed as a graph as shown in Figure 3.6.

The time instance at which the shown pulses has been transmitted by the radar
can then be easily identified, for example in this example the PRF is 1kHz,
therefore a pulse will be transmitted every 0.001 seconds. Note that the graphs
of the pulses do not use the azimuth time scale on the left, i.e. the amplitude

of the graphs do not correspond to the scale in seconds given at the left, but

16

\: Raw Return Simulation O] x|
FRadar | [Display Agzimuth aJ &
Current Radar & Real “m _‘I _I m
Radarl :lv " Imaginary 45s.
Sampling Frequency " Magnitude 4s
[H— % Nyquist " Phase
Pulse Position -
& Stat Contrast ' e
)
® B Min Max ;.\I
[~ Window 24 g'
Slant Range (m)
[1501.037 o [4498.962 1s.
Azimuth Range (s) 05s-
[o.000000 o [5.000000
Show All Targets 1.75 km 25km 3km 35km 4km -
lant Range
Save Data | B Close | 4.09566E-05 mV/

Figure 3.5: Return signal of a single point target

they have their own amplitude scale (not shown). Below the image, the highest
absolute magnitude within the displayed image is shown in millivolt. Note that
this value might not be accurate due to the sampling process (i.e. the waveform
might have been sampled slightly off-peak). For the current simulation a value of
4.095 - 10 °mV is shown. For this simple simulation the radar equation reduces

to:

Py G?- X0

P, = 3.1
(4-m)3-d* (3.1)

1000-1-0.3%-3
= 3.2
(4 - m)3 - 30004 (32)
= 1.67976-10""° W (3.3)

Therefore the amplitude is given by:

Magnitude = /Py, (3.4)
= 4.095-10"°mV (3.5)

The whole window can be resized (or maximised) in the usual way, but note

that the calculation time is proportional to the image size. On slow computers

17

EEE
oS
' WA
L, o OARAT

BBsaveoma| g oose | M Mg

Figure 3.6: Raw return after zooming in

it might be advisable to make the window smaller than the default size.

To save the window displayed, click on the “Save Data” button. This function

will be explained in more detail in Section 4.9.

18

Chapter 4
Command Summary

This chapter explains all available commands.

4.1 Main Window

4.1.1 Overview

After starting Sarsim you will see a screen similar to the one shown in Figure 4.1.
In this specific example a file has been loaded for demonstration purposes. On
the left side of the window, the current simulation time, the current look-angle
and a list of all objects is given. The simulation time is useful in order to see how
objects move with respect to time. It can be changed by pressing the Earlier
or Later buttons, or by entering a specific time into the edit box. The look
angle is given by an azimuth and elevation angle, where the azimuth angle is
measured clockwise from the y-axis, and the elevation angle from the z-y plane.
The object list shows all current objects, namely point targets (PTs), platforms
and radars. They are sorted with respect to platforms, and below each platform
an indented list of all objects relative to this platform is given. Objects can
be altered by clicking or double-clicking the respective list item. On top of the

screen a few speed buttons are placed. Clicking on them will create a new object

19

of the selected type.

& Sarsim Il - JASARSIM2\EXAMPLE S\Movtarg.scr =] B
File Geometry Simulation Display View Help
T Target | I F'Iatfnrml Radar | e

Time (s) |17A000
2 LaterI

Azimuth - |3?‘
Elevation : I 32

Objects
Platform:Earth
PT:4500,0,0
PT:4200,100,0
PT:4200,-100,0
Platform:Plane
Radar:Radar
Platform:Car
PT:-30,30,0
PT:-30.-30,0
PT:30,30,0
PT:30.-30,0

Figure 4.1: Main window

4.1.2 Mouse Commands

The mouse is used to rotate the coordinate system and to zoom in and out. It

is also used to modify or delete objects.

¢ ROTATION: To rotate the axes, push and hold the left mouse button
and move the mouse in the required direction. Moving it up and down will
change the elevation angle, moving it left and right changes the azimuth

angle.

e ZOOM: To zoom in or out, push and hold the right mouse button and

move it up or down. The distance marks on the axes should start moving.

20

MODIFY / DELETE: Point targets, platforms and radars can be mod-
ified by either selecting the required object on the list or right-clicking the
required object in the coordinate system. A menu containing options to

modify or delete the object will appear.

4.1.3 Menu Commands

File

New: Creates a new simulation. If the current simulation has not been

saved, the user will be asked if the current file should be saved.

Open: Loads a script file from disk (default extension = “.scr”). The
structure of the script files will be explained in detail in Chapter 5.

Save: Saves the current simulation file to disk. If no name has been given

yet, the user will be asked to enter a name.
SaveAs: Saves the current file with a new name.

Exit: Exits the program.

Geometry

New Target: Creates a new point target. A detailed description is given

in Section 4.2.

New Platform: Creates a new platform. A detailed description is given

in Section 4.3.

New Radar: Creates a new radar. A detailed description is given in
Section 4.4.

21

Simulation

e Raw Return: This option shows the received return signal mixed down

to baseband. A detailed description is given in Section 4.5.1.

¢ Range Compressed: This options shows the range compressed return,
also mixed down to baseband. A detailed description is given in Sec-
tion 4.5.1.

e Previously Stored: The parameters of a simulation can be stored so that
they can be recalled quickly. This includes the window range, sampling
frequency, radar used, output file name and some more parameters. A list
of all stored simulations will be given. An option to delete a simulation

setup is also given.

4.2 New Target Window

Creating a new target brings up a dialog window shown in Figure 4.2.

The following parameters can be configured:

e Platform name (up to 15 characters): The platform to which the
current point target belongs. The coordinates entered will be relative to

the origin of this given platform.
e Position z, y and z: The coordinates of the point target in meters.

e Standard deviation of z, y and z position: Introduce Gaussian dis-

tributed random jitter.
e Radar Cross Section: The radar cross section in square meters.

e Radar Cross Section deviation: If the target scintillates, the standard

deviation of the RCS can be specified. The distribution is Gaussian.

22

Platform Mame m

Position Reflectivity
X-coordinate (m) IU— + |sotropic
Y-coordinate (m) IU— ¢ Directional
Z-coordinate (m) IU— Azimuth [deg.] IU—
X-coordinate std. dev. [m] IU— Elewvation [deg.] IU—
Y-coordinate std. dev. (m] IU— Azimuth std. dev. [deg.) IO—
Z-coordinate std. dev. (m] IU— Elevation std. dev. [deg.) IO—

Gain

Cross Section & Cos
Radar Cross Section [m™2) I'l— Other Definition |
RCS std. dev. (m"2) o

 OK |

Figure 4.2: New target dialog

e Isotropic reflectivity: The incidence angle of the ray from the radar is

irrelevant, i.e. the radar cross section will always be constant.

e Directional reflectivity: This imitates a surface for which the reflected
energy is given as a function of the incidence angle (azimuth and elevation
angle). If the gain is set to “Cos”, the radar cross section changes exactly
like the projected surface of a disc seen from a specific angle, i.e. effec-
tive RCS = RCS - cos(incidence angle). No reflection takes place on the
backside. It is possible to define a specific gain pattern by clicking on the

“Definition” button. This is explained in detail in Section 4.6.

4.3 New Platform Window

Creating a new platform brings up the dialog window shown in Figure 4.3.

The following parameters can be configured:

23

Platform X

Platform Mame IEarth 'I Motion errors
Position
Position ' Standard Deviation
& Stationar #-coordinate (m) IIJ
H-coordinate (m) IIJ Y-coordinate (m) IU
Y-coordinate [m) IIJ Z-coordinate () IIJ

Z-coordinate (m) ID " User-defined Definition I
" Trajectory D efinition I

Rotation
Rotation ¢+ Standard Deviation
H-rotation [deg.) IU— H-rotation (deg.) IU—
Y-rotation (deg.) IO— ‘f-rotation [deg.] IU—
Z-rotation (deg.) IU— Z-iotation (deq.) IU—
[~ align %-axis platform to path " User-defined Definition I

XK Cancel |

Figure 4.3: New platform dialog

e Platform name: The name of this platform (up to 15 characters) for

future referencing.

e Position, “Stationary” or “Trajectory”: If the position of the plat-
form is stationary, the =, y and z coordinates need to be entered. This will
place the platform at the given coordinate on the “Earth” platform. If the
position of the platform is defined as a trajectory, the position for every
time instance can be defined. The given points will be interpolated (par-

abolic, linear or low-pass filtered). This will be explained in Section 4.6.

e z, y and z-rotation: This describes the rotation angles of the platform
around the x, y and z axes seen relative to the “Earth” platform. Note

that the platform can be “aligned”.

e Align z-axis to path: If this box is provided with a check mark, the
coordinate system will be rotated in such a way that the x-axis will coincide

with the path at any given time instance. To express it differently, the

24

azimuth and elevation angle of any point on the path will be parallel to
the z-axis of the platform. The y-axis will however still be parallel to the
“Earth” platform. An example where this is useful is if a platform is used
to describe the motion of an aircraft, then the nose of the aircraft will

always point in the direction it is flying. An example is give in Chapter 7.

e The parameters in the box “Motion errors” describe any deviations from
the ideal position or rotation. The distribution is Gaussian. There is the
option to define motion errors by giving an integration envelope which will
be convolved with Gaussian distributed noise, but this option is still in

development.

4.4 New Radar Window

Creating a new radar brings up a dialog window shown in Figure 4.4.

The following parameters can be configured on this page:

e Radar name: For convenience there can be more than one radar in the

simulation. The radar name has to be specified for future reference.

e Platform name: The name of the platform onto which the radar will be

positioned. The radar is always positioned at the origin of the platform.

e Pulse type: Choose either monochrome, chirp pulse or user-defined pulses.

If a chirp pulse is chosen, the chirp bandwidth needs to be specified.
e Pulsewidth: The pulsewidth in nanoseconds.

e Envelope: The pulse can be multiplied by an envelope function to model

more realistic pulses as shown in Figure 4.5.

e Pulse Repetition Frequency: The PRF can be defined either as a con-
stant or it can vary from pulse to pulse as shown in Figure 4.6. The data
wraps around, such that PRI[z] =PRIArray[modulus(z,n)]. Note that all

times are given in seconds.

25

Figure 4.4: New radar dialog - Page 1

Centre frequency: Specify the centre frequency of each pulse. It can be

constant, stepped or completely arbitrary.

e Power output: Total power output of radar in kW.

System losses: Total system losses in dB.

Noise temperature: Noise temperature of system in Kelvin.

Noise is modelled in a simple way by specifying noise temperature of the receiver.
The following example will show how to convert between the noise temperature

and a required S/N ratio at a certain distance:

The noise power can be calculated by:

26

magnitude

rise time fall time
<>
Pulse
» time
Pulse width

Figure 4.5: Pulse envelope

Pulse 0 Pulse 1 Pulse 2 Pulse 3 Pulse n-1 Pulse n Pulse n+1 Pulse n+2
——Prt———P¢+——r ¢+—> ——PpPt———P¢+——r ¢+—>
PRI[0] PRI[1] PRI[2] PRI[3] PRI[n-1] PRI[0] PRI[1] PRI[2]
I t 1 »>
t=0 t=PRI[0] t=PRI[0]+PRI[1] time (seconds)

Figure 4.6: User-defined PRFs

N=k-T-B (4.1)

where k is Boltzmann’s constant (= 1.38:1072% Joules/degree), T is the equivalent

receiver noise temperature in Kelvin and B is the bandwidth of the pulse (for

1
Pulsewidth

we want to add the noise to a given complex sample S = I + j - @, the values

chirp pulses = Chirp bandwidth, for monochrome pulses =). Assuming

representing complex voltage. The resulting vector (signal + noise) SN = IN +

J - @QN is then calculate as follows:
IN = I+ GaussianNoise (W) (4.2)

QN = @ + GaussianNoise (\/N) (4.3)

where GaussianNoise() returns a random value with mean = 0 and given standard

deviation.

