Design and Implementation of a
Parallel Pulsar Search Algorithm

by
Tsepo Sadeq Montsi

submitted to the Department of Electrical Engineering,
University of Cape Town,
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Electrical and Computer Engineering

Cape Town, October 2006

Declaration

I declare that dissertation is my own, unaided work. It is being submitted for the degree of Bachelor
of Science in Engineering in the University of Cape Town. It has not been submitted before for any

degree or examination in any other university.

SI1ZNALUTE OF AULNOTooiiiiiiiiiiii ettt st sbe e et eeeabee e

Cape Town

October 2006

Abstract

This Thesis illustrates the design and implementation of a Parallel Pulsar Search Algorithm. Pulsars
are a are rare form of Neutron Star. They are of great interest to astronomers due to their unique
properties. Pulsars rotate rapidly and emit beams of radio energy. If the axis of rotation and the
direction of the radio beams do not align, then from Earth these beams are perceived as lighthouse
like pulses. Due to an interaction with the Interstellar Medium called Dispersion, these beams are
generally undetectable from a direct observation. A Pulsar Search Algorithm takes in observation
data from a Radio Telescope, and counteracts the effects of Dispersion on this data, it then performs
an analysis in the frequency domain to detect possible Pulsars. An algorithm that performs these
manipulations is computationally intensive, as such a method of speeding up this computation is
desirable. One method of improving speed is running the algorithm simultaneously on multiple
computers, i.e. Parallel Computing. After analysing a sequential Pulsar Search Algorithm, a SIMD
and MISD parallel Pulsar Search Algorithm were designed. These were implemented in a program
and then tested on the KAT cluster to measure their performance. Both proved to be faster than the

sequential algorithm, however the MISD implementation proved to be the fastest.

il

Acknowledgments

I wish to thank my Thesis Supervisor, Professor Mike Inggs for his assistance in the completion of
this thesis, but most importantly, for making such a fascinating and challenging topic available at an

undergraduate level.

I would also like to thank Thomas Bennett for his enthusiastic assistance in all matters Parallel, and

for making the fantastic resource that is is the KAT cluster available to me.

Dr. Duncan Lorimer, the author of the seminal book on Pulsar Astronomy the Handbook of Pulsar

Astronomy, assisted greatly in the creation and debugging of the implemented program.
I greatly appreciate the assistance of my fellow final year student, Mr Roger Deane. His research on
and in depth knowledge in the fields of Pulsar and Radio Astronomy was instrumental in making the

outcome of this project a success.

I would like to thank my Mother, Father and Brother for their support and encouragement.

il

List of Figures

Figure 3.1: Illustration of a Pulsar and the associated periodic signal

Figure 3.2: The effects of dispersion on a Pulsar's signal

Figure 3.3: Graphical Example of the De-dispersion Operation

Figure3.5: Sequential Pulsar Search Algorithm

Figure 4.1: Sequential Computer Architecture

Figure 4.2: Parallel Computer Architecture

Figure 4.3: SIMD Parallel Pulsar Search Algorithm

Figure 4.4: MISD Parallel Pulsar Search Algorithm

Figure 4.5: The Theoretical Speedup of the SIMD Algorithm

Figure 4.5: The Theoretical Speedup of the SIMD Algorithm

Figure 5.1: KAT Cluster Command Node

Figure 5.2: KAT Cluster Switches and nodes

Figure 5.3: KAT Cluster nodes

Figure 5.4: Example of Filterbank Data Format

Figure 5.5: Layout of rawData in memory for the SIMD implementation

Figure 6.1: Candidates Output by Sequential Implementation

Figure 6.2: Candidates Output by SIMD Implementation

Figure 6.3: Candidates Output by MISD Implementation

Figure 6.4: SIMD Implementation Completion Time

Figure 6.5: SIMD implementation Speedup over the the Sequential Implementation
Figure 6.6: MISD Implementation Completion Time

Figure 6.6: MISD Implementation Speedup over the Sequential Implementation
Figure 6.6: Comparison of the Algorithm Completion Times

Figure: 6.8: Algorithm Efficiency

Figure 6.9: De-dispersion and Frequency domain processing in the SIMD implementation

Figure: 6.9: Discrepancy Between the Theoretical and Observed Speedup

v

10
10
15
19
24
24
35
36
38
39
41
42
43
45
50
56
57
57
58
58
59
60
60
61
64
65

Nomenclature

Algorithm:

FFT:

Dispersion:

Dispersion Measure:

Interstellar Medium:

MPI:

Parallel Computer:

Pulsar:

Sequence of steps used to solve a computational problem

Fast Fourier Transform

Smearing of the frequency components of a signal due to interaction

with the Interstellar Medium

The measure of the degree of dispersion of a signal

Charged dust and plasma, inhabiting interstellar space

Message Passing Interface, A specification for libraries implementing

common Parallel Computing Functions

A group of computers computing a single algorithm

Rotating Neutron star, emitting beams of radio energy, which are

perceived to be pulsing

Table of Contents

Declaration
Abstract
Acknowledgments
List of Figures
Nomenclature
1 Introduction
1.1 Project Background
1.2 Project Objectives
1.3 Scope and Limitations
14 Plan of Development
2 Literature Review
2.2 Pulsar Search Literature
2.3 Parallel Computing Literature
2.4 Parallel Pulsar Search Algorithm Literature
3 Pulsar Search Algorithm Design
3.1 Background to Pulsars
3.2 De-Dispersion
3.3 Frequency Domain Processing
3.4 Candidate Selection
3.5 Computational Analysis of the Sequential Algorithm

vi

ii

iii

iv

0 NN N

13
16
17
20

Parallel Algorithm Design

4.1 Background to Parallel Computing

4.2 Parallel Computing Theory

4.3 Classification of Parallel Computers

4.4 Communication in Parallel Computers

4.5 Parallelisation of a Pulsar Search Algorithm

4.6 Computational Analysis of the Parallel Algorithms
4.6.1 Computational Analysis of the SIMD Algorithm
4.6.1 Computational Analysis of the MISD Algorithm
4.6.1 Analysis of Communications in the Algorithm Designs