Consider a simple simulation with a point target (RCS = 1m?) at a distance of

27

1km, and a radar with a power output of 1kW. The pulse should have mono-
chrome modulation and have a width of 1000 ns. The noise temperature is set to

100 Kelvin, the centre frequency is 1 GHz. The signal power received would be:

Pta: : >\2 * 0
P, = —— 4.4
" (4-m)3 . d* (44)
1000 - 0.3% - 1
= 4.
(@)% - 1000% (4:5)
= 4.53-107"W (4.6)
The noise power would be:
N = k-T-B (4.7)
1
= 1.38-107*.100- 4,
38-10 00 106 (4.8
= 1.38-107"W (4.9)
which gives a power S/N ratio of:
S 4.53-1071"W
Z o e 4.1
N 1.38-10"15W (4.10)
= 32.8 (4.11)
= 15.2dB (4.12)
Converting to amplitudes (assuming a 1€ resistor):
Vieceived = V Py (413)
= 213-1077V (4.14)

and

28

Noise Voltage = 3.715-107®V (4.15)

The signal to noise ratio with respect to amplitudes would be 5.73.

A second page of configurable parameters can be selected. It is shown in Fig-
ure 4.7.

Figure 4.7: New radar dialog - Page 2

The following parameters can be configured on this page:

e Transmitter and receiver antenna gain: Either isotropic, a typical
sin(x)/x pattern, or user-defined.
e Antenna Direction

e Matched Filter Window

29

e Sensitivity Time Control

The radar is positioned at the origin of the given platform.

4.5 Simulation Window

4.5.1 Overview

There are two processing options available:

e A raw return simulation: In this case the transmitted signal is not
range-compressed (i.e. convolved with a replica). The sampling rate is au-

tomatically set such that all detail is shown at the current screen resolution.

e A range-compressed simulation: The return gets range-compressed.
Because range-compression is computationally intensive, the sampling rate
can be set. Note that setting low sampling rates (less than three times

Nyquist rate) may result in unfamiliar looking graphs.

A typical simulation window is shown in Figure 4.8.

The simulation window shows the received return signal mixed down to baseband.
On the right hand side a window with slant range (in meters) versus azimuth (in
seconds) is shown. The maximum amplitude (in mV) is shown at the bottom.
This is only an approximation based on the current window. In the top left
corner the name of the selected radar is shown. The returned signals have been
calculated for this specific radar. Select a different radar to display returns for a

different radar.

To change the simulation window, edit the range and azimuth values in the
window box. It is possible to zoom in interactively by left-clicking and dragging
on the simulation window. If the simulation window is right-clicked, it will zoom

out by a factor of two in the slant range and azimuth directions.

30

\:: Raw Return Simulation

— Radar | | Display Aefh
Current Radar * Real e il il m
IFIadaﬂ :Iv " Imaginary 2
Sampling Frequency " Magritude o
IEH] = N_','ql-lis! " Phase 19s-
Pulse Position Contrast
'O Start I_J 18s.]
" Center .
Min Max 17 -
'
— Window
Slant Range [m) tHaizn gl
5330803 to [5488.081 ie
5sa
Azimuth Ranage (5]
|1 241379 to |2.0362l37 1.45s-]
Show All T argets I 1.35-
55km 575km Ekm E25km
Slant Range

saveDats | [l Close | 4.30348E-05 mv

Figure 4.8: A typical simulation window

The “Display” box selects whether the real, imaginary part or the phase or
magnitude is displayed. The display of the pulses is colour-coded, where blue
represents positive, black zero and red negative values. In case of a graphics card
supporting 256 or more colours, the colours will change smoothly according to
the amplitude. The contrast can be changed by moving the slider. If one zooms
in such that successive pulses are separated by more than 10 screen pixels in the
azimuth direction, the pulses will not be colour-coded anymore, but shown as

proper graphs.

There is a important point which needs to be clarified: The simulation window

shows slant range in the z-direction and azimuth in the y-direction. However

what is displayed in reality is what the A/D converter will see, i.e. the scale

in slant range is measured as range delay. The difference between distance and

range delay is a factor of two, because the pulse has to travel twice the distance.
c

So the simulation window actually uses range delay = 35 (in seconds) as the z-

31

axis, but shows a scale which corresponds to the actual distance to the target. An
example: a pulse of length 1 us is 300 m long. If the A/D frequency is 500 MHz,
the returning pulse will cover over 500 samples. One sample corresponds to
0.3m (<) in distance and therefore the pulse will have a length of 500 - 0.3 m

2'fa,d
= 150 m on the display (and not the actual 300 m). This might sound confusing,

but the factor of 2 simply originates from the fact that the beam has to travel
twice the actual distance (to the target and back). If the return is converted into
range by multiplying by the speed of light, the target will appear at twice the
distance where it actually is, and therefore the range (and the pulse length) is

divided by a factor of 2 to overcome this problem.

4.5.2 Saving Data

After choosing the required window in range and azimuth, the data can be saved

in either text or binary format. The dialog shown in Figure 4.9 will come up.

The dialog is divided into three sections:

Simulation Window

The simulation window determines the range in time (azimuth) and distance
(slant range) which will be saved to disk. The actual values were set in the
previous window (simulation window) and cannot be changed in this dialog.
The slant range is given in meters and represents the distance from the radar. It
can be converted into time (range delay) by using the simple relationship ¢ = 2¢.
The azimuth range is measured in seconds and corresponds to the time span for
which the data will be recorded. If the PRF is constant, the number of pulses

can be determined by using the following equation:

number of pulses = (EndTime — StartTime) - PRF + 1 (4.16)

In non-SAR applications the term azimuth range is equivalent to the time window

(slow time) for which the radar is capturing data.

32

Save Simulation Data x|

— Simulation Window
SlantRange |4950.0000 mto [62290000 m
Azimuth Range |-0.640000 sto | 0.633000 s
Sampling Frequency |1.200000 E [0.1 GHz [Nyquist)
File Size 1024 # [512 %2 Bytes/I = 1048 KByte
— &/D Converter . LGB Value
A/D Number of Bits |3 & Estimated
Least significant Bit Value |5.0344E-07 mif " Set by user
~ File
Output File Name |movtarg. bin I Select |
Type Script
& Binary % Save simulation output ta disk only
" Save to script only
- Ascl " Saveto both
ER Save I B Close |

Figure 4.9: “Save Data” dialog

The sampling frequency determines the sampling rate of the received signal. By
default the sample frequency is set to the Nyquist frequency which is calculated
from either the pulse length or the chirp bandwidth for monochrome and chirp
pulses respectively. The sampling frequency can be altered by changing the mul-

tiplication factor. Undersampling, i.e. inserting values below unity, is accepted.

Below that, the size of the file is estimated. In this case (see Figure 4.9), there
are 512 sample points in slant range (1279m in range = Lfm = 8.5352us,
8.5352us - 120 MHz = 1024) and 512 pulses in azimuth (1.279 seconds at 400 Hz
PRF (inclusive)). For ASCII files, the program can only estimate the actual
space needed for each I/Q pair, as trailing zeroes are not saved. However if the

file is saved in binary format, the size given will be precise.

33

A /D Converter

The next box requires two inputs, namely the A /D sampling accuracy in bits and
the value of the least significant bit (LSB) in millivolt. If the value is not divisible
by 8, the remaining bits will be zero-padded. The LSB value is estimated from
the maximum magnitude occurring in the simulation window. It will not be
absolutely accurate since the sampling frequency of the screen window might be
less than the sampling frequency used for saving the file. It is possible to change
the LSB value by selecting the “Set by user” check box. After the file has been

saved, the program will show how much dynamic range has actually been used.

File

The last box contains the file name and the format in which the data should be
saved in. If the file is saved in binary format, each I and Q value is represented by
an integer number of bytes with zero-padding applied if necessary. For example
12 bit A/D accuracy will require 2 bytes for each I and Q value, with the four
least-significant bits set to 0. The offset is (22! — 1) with = being the number of
A/D bits (for example 8 bits correspond to an offset of 127, i.e. 0 Volts = 127).
If the file is saved in text (ASCII) format the number (as calculated before) will

be written as a proper number.
An example is given now:

In the example above the maximum value in the simulation window was 6.39369 -
10~°mV. Using 8 bits per value, this means the least significant value will be

6.39309-10 ° — 63936910 ° — 5344 - 10~ mV as is also shown in Figure 4.9. If for

example the I-value at some point is 1.2- 10 °mV, then the value written to disk
will be (2°71—1)+round (M) = 127437 = 164, where the first part of the

5.0344-10~7
formula represents the offset value. In binary mode the character corresponding

to 164 will be written to file, while in ASCII mode the three separate digits “1”,

“6” and “4” will be saved.

There is the option to save the current simulation window (i.e. the window range,

34

sampling frequency, etc.) in the script file so that it can be recalled quickly at
a later stage. This is done by setting the “Save to script only” or the “Save
to both” check box. If it is set to “Save to script only” it means the file will
be not written to disk, however the simulation parameters will be added to the
script file. This will be explained in more detail in Chapter 5. If it is set to
“Save simulation output to disk only”, no simulation entry will be added to the
script file. “Save to both” adds the simulation to the script file and also saves
the actual data to disk.

After selecting the “Save” option, the file will be saved, showing a progress bar.

The saving process can always be interrupted by pressing the cancel button.

4.5.3 Data file structure

The data is saved in a complex format where each sample point is represented
by an inphase component (I) and a quadrature component (Q). The structure is

shown in Figure 4.10.

Slant Range

1st pulse IQ,lQ,IQ,IQ,IQ
2nd pulse |Q,|Q,IQ,IQ,IQ
3rd pulse |Q,|Q,IQ,IQ,IQ

v

Azimuth Range (Pulses)

Figure 4.10: Data file structure

The I and QQ values are written in turns. Each line in the file corresponds to
the return of one pulse, with the “earliest” pulse written first. Within each line
the sampled values are written as 1Q pairs, the “earlier” (closer to the radar)

samples written first. These pairs are separated by commas if the file is saved

35

as text, but have no separation character if the file is saved in binary format. In
text mode after each pulse a “new line” character is inserted. For the parameters
shown in Figure 4.9 there would be 1024 IQ) pairs (2048 numbers) for each line
and a total of 512 lines.

4.6 User-defined Functions

The radar simulator is highly configurable. There are 12 functions which can be
defined completely arbitrarily, for example the pulse shape, the centre frequency
of every pulse, the PRI (pulse repetition interval) between any 2 pulses, the tra-
jectory of moving platforms, the antenna gain patterns, matched filter windows
and some more. These functions can either be defined by entering the sample

points straight into the simulator, or by specifying an external data file.

4.6.1 The data entry window

A standardised input screen is used for all of them, which is shown in Figure 5.1.

In this case the window for defining a trajectory of a platform is shown. There
are three variables to be defined for the trajectory, i.e. the x, y and z coordinates
vs time. To define a function, at least one point (coordinate vs time) has to be
specified for each of the three variables. The program will interpolate between
the given points. If only one point is specified (for example 500m at ¢ = 0
seconds), the coordinate will stay constant (500 m) and for all given times the
graph will be a (horizontal) straight line passing through (0,500). If two points
are given, the graph will also be a straight line passing through both points,
but will not necessarily be horizontal. For more than 2 points, the program will
use the selected interpolation method. Note that the points do not have to be
defined with constant intervals for the z-coordinate, for example (1, 3), (2,5) and

(20, 10) is perfectly acceptable.

There are currently 3 interpolation methods implemented:

36

=1 =3

Position > (m) o =2
400 m
300 m
200 m
=X
00 m =X
Om /
oo 7
IIIIII 1 Delete | Update I 200 m
Window
= 1ssa: o 1 2 3
[=o0 o [a00 SO0 o e = o
Position > [m])
500 0 = [Soo0.00 oK | Cancel |

Figure 4.11: A user-defined function

1. Cubic splines: This will use cubic splines to interpolate between points.
This interpolation is computationally intensive and should be used only for

less than 1000 points or so.

2. Low pass filter: In this case the defined points can be considered as
impulses to a low-pass filter with a highest frequency response given by the
inverse of the average distance between 2 successive points. Note that the

function might not touch all given points if their z-interval is not constant.

3. Linear: A straight line interpolation between 2 successive points is imple-

mented, as shown in Figure 5.1.

A comparison between the different methods is given in Figure 4.12.

For the example in Figure 5.1, 3 samples are given. To create a platform moving

with constant velocity it would be sufficient to specify two samples.

A detailed description of every part of the window is given below:

37

Positi

175m

15m-
125m-
10m-
75m-
5m-

jon X (m) Position X (m)

Positi

ion X (m)

d 17.5m-

Cubic Interpolation

s s 4s

5

s Bs
Time (s)

Matched Filter Interpolation

17.5m-

125m-|

N

-125m-

2s 1s 0s 1s 2s 3s 4s Bs Bs

Linear Interpolation

Figure 4.12: The different interpolation methods

Time (s)

e Source: The data can be either stored in a separate file or inline (within

the script file). For large data sets it might be more practical to use exter-

nal data files. However for simple simulations the “inline” option is more

compact. The structure is described in Chapter 5.

e Display: Depending on the data type, there are up to three variables which

can be defined simultaneously. For the above example three coordinates

need to be defined. If there is more than one variable, one can switch

between them by clicking on the specific radio button.

Edit: The data can be entered or modified in this box. The Number

of samples edit box defines the total number of samples specified for the

given variable (they might be different for another variable, for example

you might want to specify 5 points for the xz-coordinate, but only 1 for the

y and z coordinate). Below that a list of # and y coordinates is given for

the number of specified points. After entering the values press Update to

update the graph on the right. When entering more than 20 values or so it

is more practical to read external text files. Points can be deleted or added

at the current cursor position.

e Window: Here the current range of the graph shown can be set. Some

38

data types are limited in range.

e [t is possible to zoom in by selecting an area on the graph with the left
mouse button. This is done by pushing and holding the left mouse button

on the desired corner and releasing it on the opposite corner.

e Zooming out by a factor of two in either direction is achieved by right-

clicking anywhere on the graph.

e Points can be dragged to a new location on the graph by pushing and
holding the left mouse button on the desired point and moving it to a new

position.

All of the data types for which the ordinate increases in fixed steps of 1, the
ordinate will be ignored. The graph will not be a continuous line but a bar
graph. One example is the definition of the centre frequency for each pulse. In
this case the ordinate just represents the pulse number and will be identical to

the current sample number.

4.6.2 External data files

If the data is specified to be an external file, the structure of the data depends

on the functions to be defined, but is of the following general format:

[Number of samples for funmction 1], [X1], [Y1], [X2], [Y2], [X3], [Y3][Xn], [¥Yn]
[Number of samples for function 2], [X1], [Y1], [X2], [Y2], [X3], [Y3][Xn],[Yn]
[Number of samples for function 3], [X1], [Y1], [X2], [Y2], [X3], [Y3][Xn],[Yn]

First the number of samples is given, then the z and y coordinates for all the
samples are given. This is repeated up to 3 times depending on the specific data
type (for example position requires 3 coordinates, others only require 1 or 2).
Comments can be inserted by using an exclamation mark after which all text
until the next line break is ignored. Commas or spaces can be used as separators.

As an example the data file for the points given in Figure 4.12 is given:

39

Data file for : Position X (m) vs Time (s), Position Y (m) vs Time (s), Position Z (m) vs Time (s)
Structure : [No. Samples] [Time (s) 1] [Position X (m) 1] [Time (s) 2] [Position X (m) 2] ...

[No. Samples] [Time (s) 1] [Position Y (m) 1] [Time (s) 2] [Position Y (m) 2] ...

[No. Samples] [Time (s) 1] [Position Z (m) 1] [Time (s) 2] [Position Z (m) 2] ...

0, 11.5, 20, 3 -5, 4 -3.5

0

OO OUl - ===

0

5 points have been define for the x coordinate, and 1 for the y and z coordinate.
Data files can also be edited as described above and the changes can be written

to disk by clicking the Save button.

4.7 Viewing Simulation Files

A powerful image viewer has been integrated into Sarsim. It can be found under

Display / Simulation Output. The features of this viewer include:

No limit in the file size of the image to be viewed. The file is loaded
“on-the-fly” and only the displayed portion is kept in memory.

e Import of Sun-Raster Files, Sarsim simulation files and user-defined files.
e Thumbnail overview image shown.
e Slices in range or azimuth.

e Several colour palettes available with slider controls for brightness, contrast

and saturation.
e Automatic display of I,Q, phase and magnitude for selected sample.

e Usual zooming and panning controls.

The dialog displayed in Figure 4.13 appears after selecting the menu option File
/ Open.

40

Load File x|

 File
Filename lEXAMF'LES\Sim1.bin & Find I

r~ Format

A Simulation Seript File I & Find I

' Custom
Header [bytes] 0 . Data Type
" Magnitude
‘Width (Pizels) 500 @ Complex (10)

Height (Pixels) [500

i Byte Order
Bytes per Value |2 & Little-endian (8086)
Offset 127 € Bigendian [SUN)

Load FiIeI X Cancel I

Figure 4.13: Load file dialog

e Filename: The filename of the image file. Use the Find button to browse

for a file.

e Format: Several formats are supported:

1. Sun-Raster-File format: These files have a header defining their size

and other parameters.

2. Sarsim simulation: If there is a $SIMULATION entry in the script
file with the given image filename as output name, it will use the

specified parameters.
3. Custom: A number of parameters have to be specified for custom files:

— Header: Header size in bytes, data in header will be ignored.

— Width: Width of image in pixel (corresponds to slant range)

— Height: Height of image in pixel (corresponds to azimuth range)

— Bytes per Value: Number of bytes for each pixel. Note: If samples
are complex this will be the number of bytes for both I and Q
values together.

— Offset: The offset which will be subtracted from each sample (to
get negative numbers). For example single byte values have a
range of 0 to 255. An offset of 127 will map this to —127 to +128.

41

— Data Type: Either magnitude (single values) or complex. Com-

plex numbers need to have the I value first, i.e. IQIQ.

— Byte Order: Specify if least-significant byte comes first or not.

After successfully loading the file, the window will look similar to the one shown

in Figure 4.14.

__1SAR Image Viewer : J:\SARSIM2\EXAMPLES\Sim1_bin =] B3
File Options Help

File : N
7:\SARSIMZ)\ EXAMPLES)Siml. A Cur[334 [325 1/24 Q2 M [36.8781 Ph-40.601
bin -

i Display

- Data Bﬂ%&e
@ Real
" Imaginary Contrast
K |
" Magnitude

& Phose |' Saturation
(v Hange T |

X I‘IBS to [340
17 |245 to |33‘I

Full Image I Evport

i~ Draw Data as
€ Color Pixels
" SlicesinX
& SlicesinY

|
Change Palette I
; 3

[«jole)>|

Figure 4.14: The image viewer window (showing slices in azimuth)

On the left, bottom side the complete image is shown. A white rectangle marks

the zoomed section, shown on the right. The data can be displayed as:

e Colour pixels: Each value corresponds to a certain colour (see colour

palette)

e Slices in x: This will show the data as graphs, ranging from top to bottom.

42

e Slices in y: This will show the data as graphs, ranging from left to right.

4.8 Looking at Script Files

Script files are used to describe the complete geometry of the simulation and

they also store the parameters of files written to disk. Sometimes it is useful to

quickly take a look at this script file. It can be displayed by selecting Display /
Script File. The file displayed will be identical to the file which will be stored

on disk after selecting File / Save on the main window. An example is shown

in Figure 4.15.

& Script File
S00

RECT
CONSTANT
300
SINGLE
5.3

$SIMULATION
RADAR1
10010

10510

-0.5

i

! (ns) zero to zero Pulse width
Rectangular envelope

Constant PRI

(Hz) Pulse repetition fregquency
Constant fregquency

(GHz) Center fregquency

[9:408] Power output

(dB) Total system losses

(K) Noise temperature

Simple sin(x)/x transmitter antenna
(deg) Elevation beam width

(deg) Azimuth beam width

Sawe as transmitter antenna
Fixed antenna direction

(deg) Beam-direction - Elevation
(deg) Beam-direction - Azimuth
Rectangular MF window

no 3TC

Name of radar

(m) Slant range start
(m) Slant range end

! (s) Azimuth range start

1 Close

=10 x|

|

Figure 4.15: The script file viewer

4.9 Changing Focus

It is possible to change the focus point of the main screen from the origin of

the “Earth” coordinate system to somewhere else. Either a point other than the

43

Pulse No. Pulse transmittion PT1 Distance PT1 Radial PT2 Distance PT2 Radial PT3 ete

time (s) (m) Velocity (m/s) (m) Velocity (m/s)

0 1.200 32.323 2.312 34.411 1.212 cte.

1 1.202 32.343 2.323 34.422 1.222 cte.

2 1.202 32.363 2.334 34.433 1.232 cte.

Table 4.1: Distance and radial velocity for each point target

origin can be selected or the focus can follow a different platform. This is useful

if one needs to see how an object moves seen relative to some platform.

4.10 Investigating the Geometry for every Pulse

By selecting Geometry on the main menu it is possible to have a look at the
internal variables used for each simulation. This data can also be saved in text
format, so that it can be imported into other data analysis programs. It is also

a very useful “debugging” tool.

The purpose of this command is to show the relative locations and distances
between the radar and all given point targets for each pulse for the given simula-
tion period. An example will clarify this. Suppose you want to model your own
(very complicated) pulse shape and want to use Sarsim only to do the geometry
calculations, i.e. distance and radial velocity for each point target seen by the
radar, this is the tool to use. The output format will be a table of the general

form shown in Table 4.1

Note that in Table 4.1 only a small subset of the variables have been shown. A

detailed list of all variables is given below.

e Pulse No.: This gives each transmitted pulse a unique number. Pulse 0
(zero) will always be sent at simulation time ¢ = 0, the next pulse will be
1 etc. If a simulation extends over negative time, the pulse numbers will

be negative.

44

e Pulse transmitting time (seconds): Displays the exact time when the pulse
is transmitted (for example pulse 0 will be transmitted at time ¢ = 0, pulse
1 at time ¢t = PRI, 2 at ¢ = 2- PRI, and so on, assuming constant PRIs).

e Pulse frequency (GHz): Displays the exact frequency for each pulse given
in Gigahertz.

e Platform position z,y,z (m): Displays the exact position in meters for
each defined platform at the instance of time where the pulse was sent.
The coordinates are relative to the world coordinate system. Note that a
radar will always reside on the origin of the platform, so the given position
will be identical to the position of a radar (if any) situated on this specific

platform.

e Platform velocity z,y,z (m/s): Displays the exact velocity in meters per
second for each defined platform at the instance of time where the pulse

was sent. The velocity vector is relative to the world coordinate system.

e Platform rotation z,y, z (degrees): Displays the exact rotation of the plat-

form around the 3 axes at the instance of time when the pulse was sent.

4.11 Help

A slightly modified version of this entire dissertation is available under Help /

Contents.

45

Chapter 5
Script Files

There are only 4 commands used in the script files, namely:

1. STARGET
2. $PLATFORM
3. SRADAR

4. $SIMULATION

After each of these commands, a series of parameters need to be given. They
can be separated by spaces or commas. The number of parameters depend on
the parameters themselves and can vary considerably. This approach has been
taken to provide flexibility if the descriptions are complex, and to provide better
readability if the descriptions are simple. Comments can be made with an “!”
(exclamation mark); all text behind it will be ignored until the next line break.
The parameters follow the input dialogs closely, so if there should be any doubts

it might be helpful to look at the corresponding dialog.

The order in which the objects are defined in a script file is important. They

should be in the following order: platforms, targets, radars and then simulations.

46

5.1 User-defined functions

The flowcharts for all 4 functions will be shown. Some of them contain a block

7

called “Array Definition.” These blocks contain data on user-defined functions
and the flow diagram is shown below in Figure 5.1. Up to three functions can be
defined in one block, for example z-, y- and z-coordinates versus time. For each
function an interpolation method needs to be specified (cubic, matched-filter or

linear).

Array Definition

»|

¢ ih 3

‘[cusic | wFLTER | [LNEAR | mierpolation method
‘ J

FILE Read Data from file INLINE Define data within this file

Filename int, float, float, ...| Actual data

Figure 5.1: Flow diagram for user-defined function block

User-defined functions can be defined either inline or via an external data file.
Inline means that the actual values for the function(s) are included in the para-
meter list of the command (compact solution). This is useful if there are only a
small number of samples. With a larger number of samples it is more practical
to use external data files. In this case it is only necessary to specify the filename.
The files should be in the same directory as the script file. Note that the filename
string should not contain commas or spaces. The structure of the data (either

inline or in a file) depends on the functions to be defined but are of the following

pattern:

[Number of samples for function 1], [X1], [Y1], [X2], [Y2], [X3], [Y3][Xn][Yn]
[Number of samples for function 2], [X1], [Y1], [X2], [Y2], [X3], [Y3][Xn][Yn]
[Number of samples for function 3], [X1], [Y1], [X2], [Y2], [X3], [Y3][Xn][¥n]

First the number of samples is given, then the z- and y-coordinates for all the

samples are given, then it starts again with the next function (if there is one).

47

For example specifying the path of a platform needs 3 functions, one for each
coordinate versus time. An example of an “INLINE” user-defined trajectory

function is given below (the comments are not necessary):

INLINE

2 ! Number of samples for Position X (m) vs Time (s)
-1, -100 1, 100

1 ! Number of samples for Position Y (m) vs Time (s)
0, 10000

1 ! Number of samples for Position Z (m) vs Time (s)
0, 2000

The equivalent in a “FILE” would look identical (ignoring the comments):

! Data file for : Position X (m) vs Time (s), Position Y (m) vs Time (s), Position Z (m) vs Time (s)
! Structure : [No. Samples] [Time (s) 1] [Position X (m) 1] [Time (s) 2] [Position X (m) 2] ...

! [No. Samples] [Time (s) 1] [Position Y (m) 1] [Time (s) 2] [Position Y (m) 2] ...

! [No. Samples] [Time (s) 1] [Position Z (m) 1] [Time (s) 2] [Position Z (m) 2] ...

2

-1 -100, 1 100

1

0 10000

1

0 2000

From the given samples the program will interpolate the requested values as

shown in Figure 4.12.

5.2 The $STARGET command

A flowchart of the “STARGET” command is shown in Figure 5.2.

5.3 The $PLATFORM command

A flowchart of the “SPLATFORM” command is shown in Figure 5.3.

48

5.4 The $SRADAR command

The flowcharts of the “SRADAR” command are shown in Figure 5.4 and in

Figure 5.5 (Split up due to size considerations).

5.5 The $SIMULATION command

A flowchart of the “6SIMULATION” command is shown in Figure 5.6.

49

$TARGET

Platform name (max of 15 chars)
- platform on which point targets stays

X - coordinate (meter)
- X-position of point target

Y - coordinate (meter)
- Y-position of point target

7 - coordinate (meter)
- Z-position of point target

X - coordinate standard deviation (meter)
- X-position standard deviation of point target

Y - coordinate standard deviation (meter)
- Y-position standard deviation of point target

Z - coordinate standard deviation (meter)
- Z-position standard deviation of point target

. 2
Radar cross section (meter”)

Radar cross section standard deviation (meter’)

v

[ISOTROPIC J Isotropic point target

v

[DIRECTIONAL } Directional point target

Pointing direction - azimuth (degrees)

m Pointing direction - elevation (degrees)

m Pointing direction - azimuth standard
deviation (degrees)

m Pointing direction - azimuth standard
deviation (degrees)

;

[COS_GAIN J

N

Cos-function gain [OTHER_GAIN J User-defined gain

v

Array Definition

Define data block

Figure 5.2: Flow diagram of the $TARGET command

50

$PLATFORM
m Platform name (max of 15 chars)
F - reference name

-

STATIONARY J Stationary platform [TRAJECTORY } User-defined trajectory

X - coordinate (meter)
- X-position of platform ‘ Array Definition

Y - coordinate (meter)

- Y-position of platform

7 - coordinate (meter) NOT_ALIG } { ALIGNED }
- Z-position of platform L)

)
N

Define data block for
trajectory

Align platform

float to trajectory ?

CONST] Constant Rotation { OTHER] User-defined rotation

X - rotation (degrees)

. . S Defi lock for
- rotation around X-axis ‘ Array Definition cfine data block for

trajectory

float

Y - rotation (degrees)
- rotation around Y-axis

7. - rotation (degrees)
- rotation around Z-axis

float X - rotation rate (degrees/sec)
- rotation rate around X-axis
Y - rotation rate (degrees/sec)
- rotation rate around Y-axis
7 - rotation rate (degrees/sec)
- rotation rate around Z-axis

A
v -

STD_DEV J Gaussian noise [OTHER J User-defined position

X - coordinate deviation
(meter) Array Definition Define deviations

Y - coordinate deviation
(meter)

Z - coordinate deviation
(mecter)

A

) HEE«

-

STD_DEV } Gaussian noise L OTHER J User-defined rotation
X - rotation deviation
(degrees) Array Definition Define deviations

Y - rotation deviation
(degrees)

Z - rotation deviation
(degrees)

Figure 5.3: Flow diagram of the SPLATFORM command

51

$RADAR

Radar name (max of 15 chars)
- reference name

Platform name (max of 15 chars)
- platform on which radar stayst

W

[OTHER_PULSE J Pulse type

v

User-defined
pulse definition

float
{ LINEAR } { OTHER } Pulse envelope
Rise time (ns) float . User-defined
% Array Definition pulse envelope
Fall time (ns) float ‘
CONSTANT PRF type
m PRF (Hz) User-defined
PRIs
SINGLE | STEPPED | | OTHER |
Center Start
frequency m frequency .
(GHz) (Ghz) Array Definition
oat]Gy
(GHz) User-defined
frequencies
Pulse /
float frequency
Y
float Power Output (kW)

continued

Figure 5.4: Flow diagram of the SRADAR command (1st part)

System losses (dB)

Noise temperature (K)

52

continued

ISOTROPIC SIMPLE OTHER gj‘:sml“er Antenna
Elevation

iy

beamwidth float A Definiti User-defined
(deg) rray befinition antenna gain
Azimuth

A

ISOTROPIC | siMPLE | [sAME | oTHER | Resiver
ntenna gain

beamwidth float

e (e |
v
AM

Elevation

beamwidth . User-defined
(deg) Array Definition antenna gain
Azimuth

beamwidth

(deg)

v v

v
{FIXED } {ROTATlNG} { SPOT } fenna

Elevation Elevation X-coordinate User-defined
angle (deg) angle(deg) (m) Array Definition | Antenna
direction
Azimuth float Rotation Y-coordinate
angle (deg) oa speed (m)
(deg/s)
m Z-coordinate
(m)
{ RECT } {HANNING} {BARTLETTJ {HAMMlNG} [OTHER } otched Filter
float | [aning . User-defined
constant Array Definition Ms;\;/ifl do:v

boe

NO_STC APPLY_STC | Sensitivity Time Control

10VERR4 OTHER

Array Definition

User-defined STC
function

93

Figure 5.5: Flow diagram of the SRADAR command (2nd part)

[$SIMULATION }

Radar name (max of 15 chars)
- Name of radar used for simulation

Slant Start (>= 0, meter) for
simulation window

Slant End (>= 0, meter) for
simulation window

Azimuth Start (seconds) for
simulation window

Azimuth End (seconds) for
simulation window

A/D bits accuracy (2 - 64)
Sample frequency (GHz)

Least Significant Bit value (mV)

v v

ASCI } Save as ASCII file BINARY } Save as binary file

y
)¢

v v

RAW J Save raw return L MATCHED_FILTERJ Save matched filter

output
L J

\
m Filename of simulation file

CENTER } Pulse Position = center [BEGIN] Pulse position = begin

Figure 5.6: Flow diagram of the $SSIMULATION command

o4

Chapter 6
Sarsim Internals

In this chapter the formulas behind Sarsim will be explained in detail. The

functions which depend on each other will be presented in order of dependence.

6.1 General Function and Variable Definitions

PNo = pulse number (integer = 0)

T No = target number (integer = 0)
PFNo = platform number (integer = 0)
floor(z) = integer part of number

fmod(z,y) = the remainder f, where z = ay+ f for some integer a, and 0 < f <y

(modulus)
cos(a2)cos(a3) -cos(a2)sin(a3) sin(a2)
RotMatrix(al,a2,a3) = cos(al)sin(a3)+sin(al)sin(a2)cos(a3) cos(al)sin(a3)+sin(al)sin(a2)cos(a3) -sin(al)cos(a2)
sin(al)sin(a3)-cos(al)sin(a2)cos(a3) sin(al)cos(a3)+cos(al)sin(a2)sin(a3) cos(al)cos(a2)

)

6.2 Pulse Calculations

Let us assume we want to calculate the return for the following window in azimuth

and slant range as shown in Figure 6.1.

AzimuthEnd

ll /\ A Pulse x+4
A /\ A_Pulse x+3
A /\ APulse x+2
A /\ A_Pulse x+1
ll /\ A_Pulse x

Increasing Time

AzimuthStart
SlantStart SlantEnd

Increasing Slant Range

Figure 6.1: Simulation window

The variables AzimuthStart and AzimuthEnd are given in seconds, while SlantStart

and SlantEnd are given in meters.

6.2.1 FindPulseSendTime Function

This function is defined in engine. cpp. It returns the time (in seconds) at which
the given pulse is sent (i.e. the beginning of the pulse). Pulse 0 is always sent at

time ¢t = 0. For a constant PRF the function is :

, PulseNo
PulseSendTime = “PRF (6.1)

For user-defined PRIs, the function is more complicated. The slightly modified

(for clarity reasons) source code is given here:

long i,FracPRINo;

double frac, ipart, FracPRI;

double SumPRI=0; // sum of all defined PRI’s

// find sum of all PRI’s defined (i.e. PRIO+PRI1+PRI2 etc.)

for (i=0;i<n;i++)

SumPRI += PRIArrayl[il;

// find out how many complete PRI cycles there are in the given
// PulseNo (1 cycle = sum of all defined PRI’s)

frac = modf (double(PulseNo)/double(n), &ipart);

o6

// calculate the number of remaining PRI’s
FracPRINo = long(round(frac * double(n)));
// if PulseNo <0 goto the next lower integral time (ipart -= 1)
// and add positive PRI’s from there

if (FracPRINo < 0)

FracPRINo += n;

ipart —= 1;

FracPRI = 0;

for (i=0;i<FracPRINo;i++)

FracPRI += PRIArrayl[i];

return (ipart * SumPRI + FracPRI);

6.2.2 FindPulsesInRange Function

First the exact time when each pulse is sent out needs to be calculated. This is
important for calculating the relative distances between the radar and the point
targets. Pulses are numbered such that pulse 0 will be sent at simulation time
t = 0, pulse 1 will be sent at time ¢ = 0 + PRI[0], pulse 2 will be sent at time
t = 0 + PRI[0] + PRI[1] etc. Negative times (and pulse numbers) are possible,
for example pulse —1 will be sent at time ¢ = 0 — PRI[n —1]. In Sarsim it is
possible to define the interval between any two pulses. Let us assume this data
is given in the array called PRIArray[z|, where = ranges from 0 to (n — 1),
where n is the number of defined PRIs. The array wraps around such that
PRI[z] = PRIArray [modulus(z,n)]. Note that all times are given in seconds.

Figure 6.2 will clarify what was explained above.

Pulse 0 Pulse 1 Pulse 2 Pulse 3 Pulse n-1 Pulsen Pulse n+1 Pulse n+2
— P ———Pt———r¢+——> ——Pt———P4————P¢+——>
PRI[0] PRI[1] PRI[2] PRI[3] PRI[n-1] PRI[0] PRI[1] PRI[2]
I t 1 >
t=0 t=PRI[0] t=PRI[0]+PRI[1] time (seconds)

Figure 6.2: The “PulseSendTime”

o7

There are two cases:

1. PRF is constant:

FirstPulse = ceil (AzimuthStart - PRF) (6.2)
LastPulse = floor (AzimuthEnd - PRF) (6.3)

2. User-defined PRIs: The function is more complicated. The slightly modi-

fied (for clarity reasons) source code is given here:

long i;

// user defined PRI

double SumPRI=0; // sum of all defined PRI’s

// find sum of all PRI’s defined (i.e. PRIO+PRI1+PRI2 etc.)
for (i=0;i<n;i++)

SumPRI += PRIArrayl[il;

// estimate what number the first pulse will have
FirstPulse = (floor ((TimeStart / SumPRI)+ROUNDERROR)*n)-1;
// and now find the exact one

while (FindPulseSendTime(FirstPulse) < TimeStart)

{

FirstPulse++;

}

LastPulse = (floor((TimeEnd / SumPRI)+ROUNDERROR)*n)-1;
while (FindPulseSendTime(LastPulse) < TimeEnd)

}

LastPulse++;

}

// overshot by omne, so subtract one again

if (*LastPulse > 0) (*LastPulse)-——;

6.2.3 FindPlatformPosition

This function finds the platform position at a give time t.

6.2.4 FindPlatformVelocity

This function finds the platform velocity at a give time ¢.

6.2.5 FindPlatformRotation

This function finds the platform rotation at a give time t¢.

o8

6.2.6 The frequency of each pulse

Single frequency case:

PulseFreqPNo] = specified in RADAR dialog 1 (6.4)

Stepped frequency case:

PulseFreq[PNo] = StartFreq
PNo)

[d
+ floor (fmo (FreqSteps - PulsesPerFreq’
- FreqSteps + ROUNDERROR) - StepSize (6.5)

Note that ROUN DERROR (a small number) needed to be included to overcome

rounding problems, for example sometimes 1—62 would give 1.999999etc which is

incorrectly rounded to 1.

User-defined case:

PulseFreqPNo| = DataArray|fmod[PNo|, arraysize] (6.6)

6.2.7 The time when each pulse is transmitted

Constant PRF:

, PNo
PulseSendTime[PNo|] = PRE (6.7)
User-defined PRIs:
PulseSendTime[PN o] = see source code (6.8)
6.2.8 Range delay
RangeDelay[TNo|[PNo] = 2. Target Dist (6.9)

LIGHT _SPEED — TargetRadialVel[TNo] [PNO]

99

6.2.9 CalcGeometry Function

This function calculates the signal amplitude and range delay for the return of

all pulses and point targets of interest contained in the simulation window.

e Find Firstpulse and LastPulse by using function
FindPulsesInRange(AzimuthStart, AzimuthEnd)

e (Calculate the number of pulses which need to be calculated:

PulseNo = (LastPulse — FiirstPulse) + 1 (6.10)
e Create array which contains the times for which each pulse is sent:

PulseSendTime[PNo| = FindPulseSendT'ime(PNo + FirstPulse)
(6.11)

e Create 2D arrays which contain the position, velocity and rotation for all

platforms for all pulses:

PlatformPos[PFNo][PNo] =— FindPlatformPosition(PFNo,PulseSendTime[PNo])
PlatformVel[PFNo][PNo] = FindPlatformVelocity(PFNo,PulseSendTime[PNo]) (6.12)
PlatformRot[PFNo][PNo] = FindPlatformRotation(PFNo,PulseSendTime[PNo])

e Compute the return gain factor independent of time:

Radarf>?9ta'rtF'r‘eq ’ \/Radar— > PowGTOUtPUt
(4 - 7)1 . /Radar— > Losses

GainFactor =

(6.13)

with Radar->StartFreq being the centre frequency given in Hz, Radar->PowerOutput

given in Watt and Radar->Losses given as a unitless factor.

e For a sinusoidal antenna the gain for a certain offset angle can be calculated

using function SinAntennaGain.

60

e The combined antenna gain is given by v/ AntennaGainT - AntennaGainR
where AntennaGainT is transmitter antenna gain and AntennaGainR is

the receiver antenna gain which can be calculated from:

1 for isotropic antennas
AntennaGainT = SinAntennaGain(OffsetAzi,AziBeamWidthT) (6.14)

* SinAntennaGain(OffsetElev,ElevBeam WidthT) for sinusoidal antennas

e The return amplitude can be calculated with the formula

GainFactor - AntennaGain - v RCS

turnAmp|T No||[PNo| = q
Return Amp[T No|][PNo] Target Dist? (6.15)
6.2.10 CalcOnePulse Function
Chirp Modulation
The chirp rate (= DelaySlope, Hz/s) is calculated as follows:
ChirpBandW'idth
DelaySlope = PulsolVidih (6.16)
Monochrome Modulation
For monochrome pulses the DelaySlope would be zero.
DelaySlope =0 (6.17)

The range delay is the time (in seconds) needed for the pulse travelling forth and

back to the point target and is given by:

2-d
RangeDelay = — (6.18)
c

where d is the distance to the target in meters and c is the speed of light
(= 299792500 m/s).

61

The position of the pulse relative to the target is specified by

0 if the pulse is at the beginning of the point target

PulseWidth

D) if the pulse is at the centre of the point target

PulseCentre = { (6.19)

and explained in Figure 6.3. For real radars you would receive the pulse “after”
the point target location, however for simulations it is sometimes more convenient
to have the point target in the centre. All it really means is that the output array

will be shifted by half a pulsewidth in range.

Magnitude Magnitude
Pulse Pulse
L > L >
PT Range PT Range

Figure 6.3: Point target at the start of the pulse and at the centre of the pulse

For the following calculations it is assumed that the point target position cor-
responds to the beginning of the pulse. A certain time range needs to be sam-
pled denoted by SlantStartTime and SlantStartEnd, both measured in sec-
onds. The sampling frequency is fs. The pulse is situated from RangeDelay to
RangeDelay + Pulsewidth, both variables given in seconds. The time axis is
shifted by an amount of (RcmgeDelay — %Pulsewidth) as shown in Figure 6.4,
such that the variable t goes from —%Pulsewidth to +%Pulsewidth over the

pulse range.

The frequency modulation (chirp rate for chirp pulses) can be calculated as:

1
Mod = DelaySlope - 5 t? (6.20)

For monochrome pulses this value would be zero (DelaySlope = 0).

62

Magnitude
<+ Pulsewidth —>

Pulse
1/f

s

[PT
4 H————+—+—+—+—+> time (s)
SlantStartTime RangeDelay RangeDelay+Pulsewidth SlantEndTime

t=(time-RangeDelay)-1/2 Pulsewidth

I f » {(s)
-1/2 Pulsewidth 0 +1/2 Pulsewidth

Figure 6.4: Positioning of pulse in range

The instantaneous frequency of the returned pulse at some point ¢ (¢ = 0 at

beginning of pulse as shown in Figure 6.4) is:

2 - RadVel
Freq(t) =DelaySlope - t—M - (Freq + DelaySlope - t) (6.21)
N c

Modulation ~ g
Frequency shift due to Doppler

J/

The phase of the returned pulse is the integral with respect to time of the fre-

quency and can be calculated as follows:

Phase(t) = 2-m-(Mod — (PulseFreq- RangeDelay) —

. v
modulation phase shift duc to range

C

J/

~
phase shift due to Doppler

(6.22)

Freq stands for the PulseFreq[PNo|[T No] and specifies the centre frequency of
that specific pulse sent out, RangeDelay is defined above and RadV el specifies
the radial velocity of the target.

From here the inphase and quadrature values are calculated simply by:

I(t) = ReturnAmp - cos (Phase(t)) (6.23)
Q(t) = ReturnAmp -sin (Phase(t)) (6.24)

63

Chapter 7
Example Files

Various examples for different applications will be described in this chapter. The
script files for all examples are available in the EXAMPLES subdirectory.

7.1 A typical C-band SAR Application

For this SAR application a plane is flying in a straight line at some height over
an area, which has to be investigated. The radar is mounted on the plane with
a sideways looking beam. The simulation file can be found as “sar r.scr’ in

the “examples” directory.
This example will model the following scenario:

A plane is flying at 200 m/s parallel to the y-axis at a height of 2000 meters and

10 km horizontal distance from the area of interest as shown in Figure 7.1.

A sidelooking radar is mounted on the plane, the depression angle of the beam is
11.3 degrees. There have been 24 point targets placed in an “R” shape, extending

over 200x400m as shown in Figure 7.2.
The radar parameters are given in Table 7.1.

First the PLANE platform is created. This is done by creating a new platform

64

200 mV

Figure 7.1: Geometry setup

pulse waveform | chirp pulse
B 100 MHz
fe 5.3 GHz
T, 800 ns
PRF 300 Hz

P, 1 kW
losses none

noise none
beamwidth 30 degrees

Table 7.1: Radar Parameters

with the name “PLANE” and defining a trajectory for it. The z-coordinate
decreases linearly by 200 m/s, the y-coordinate stays constant at —10000 m and

the z-coordinate stays constant at 2000 m. Therefore we define the following:

e Position x = 100m at time = Os
e Position x = —100m at time = 1s
e Position y = —10000m at time = 0s (one point suffices)

e Position z = 2000 m at time = Os (one point suffices)

The plane will move 200 meters in 1 second, being closest to the earth origin at

0.5 seconds.

65

& Sarsim Il - JASARSIM2A\EXAMPLES\S ar_r.scr O] x|
File Geometry Simulation Display Yiew Help

e Target I 2 Pla!fnlrnl Radar ! Q |

Time (s) (0.000
= Ealliell = Later |

Azimuth : 59°

Elevation : |52°

Objects

Platform:EARTH
PT:0.-100,0
PT:-100,-100,0
PT:100,-100.0
PT:-190,-100,0
PT:190.-100,0
PT:-190,00
PT:-170,80,0
PT:-100,100,0
PT:-20,80,0
PT:0,0.0
PT:100,55,0
PT:190,100,0
PT:150,80.0
PT:50,30,0
PT:150,-100,0 °
PT:50.-100,0
PT:0.50.0 °
PT:-50,-100,0
PT:-150,-100,0
PT:-190,-50,0
PT:-190,40,0
PT:-140,95.0
PT:-60,93.0
PT:0.40.0

Platform:PLANE
RadarRADART

Figure 7.2: Point target setup

The next step is to create the radar on the PLANE platform, the given parame-

ters need to be entered in the dialogs.

The last step would be to create the point target setup as shown in Figure 7.2. For
this setup a simulation has been stored already and can be recalled by selecting

Simulation / Previous. The window shown in Figure 7.3 will appear.

Because the return signals of the point targets interfere with each other, the
original R-shape cannot be seen. However after saving this simulation window
and performing range and azimuth compression on it (in this specific example
the Chirp Scaling Algorithm has been applied), the image can be restored as
shown in Figure 7.4. Some artifacts appear on the upper and lower border due

to the fact that the azimuth range should have covered more time.

The simulation script file will look as shown in Figure 7.5.

66

. =1 =3

[Padar —— Display — PR =1 —
Current Radar —~ Roal zirmnui | | IE
RaDART = e
Sampling Frequency & Magnitude 1.25 s~
|‘:H:‘ = Myquist Phase 1s-

Pulse Positior

& Start Contrast = 0.75 s -
© Center Min M 05s_|
— window 0.25 s - @\l
Slant Ranges [m]
[10010.000 to [10510.000 Os-
Azimuth Range [s] D.25s-
|-0.500000 to [1.435000

Show &ll T argets I 10.05km 1025 km 10.45 km

Slant Ranges

Save Data | H cos= | 1.9343E-05 mv

Figure 7.3: Simulation window

Figure 7.4: Image after processing

67

! Radar Simulator SARSIM version B28 (c) 1997 R.L.

SPLATFORM EARTH

STATIONARY

0 ! (m) X-Position

0 ! (m) Y-Position

0 ! (m) Z-Position

0 ! (deg) X-axis Rotation

0 ! (deg) Y-axis Rotation

0 ! (deg) Z-axis Rotation

STDDEV

0 ! (m) X-Position standard deviation

0 ! (m) Y-Position standard deviation

0 ! (m) Z-Position standard deviation

STDDEV

0 ! (deg) X-axis Rotation standard deviation
0 ! (deg) Y-axis Rotation standard deviation
0 ! (deg) Z-axis Rotation standard deviation
$PLATFORM PLANE

TRAJECTORY

CUBIC

CUBIC

CUBIC

INLINE

2 ! Number of samples for Position X (m) vs Time
0, 100 1, -100

1 ! Number of samples for Position Y (m) vs Time
0, -10000

1 ! Number of samples for Position Z (m) vs Time
0, 2000

NOT_ALIGNED

0 ! (deg) X-axis Rotation

0 ! (deg) Y-axis Rotation

0 ! (deg) Z-axis Rotation

STDDEV

0 ! (m) X-Position standard deviation

0 ! (m) Y-Position standard deviation

0 ! (m) Z-Position standard deviation

STDDEV

0 ! (deg) X-axis Rotation standard deviation
0 ! (deg) Y-axis Rotation standard deviation
0 ! (deg) Z-axis Rotation standard deviation

(s)
(s)

(s)

$TARGET EARTH ! Platform

0, -100, 0 ! Position X,Y,Z (m)
0, 0, 0 ! Position standard deviation X,Y,Z (m)
1, 0 ! Radar cross section (m*m), RCS std. dev. (m*m)
ISOTROPIC
(Many more PTs omitted here)
$RADAR
RADARL ! Name of radar
PLANE ! Platform name of radar
CHIRP
0.1 ! (GHz) Chirp bandwidth
800 ! (ns) zero to zero Pulse width
RECT ! Rectangular envelope
CONSTANT ! Constant PRI
300 ! (Hz) Pulse repetition frequency
SINGLE ! Constant frequency
5.3 ! (GHz) Center frequency
1 (kW) Power output
0 ! (dB) Total system losses
0 ! (K) Noise temperature
SINX ! Simple sin(x)/x transmitter antenna
30 ! (deg) Elevation beam width
30 ! (deg) Azimuth beam width
SAME ! Same as transmitter antenna
FIXED ! Fixed antenna direction
-11.3 ! (deg) Beam-direction - Elevation
0 ! (deg) Beam-direction - Azimuth
RECT ! Rectangular MF window
NO_STC ! no STC
$SIMULATION
RADARIL ! Name of radar
10010 ! (m) Slant range start
10510 ! (m) Slant range end
-0.5 ! (s) Azimuth range start
1.499 ! (s) Azimuth range end
8 ! A/D bit accuracy
0.15 ! (GHz) Sample frequency
1.68257E-07 ! (mV) Least Significant Bit value
ASCII ! Save file format
RAW ! Processing
SIM1.ASC ! File Name of output file
! Size : 600 (Azimuth) x 250 (Slant Range)
BEGIN ! Point Target position relative to pulse

Figure 7.5: Shortened script file for C-band SAR example

68

Chapter 8
Conclusions

The radar simulator described in this dissertation has proven to be extremely
useful in providing simulated data used for SAR processing applications, for
stepped-frequency processing applications and also for aircraft and ship recogni-
tion analysis. The graphical user-interface makes it easy to use, since one can see
and analyse the returned waveforms before writing them to disk. Furthermore,
due to efficient programming, it is extremely fast, since only the appropriate

computations (corresponding to the current screen resolution) are executed.

8.1 Future work

As with any software developed, there is always scope for improvement. The

following items are suggestions for future work:

e Implementation of surfaces. At the moment only point target simulations
are possible, however for proper SAR and Interferometric SAR applications

it would be of great benefit to implement proper surface simulations.

e Bandlimiting of returned (and transmitted) waveforms to reduce aliasing.

Theoretical radar pulses are never truly bandlimited, due to the sharp

69

cutoffs at the signal boundaries. This can lead to aliasing problems, even

if the returned waveform is sampled well above the Nyquist rate.

Looking at a JAVA implementation, in order to be able to distribute a large
simulation over a number of machines, and to make the simulator platform

independent, i.e. the graphical interface in particular.

Including satellite ephemeris platform trajectories, to facilitate spaceborne
SAR simulation.

Separate motion scenario generator, to provide motion files for radar and

targets in complex airborne radar environments.

70

Appendix A

Examples for Sarsim II

A.1 Introduction

The discrete analysis of radar signals, which are nothing else than electromagnetic
waves sent in a specific pattern, demands very powerful computers. To undertake
the task of writing a simulator is always a compromise between accuracy and
execution time. Many simulators have been written to model the return of
complex objects like aircraft or ships by approximating them by a large number of
surfaces. Although these simulations (taking multiple reflections into account)
give fairly reasonable approximations for simple bodies, calculation times are

usually measured in hours.
A short description of the methods used in this case will be given:

The simulator used here models the reflective surface by means of very small
perfect ‘mirrors’ called point targets. In theory, everything could be modelled by
an extremely large number of these point targets and the reflected signal would
just be a linear combination of these. However for most simulation purposes a
small number of point targets will be used to get a clear picture of what the

effects of changing certain conditions entail.

A radar is considered to be the transmitter and receiver of electromagnetic pulses.

71

Usually short bursts of energy are transmitted in regular intervals at a certain
carrier frequency. Sometimes the pulse is not modulated (monochrome pulse),
however more often it is. A very common linear frequency modulation is called
‘chirp’. The purpose of modulation is to increase the pulse length (less peak
power required) without sacrificing resolution. After reception the signals are
mixed to baseband, in other words the carrier frequency component is removed.
For the purpose of this simulator, the output will always be at baseband, due to
the simple reason that sampling at typical carrier frequencies would require an
enormous number of samples. (In practice the signal would be mixed to some
intermediate frequency). The simulator therefore can only do simulations which

require baseband signals.

As the reflected pulse will be a replica of the transmitted pulse (although scaled
in amplitude and shifted in phase), the simulator does a rather simple task. It
calculates the distance and the relative radial velocity of all given point targets
and constructs a sampled return array by adding ‘pulses’ at calculated posi-
tions within the array. Power losses introduced by range and antenna gains are
taken into account. Effectively the simulator takes the burden of calculating the
geometry setup at any given time. For very simple simulations, this might be
trivial, however for non-linear moving targets or special antenna gain patterns

for example, a computer simulation is the only practical option.

The following pages will describe simple scenarios which will be simulated. The

results will be verified by applicable formulas.

The next section will describe the use of Excel, Matlab and IDL to view the

simulation results saved in the ASCII files.

72

A.1.1 Simulation results on Excel

When the simulation is run, the raw return will display the actual waveform
pulse as shown in Figure A.1. To see the individual pulses, edit the range and
azimuth values in the window box. In this example, the slant range is from 0 to

2000 m and the azimuth range is from 0 to 1.5 ms.
To view the graph on Microsoft Excel, follow the steps below:

— Save file in ASCII format (for this example, the LSB was 1.67572-107% mV).
— Open file in Excel. The ‘Text Import Wizard” window will appear.

— Select option ‘delimited’ in the dialog box.

— Click ‘Next’ and select ‘Tab’ and ‘Space’ in the ‘Delimiters’ window.

— Click ‘Finish’.

% Raw Return Simulation

—FRadar—————] Display it
Current Radar v Fieal
IF“E'CI‘E”3 jv " |Imaginary
Fampling Frequency Magritude 0.1735=
|00 % Mgzt " Phase 015 4=
Pulze Position L Cantiast
' Start —— 01253z
" Center 5
Fin b 01s.
Wi o
Slant Range [m] 0.075 = -
{0.000 ta |2498.960 B
Azimuth Range [s]
[0ooo000 e [orz00000 002954
Show All T argets | L e
250 750 1 ke 1.5 km 2 km
Slant Fange
T | E Close | 0.00021 2817 my

Figure A.1: Raw Return Window

73

Figure A.2 shows some of the values obtained from the simulation.

A [B | ©] D [E T F

L Q M Slant Range Magnitude Phase
| 2]] 1 747 0]
| 3 o o 2 74.95] o
EN a a 3 112.42 0 a
| & | a a 4 148.20 0 a
| B |]] 26 974.33 0]
| 7 -25 -125 28 104827 127 47548 -101.31
| & -25 -125 29 1086.75) 127 47548 -101.31
|9 25 -125 30 112422 127 47548 -101.31
|10 -25 -125 44 1645.86 127.47548 -101.31
|11 -25 -125 45 1686.33 127.47548 -101.31
|12 -25 -125 45 172381 127 47548 -101.31
| 13| a a 48 178876 0 a
| 14 | o o 45 1836.23] o
|15]] 50 1873.70 0]
| 16 a a &1 1911.18 0 a
|17 a a 52 194865 0 a
15 o o &3 1986.13 0 o

Figure A.2: Excel Worksheet for Simulation

The spreadsheet will give a series of I and Q values. The number of values will
depend on the sampling frequency and the slant range used. For this example,
the sampling frequency was 20 times the Nyquist rate (0.2 MHz) and the slant
range was from 0 to 2000 m. The number of values obtained for one single pulse
was 53. The magnitude, phase and slant range can be calculated from these

values as follows:

Magnitude = /I? + Q? (A1)

1
Phase = {atan (%) - @] + nm where n is an integer (A.2)
7r
c
Slant range = T (A.3)

8

74

Figure A.3 displays the graphs of Magnitude and Phase against Slant Range.

GRAFPH OF MAGNITUDE AND PHASE AGAINST SLANT RANGE

140 [
1

|
] itud
120 4) [|

+ -40

-]
=]
'

+ -60

-
=
PHASE [Degrees]

MAGNITUDE [m¥]

+ -8

-
=

[}
=

-120

ITAT

SLANT RANGE [m)

Figure A.3: Graph of Magnitude and Phase against Slant Range

A.1.2 Simulation Results in Matlab

The program to view the magnitude of the pulse is given below:

load F:\filename.asc %loads the I and Q values from the ASCII file into a

Ymatrix called ‘filename’

filename (:,1); %X is a vector representing the I values of ’filename’

<
I

filename (:,2); %Y is the vector representing the Q values of

]
I

%¢filename’

=X + 1xY; %Z is a vector of complex numbers
= abs(Z); %B is a vector representing the magnitude of Z
= length(B); %assigns the length of the vector to a variable k

5

d=1:k;

W=(299792500/8E6) *d; ‘converts from number of pulses to range in meters
plot(B(1:k)) %plots the graph of B against W

title(‘Graph of Magnitude against Slant Range’) Y%title of graph
xlabel(‘Slant Range (m)’) %labelling of x-axis
ylabel(‘Magnitude (mV)’) %labelling of y-axis
The graph is shown in Figure A.4.

Graph of Magnitude against Slant Range
140 T T T

1201 8

100 F 8

80 8

B0

Magnitude (m*)

ot 1

20 1

a s00 1000 1500 2000
Slant Range (m)

Figure A.4: Graph of Magnitude against Slant Range

76

A.1.3 Simulation Results in IDL

The program to view the Magnitude and the Phase of the pulse is given below:

filename = ’simll.asc’

arrlength = 53 ;assigns the number of values in the file to a
;variable called arrlength

A = complexarr(arrlength) ;creates an array of complex numbers of size 53

X = fltarr(54) ;creates an array of floating-point numbers

line = ¢ ;creates a string called ’line’

realpart = 0.0 ;initializes the real part of the complex array

imagpart = 0.0 ;initializes the imaginary part of the complex arra

Openr, 1, filename ;opens the file ’filename’ for reading only

For i = 0,(arrlength - 1) Do Begin
readf, 1, line ;reads each line of the file filename into the
;string called ’line’
reads, line, realpart, imagpart ;the components of the line is read into
;variables ’realpart’ and ’imagpart’
A(i) = complex(realpart, imagpart);stores the values into the complex array
Endfor

Close, 1 ;closes the file ’filename’

abs(4) ;returns the magnitude

atan(imaginary(A), float(A));returns the phase

Cx57.3 ;converts the phase from radians to degrees

For j = 0, (arrlength) Do Begin

X(j) = (299792500/8E6) *j ;converts the number of pulses into
;range(m)and stores them into an array

Endfor

7

;Routine to plot the graphs of Magnitude and Phase against Slant Range
;In order to plot the two graphs, which have different min values and

;max values, the Oplot and Yrange procedures are used.

Plot,X,B,Yrange = [-120,150], $;plots the graph of Magnitude against
;Slant Range with the range of the Y-axis
;between (-120,150)

Title=’Graph of Magnitude and Phase against Slant Range’,$;title of the graph
Xtitle = ’Slant Range (m)’ ;title for the X-axis
Ytitle = ’Magnitude (mV) and Phase (Degrees) ;title for the Y-axis

Oplot,X,D ;plots the graph of Phase against Slant
;Range on the same axes as the previous graph

End

The graph is shown in Figure A.5.

Graph of Magnitude and Phaze against Slant Fange
150 F T T T

0

-sm

—100 |

Magnitude (mW) and Phagze (Degrees)
=

-150 E - .
0 500 1000 1500
Zlant Fange (m)

b2
= Lty byl
=
=

Figure A.5: Graph of Magnitude and Phase against Slant Range

78

A.2 A stationary point target

The purpose of this simulation is to demonstrate:

e the phase shift of the reflected pulse due to range delay,
e power loss due to distance,

e and pulse compression by using matched filters.

A.2.1 Setup

This very simple example consists of a radar located at the origin and a stationary

point target on the z-axis at a distance of 1 kilometre..

The radar parameters are as follows:

e Radar Position: origin of the ‘Earth’ coordinate system
e Pulse Type: monochrome

e Pulsewidth: T}, = 5000 ns

e Pulse Repetition Frequency: 1000 Hz

e Carrier Frequency: 1 GHz

e Output Power: 1 kW

e Target cross-section: 1 m?

79

Figure A.6 shows the geometrical setup of the radar and the point target.

Radar

A

Point Target -
~ Tkm
m Y

X

Figure A.6: Geometry Setup

A.2.2 Results

A typical simulation window is shown in Figure A.7. Slow time (azimuth) is
presented on the y-axis (increasing from bottom to top), while fast time (shown

as slant range) is displayed on the z-axis.

Several facts can be observed from Figure A.7. The target is stationary, posi-
tioned at 1 km as specified. The pulse extends over 750 m in range. The actual
pulse length is twice that (¢ - Tp = 1500 m), the discrepancy is due to the fact
that the range and not the range delay is shown on the z-axis. In other words
the time scale has been divided by a factor of two, as the pulse has to travel back

and forth. The pulse repetition interval (PRI) is 1 ms.

After saving the data the phase and magnitude of the pulse can be determined.
Usually data is sampled with 8 bit or 12 bit accuracy. For this example 8 bits
will be used. The least significant bit value is chosen such that the signal makes
optimum use of the dynamic range without saturation occurring. (In reality

there will always be some saturation occurring due to noise.)

80

J1=-24,0=-121

Magnitude = 123.3572
Phase = -101.21

Figure A.7: Magnitude against Slant Range for Raw Return

For the given data the following values were obtained:

Least significant bit value = 1.6757 - 107 mV

I=-24=(-24—127)-1.6757 - 10" mV = -253 uV (in-phase component)
Q= —121 = (—121-127)-1.6757-10 °® mV = -415.6 uV (quadrature component)

If the data is saved in binary format an offset of (2"~! — 1) is added, where n

specifies the number of bits used.

A.2.3 Analysis
Sampling spacing

In this specific simulation the data has been sampled at 20 times the Nyquist
rate, therefore f, =20-2- - = 8 MHz.

Tp

81

For the given range window of 2 km shown in Figure A.7, 53 samples were taken.

Each sample corresponds to # meters in range, where ¢ = 299792500 .

Power loss

Although the return pulse is of the same shape as the radiated one, the magnitude
is significantly less than the radiated pulse. The received power is given by the

following equation:

2 2
o Ptransmitted . G Ao

Precei'ue - A4
a (4-m)3- R (A4
where
e 0 = target cross-section
e)\ = wavelength of pulse
e 1R = distance to target
e (G = Antenna gain
For the given scenario the received power would be:
Ptransmitted : G2 :)\2 %
Preceive = A5
¢ (4-7)3- R (4.5)
1000 - 1-0.2998% -1
= A6
(4 -)3 - 1000% (4.6)
= 45.293269 - 107" W (A.7)

which gives a corresponding amplitude (assuming the ubiquitous 1 2 resistor)
of:

Magnitude = /P eceived = 2.1282 - 107* mV (A.8)

82

The simulated value gives a magnitude of /1% + Q? = 2.128 - 107* mV, which

agrees with the above result.

Phase shift

The phase of the return pulse is determined by the wavelength and the distance

to the radar and is given by:

Cc

Phase =2 - - (—2-d-i> (A.9)

where c¢ is the velocity of light and d is the radar-target distance. As the phase
wraps around every 27 radians, only the remainder can be determined. For a

point target at a distance of 1000 m:

Phase = mod [2~7T- (—2~d- i) ,2~7T:| (A.10)
c
— mod |2 21000 - — 2 (A.11)
It 209792500) ' <" '
= —1.7653 (A.12)
= 101.15deg (A.13)
The simulation values give the same value: Phase = —% — arctan(—3:) =

—101.22deg. The slight discrepancy is due to the 8 bit quantisation of the

samples.

Range Compression

In pulse compression, the return pulse from the raw return is compressed.This

is achieved by using a matched filter. The concept of range compression will be

explained in more detail in the following section.

83

The choice of a radar waveform will affect radar performance in terms of range,
Doppler, and angle measurements, as well as the system’s detection performance.

For example, a short monochromatic pulse of timelength ¢, will allow a resolution
of

R, = — (A.14)

Therefore, targets that are closer in distance than R, cannot be easily “resolved”
or separated, because the returns will overlap. The important parameter for
range resolution is bandwidth; thus, a monochrome pulse has an effective band-
width B, = % The effective bandwidth for a monochrome pulse waveform is
the bandwidth of the pulse spectrum. By making a pulse shorter, or the effective
bandwidth larger, range resolution is improved. However, the amount of energy

contained in the pulse diminishes as the pulse shortens.

Improved detection is achieved by proper filtering or processing of the received
signal. The use of a matched filter optimises performance in the presence of
white, Gaussian noise. The return pulse is convolved with a conjugate replica of
itself. Since the pulse is rectangular in shape, a convolution with itself will give

a triangular pulse.

As can be seen from Figure A.8, the resultant pulse is triangular in shape. Since
range-compression is computationally intensive, the sampling rate can be set.
Using low values for the sampling rate (less than the Nyquist frequency) should
be avoided due to aliasing. In this example, the sampling rate used is a hundred
(100) times the Nyquist frequency. It is to be noted that neither the magnitude

nor the phase changes when the return pulse is range compressed.

The importance of pulse compression will be demonstrated in more detail in the

next example.

84

Azimuth

18ms= -4 ¢=-a21
1.375 mg = Magnitude = 123.3572

1.25 ms= Phase = -101.21 ~
1125 ms -
e —— e
0.875 ms -
0.75ms -
0.625 ms -
05 ms-
0.375 ms~
0.25 ms -
0125 ms -

250 m 750 m 1.5km
Slant Fange

5.32042E-10 m¥

Figure A.8: Magnitude against Slant Range for Range Compression

A.3 A moving point target

The previous simulation demonstrated fixed point targets. For this simulation

the target will move relative to the radar. The purpose is to demonstrate:

e moving point targets
e chirp modulation
e matched filters
e range resolution
e Doppler frequency shift
e and the concept of moving platforms.
A platform is a convenient way of grouping targets, which are not moving relative

to each other, together. Their position and velocity can then be set by just

defining the trajectory of that specific platform.

85

A.3.1 Setup

The radar parameters are as follows:

Radar position: origin of the ‘Earth’ coordinate system

— Pulse Type: chirp
Bandwidth: 0.1 GHz

Pulsewidth, 7,: 2500 ns

— Pulse Repetition Frequency: 1 kHz
— Carrier Frequency: 0.5 GHz

— Output power: 1 kW

— Target Cross-section: 1 m?

There are two targets that are 8 meters apart. They have been grouped on a

platform and the parameters for the platform are:

— 2z = 300 m and moving at a speed of 50 ms ™! in the z-direction
- z=0.

The geometrical setup is given in Figure A.9.

A.3.2 Results

Raw Return
The pulse type used in this example is a chirp pulse. For chirp waveforms, the

frequency fj is not kept constant throughout the pulse, but is linearly modulated

from f; to (fy + Af). Af can be positive (up chirp) or negative (down chirp).

86

50fm

Figure A.9: Geometry Setup

The result is a waveform which has a bandwidth that is independent of the pulse
length T,. Thus, a pulse with large T, and large B can be constructed. The
reason for using a chirp waveform, is to have a high energy pulse which increases
the range resolution capability of the radar. The transmit waveform is generated

with a frequency versus time domain waveform as shown in Figure A.10.

Instantaneous Frequency
[
=

L—Tm—vj

Time Delay

Figure A.10: Frequency against time domain waveform

87

Figure A.11 shows the raw return for the simulation (only one pulse is shown here
for clarity). Due to the fact that there are two targets that are close together, it
is very difficult to separate the two targets from each other. The received pulse

consists of the return pulse from the two targets interfering with each other.

Azimuth
1.0383s-
1.03825 s -

1.0382 s - |
1.03815 - f ‘ ‘ '
1.0381 s~ \ A ‘ ‘
1.03805 s - r ” JM (\ \ ‘ |
1.038 5~ WA W
1.03795 5 - wf m \ Uf\‘/ \ |‘ H ‘ "f Ll\J B
1.0379 5 - ‘ ‘) ‘ ’
1.03785 5 - \ ‘
1.0378 5~)
1.03775 5 - . . i }] i } .
400m 450m S00m S50m 600m B50m 700m 75c|ms|ammge
0.00257865

Figure A.11: Simulation Window for Real Part of Raw Return

Range Compression

In order to be able to distinguish between the two targets, range compression is
used. This is shown in Figure A.12. From the figure, it can be seen that the first

target is at 300 m and the second one is at 308 m.

The theoretical resolution of the radar is determined by the using the following

equation:

AR, = (A.15)

where B = bandwidth of the chirp pulse.

For the given bandwidth of 100 MHz, the resolution will be 1.5 meters.

88

Azimuth

0.45 ms -
0.4 ms -
0.35 ms -
0.3 ms-
0.25 ms -
0.2ms- .
015 ms- M i
0.1 ms- [} I‘ |
0.05 ms - P P T
[P VAVAVATATU A's
-0.05 ms -

T T T T T T T
285m 290m 295m 300m 305m 310m 315m
Slant Range

2.99877E-09 my

Figure A.12: Magnitude of Signal after Range Compression

Phase Shift

The first return of the first 9 pulses (the first pulse is sent at time ¢ = 0 seconds)
were sampled (after range compression), and the corresponding phase values are
shown in Figure A.13. As the platform is moving into positive z-direction, this
will introduce a phase shift of the return array for every pulse. The PRF =1
kHz, therefore the target will move 0.05 m/pulse. This corresponds to a phase
shift of 2 - 7 (id) = —1.0472 radians, as verified in Figure A.13. Point targets

)
1 and 2 are positioned at 300 m and 308 m respectively at time ¢ = 0 seconds.

A.4 Search Radar

This example consists of a rotating antenna beam with a certain antenna gain
pattern an a single point target. A measure of the ability of an antenna to
concentrate energy in a particular direction is called the gain. Two different, but
related, definitions of antenna gain are the directive gain and the power gain.

The directive gain is descriptive of the antenna pattern.

89

4,
31 m 4 w
2 w 5 ﬁ
2 1w m -
:'_g 0 # Point Target 1
g g = ¢ m Point Target 2
9 -1 - m
g .
o _2. ".. n
-3 =
_4 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9
Pulse No.

Figure A.13: Phase shift

The directive gain of a transmitting antenna is defined as the ratio

maximum radiation intensit,
Gp = e (A.16)
average radiation intensity

The radiation intensity is the power per unit solid angle in the direction (7, €) and
is denoted by P(n,€). The two-angle coordinates commonly used with ground-

based antennas are azimuth angle 7 and elevation angle e.

A simple approximation to typical antenna gain patterns is the %@) shape. This

can be analytically calculated by considering the current distributions across a
. 2

circular aperture. The power radiation pattern is a sin(z) pattern. Fig-
x

ure A.14 shows an example for a beamwidth of 10 degrees.

The half-power points would be at an offset of 5 degrees off the beam centre.

The amplitude gain is calculated by:

. -
Gain = 220 _ g8 7. 0

z " Beamwidth (A-17)

90

N
[N

o
[e) P
——

o

[<2]
E—
—

Gain (Magnitude)
o
n

o

N
e
L=

VIR

-109 -95 -81 -66 -52 -38 -23 -9 5 19 34 48 62 77 91 105

Offset (degrees)

Figure A.14: Magnitude gain pattern for a beamwidth of 10 degrees

A.4.1 Setup

This example consists of a search radar and a stationary point target.The simu-

lation parameters for the radar are as follows:

e Monochrome pulse modulation, pulsewidth 5000 ns
e Pulse repetition frequency: 400 Hz
e Carrier frequency: 1 GHz

e Output power: 1 kW

e sin(z)/x transmitter antenna gain, elevation beamwidth 30 degrees, az-

imuth beamwidth 1 degrees

e Rotation rate 24 deg/s, beam elevation angle 30 degrees

e Target offset : = 1000 m, y = 1000 m, z = 816 m (distance = 1632.74 m)

91

1kh

24 degl/s

Figure A.15: Geometry setup

A.4.2 Results

The transmitter antenna gain pattern is a simple %, the power radiation

sin(x)

2
pattern of the return pulse is a () . As can be seen from Figure A.16, the

return pulse has a mainlobe and sidelobes of decreasing magnitude.

Power Loss

The transmitted power is 1 kW and the received power at the beam centre is

calculated as follows:

2 2
Ptransmitted : G Ao

Preceive = A.18

a (4-m)3 - RA (A.18)
1000 - 1-0.2998% - 1

— A.19

(4-7)3 - (1632.745)* (A.19)

= 6.37324- 107" W (A.20)

Magnitude = \/Pyeceived = 7-9833 - 10° mV (A.21)

92

Graph of Magnitude against Sample Number for Raw Return

140

120

100

80

60

Magnitude

40

20

MW= DM WES T AW MeDT MWD DM W D oW

coNBD oo NgS e 0" n T NS WRER

== MMM TR Y o REEd AT 2 F
Sample Number

Figure A.16: Graph of Magnitude against Sample Number for Raw Return

The value obtained from the simulation is 7.97376 - 10~° mV.
Phase Calculation

The (z,y, z) coordinates for the target are (1000, 1000, 816).

The distance of the target from the radar is d = 1632.744928 m, f = 1 GHz and
¢ = 299792500 ms~!.

Phase = mod (2 e (—2 -d - %) ,2- 7r> (A.22)

- (A.23)

Q

The phase is —180 degrees and from the simulation values, it can be seen that

the Q values are all zero and the I values are negative.

93

A.4.3 Range Compression

The range compression result is shown in Figure A.17. This was obtained by

convolving the raw return pulse with a conjugate replica of itself.

Resolution

The theoretical resolution of the radar is

¢ 299792500 - T,,

AR =
R 2-B 2

— 7495 (A.24)

Graph of Magnitude against Sample Mumber for Range Compression

140

120

100

80

60

Magnitude

40

20

VI B -~ - - IO - v O — IV O o T O = T -~ N~ O — o Y IO B S T 7 I~ .~ =
mmr-mmvmmm;nnmr—wmvmmNFummh—mmvv
PN RThOre Y O R NNTRLEEREREANGTINE

Sample Number

Figure A.17: Magnitude against Sample Number for Range Compression.

The difference between the mainlobe and the first sidelobe levels is 13.5 dB. With

filtering, the sidelobes can be reduced at the expense of resolution.

94

Appendix B

Software Source Code

The Sarsim2 executable and the corresponding source code has been written on
a CD and is either attached to this dissertation, or can be obtained from the
Radar Remote Sensing Group at UCT.

95

Bibliography

1]

S. R. J. Axelsson. Frequency and Azimuthal Variations of Radar Cross Sec-
tion and Their Influence Upon Low-Frequency SAR Imaging. IEEE Trans-
actions on Geoscience and Remote Sensing, 33(5):1258-1265, September
1995.

R. H. Clarke and J. Brown. Diffraction Theory and Antennas. Ellis Horwood
Limited, Chichester, 1980.

J. C. Crespo. The Extended Chirp Scaling Processor for the Experimental
SAR System of DLR, E-SAR. In Proc. Furopean Conference on Synthetic
Aperture Radar, FUSAR’96, pages 353-356, Konigswinter, Germany, March
1996. VDE-Verlag GMBH, Berlin and Offenbach.

I. Cumming, F. Wong, and K. Raney. A SAR Processing Algorithm with no
Interpolation. In Proc. IEEE Geosci. Remote Sensing Symp., IGARSS’92,
pages 376-379, Clear Lake, TX, May 1992.

J. C. Curlander and R. N. McDonough. Synthetic Aperture Radar Systems
and Signal Processing. John Wiley and Sons, New York, Chichester, Bris-
bane, Toronto, Singapore, 1991.

G. W. Davidson, F. Wong, and I. Cumming. The Effect of Pulse Phase
Errors on the Chirp Scaling SAR Processing Algorithm. IEEFE Transactions
on Geoscience and Remote Sensing, 34(2):471-478, March 1996.

C. Elachi. Spaceborne Radar Remote Sensing: Applications and Techniques.
The Institute of Electrical and Electronics Engineers, Inc., New York, 1988.

96

8]

9]

[13]

[15]

[16]

J. P. Fitch. Synthetic Aperture Radar. Springer-Verlag, New York, 1988.

G. S. Gill. Step Frequency Waveform Design and Processing for Detection
of Moving Targets in Clutter. In Proceedings of the IEEE 1995 International
Radar Conference, RADAR’95, pages 573-578, Alexandria, Virginia, May
1995.

S. A. Hovanessian. Radar System Design and Analysis. Artech House,
Norwood, MA 02062, 1984.

Y. Huang, Z. Ma, and S. Mao. Stepped-frequency SAR System Design
and Signal Processing. In Proc. European Conference on Synthetic Aperture
Radar, EUSAR’96, pages 565-568, Konigswinter, Germany, March 1996.
VDE-Verlag GMBH, Berlin and Offenbach.

W. Hughes, K. Gault, and G. J. Princz. A Comparison of the Range-
Doppler and Chirp Scaling Algorithms with reference to RADARSAT. In
Proc. IEEE Geosci. Remote Sensing Symp., IGARSS’96, volume 2, pages
1221-1223, Lincoln, Nebraska, June 1996.

M. R. Inggs. The SASAR VHF Sensor. In Proc. European Conference on
Synthetic Aperture Radar, EUSAR’96, pages 317-320, Konigswinter, Ger-
many, March 1996. VDE-Verlag GMBH, Berlin and Offenbach.

M. R. Inggs, J. Hurwitz, and A. Langman. Synthetic Range Profile Measure-
ments of Aircraft. In IEEFE Proceedings of the 1993 South African Commu-
nications and Signal Processing Symposium, COMSIG 93, pages 204-209,
September 1993.

M. R. Inggs, A. Knight, and P. Smit. Synthetic Range Profile Measurements
with a Pulse Compression Radar. In IEEE Proceedings of the 1992 South
African Communications and Signal Processing Symposium, COMSIG’92,
pages 7-10, Cape Town, South Africa, September 1992.

M. R. Inggs and R. T. Lord. SRP Phase VI Status Report. Technical report,
University of Cape Town, Radar Remote Sensing Group, February 1996.

97

[17]

18]

[19]

[20]

[21]

22]

[24]

M. R. Inggs, M. W. van Zyl, and A. Knight. A Simulation of Synthetic Range
Profile Radar. In IEEE Proceedings of the 1992 South African Communi-
cations and Signal Processing Symposium, COMSIG’92, pages 1-6, Cape
Town, South Africa, September 1992.

J. A. Legg, A. G. Bolton, and D. A. Gray. SAR Moving Target Detec-
tion using a Nonuniform PRI. In Proc. Furopean Conference on Synthetic
Aperture Radar, EUSAR’96, pages 423-426, Konigswinter, Germany, March
1996. VDE-Verlag GMBH, Berlin and Offenbach.

R. T. Lord and M. R. Inggs. High Resolution VHF SAR Processing Using
Synthetic Range Profiling. In Proc. IEEE Geosci. Remote Sensing Symp.,
IGARSS’96, volume 1, pages 454-456, Lincoln, Nebraska, June 1996.

R. T. Lord and M. R. Inggs. High Range Resolution Radar using Narrow-
band Linear Chirps offset in Frequency. In IEEE Proc. of the South African
Symp. on Communications and Signal Processing, COMSIG’97, pages 9-12,
Grahamstown, South Africa, September 1997.

R. T. Lord and M. R. Inggs. High Resolution SAR Processing Us-
ing Stepped-Frequencies. In Proc. IEEE Geosci. Remote Sensing Symp.,
IGARSS’97, volume 1, pages 490492, Singapore, August 1997.

J. Mittermayer, R. Scheiber, and A. Moreira. The Extended Chirp Scaling
Algorithm for ScanSAR Data Processing. In Proc. European Conference on
Synthetic Aperture Radar, FUSAR’96, pages 517-520, Konigswinter, Ger-
many, March 1996. VDE-Verlag GMBH, Berlin and Offenbach.

S. Mobley and M. Maier. Synthetic Aperture Radar-Systems Processing
with a Non-Uniform Pulse Repetition Interval. In Proc. European Confer-
ence on Synthetic Aperture Radar, FUSAR 96, pages 407-410, Konigswin-
ter, Germany, March 1996. VDE-Verlag GMBH, Berlin and Offenbach.

A. Moreira, J. Mittermayer, and R. Scheiber. Processing of SAR and
ScanSAR Imaging Modes using the Extended Chirp Scaling Algorithm. In
Proc. European Conference on Synthetic Aperture Radar, EUSAR’98, pages

98

[27]

28]

[29]

32]

557-560, Friedrichshafen, Germany, May 1998. VDE-Verlag GMBH, Berlin
and Offenbach.

A. V. Oppenheim. Applications of Digital Signal Processing. Prentice-Hall,
Englewood Cliffs, NJ, 1978.

A. D. Robinson and M. R. Inggs. Correlation Filters Applied to Synthetic
Range Profiles of Aircraft Targets. In IEEE Proc. of the South African
Symp. on Communications and Signal Processing, COMSIG’94, October
1994.

H. Runge and R. Bamler. A novel high precision SAR focussing algorithm
based on chirp scaling. In Proc. IEEE Geosci. Remote Sensing Symp.,
IGARSS’92, pages 372-375, Clear Lake, TX, May 1992.

O. Seger, M. Herberthson, and H. Hellsten. Real Time SAR Processing of
Low Frequency Ultra Wide Band Radar Data. In Proc. Furopean Conference
on Synthetic Aperture Radar, FUSAR’98, pages 489-492, Friedrichshafen,
Germany, May 1998. VDE-Verlag GMBH, Berlin and Offenbach.

V. Shteinshleiger, A. Dzenkevich, G. Misezhnikov, and L. Mel’nikov. On the
Possibility of Designing a High-Resolution Space-Borne VHF-Band SAR for
Remote Sensing of the Earth. In Proc. Furopean Conference on Synthetic
Aperture Radar, EUSAR’96, pages 321-324, Konigswinter, Germany, March
1996. VDE-Verlag GMBH, Berlin and Offenbach.

G. W. Stimson. Introduction to Airborne Radar. Hughes Aircraft Company,
El Segundo, California, 1983.

M. Suess, M. Volker, J. J. W. Wilson, and C. H. Buck. Superresolution:
Range Resolution Improvement by Coherent Combination of Repeat Pass
SAR Images. In Proc. Furopean Conference on Synthetic Aperture Radar,
EUSAR’98, pages 565-569, Friedrichshafen, Germany, May 1998. VDE-
Verlag GMBH, Berlin and Offenbach.

L. M. H. Ulander. Performance of Stepped-Frequency Waveform for Ultra-
Wideband VHF SAR. In Proc. European Conference on Synthetic Aperture

99

Radar, EUSAR’98, pages 323-326, Friedrichshafen, Germany, May 1998.
VDE-Verlag GMBH, Berlin and Offenbach.

[33] D. R. Wehner. High Resolution Radar. Artech House, Norwood, MA 02062,
1987.

100