Implementation

51 The Kat Cluster

5.2 Messaging Interface

5.3 Simulated Pulsar Data

54 Search Data

5.5 Algorithm Implementation
5.5.1 Sequential Algorithm Implementation
5.5.2 Parallel Algorithm Implementation

Testing

6.1 Testing Methodology

6.2 Verification Tests

6.3 Algorithm Performance Tests

Results and Analysis

7.1 Verification
7.2 Algorithm Performance
Conclusions

Vil

22
2
25
27
29
31
37
38
39
40

41
42
43
44
45
46
46
49

55

55
56
58

62

62

63

66

Bibliography

Al
A2

Appendix A: Testing Data
Appendix B: Readme File

viii

67
70
72

1 Introduction

1.1 Project Background

Parallel Computing involves harnessing the collective computing power of multiple computers in order
to increase the rate at which data can be processed"”. It is a field that has revolutionised many activities
and fields of study'!, by removing the shackles imposed by the computational limitations of traditional
computers. One field that has benefited greatly from the use of Parallel Computers is Astronomy. The
size of the observational data collected by sensitive modern astronomical apparatus is extremely large
when compared to other computational applications, coupled with this is the fact that extremely
computationally intensive operations are often required before any meaningful information can be

gleaned from the data. A perfect example of this is searching for Pulsars.

Pulsars are astronomical objects that are of great interest to astronomers due to their unique
characteristics. They are collapsed stars, known as Neutron Stars, that rotate rapidly'. Due to the
physical processes occurring in and around them, they emit signals in the radio frequencies, which

because of their rotation, are perceived as lighthouse like pulses™.

Due to various interstellar
phenomena, these signals are generally undetectable from a direct observation, and require
manipulation before the presence of a pulsar can be confirmed. An algorithm that performs these
manipulations is computationally intensive, as such a method of speeding up this computation is
desirable. One method of improving speed is running the algorithm simultaneously on multiple

computers, i.e. Parallel Computing.

1.2 Project Objectives

The author has been tasked with the creation of a Parallel Pulsar Search Algorithm to increase the
speed of Pulsar searches. This algorithm should be implemented in a program able to be run on a
parallel computer, in the case of this project, a beowulf type cluster. The program should be based on an
existing sequential Pulsar Search Algorithm. The program should take a file containing observation

data from a radio telescope as its input. The data from the file should be distributed to the computers in

the cluster and processed by them. This processing should compensate for dispersion over a wide range
of Dispersion Measures. Once de-dispersed and other manipulations of the data have been completed,
the program should be able detect possible Pulsar signals in the processed search data. This process

should occur faster than with an equivalent sequential algorithm.

In order to quantify the improvement in computational speed, the program should be profiled to
determine the computation time and other parameters that may provide insight into the relative merits

of the parallel algorithm over the sequential.

1.3 Scope and Limitations

The Author was tasked with the implementation of a parallel algorithm from an existing sequential
algorithm and getting it to run on a cluster. The implemented sequential algorithm, outside of the
parallel extensions, while being a collaborative effort, was not wholly implemented by the author, this
has been indicated in the chapter describing the implementation and in the source code. Theoretical
design of the sequential algorithm was largely the work of Roger Deane, a fellow student. While the
focus of the designs depicted in this document were speed, correctness of the algorithm was considered
to be equally important. As part of the research required for the implementation, background
information on Parallel Computing, Pulsars and Radio Astronomy was referred to and has been
included in this document. While some of this information may not be wholly relevant to the actual
implementation, it was felt that its inclusion would be advantageous with regard to justifying choices

made in the design and implementation of the project.

1.4 Plan of Development

Following this introduction is a review of literature relevant to the completion of the project at hand.
After this are chapters describing the theoretical bases and design of the algorithms, the first for the
sequential Pulsar Search Algorithm and the second for the parallel extensions to this, following these is
a chapter describing the actual implementation. The subsequent chapter describes the testing
methodology along with the results obtained. An analysis of the results of testing follows the chapter on
testing, and after this analysis, is a conclusion combined with a contemplation of possible future work
that could be based on the work carried out in the fulfillment of the requirement. This chapter will

continue with a brief summary of each of the chapters mentioned above.

Chapter 2: Literature Review
This chapter gives an overview of the material referenced in this document, as well as other literature
thought to be relevant. An in depth analysis of the information gleaned from the literature is performed

in the background section preceding each of the design chapters.

Chapter 3: Pulsar Search Algorithm Design

This chapter begins with a description of Pulsars, they are shown to be remnants of stars, that have
collapsed in on themselves to form rapidly rotating and highly magnetic Neutron Stars". The scientific
implications of this are briefly discussed as a justification for searching for them. The source of their
radio signals is briefly described, along with the mechanisms of dispersion. The next section deals with
the components of a basic Pulsar Search Algorithm; De-dispersion, FFT and a Frequency Domain

Search. This chapter concludes with an analysis of the computational requirements of the algorithm.

Chapter 4: Parallel Algorithm Design

In this chapter the the theory of parallel computing is described as well as the four categories of
algorithms, Single Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD), Multiple
Instruction Single Data (MISD) and Multiple Instruction Multiple Data(MIMD). The first being the

sequential model and the others parallel”®!.

After analysis of the sequential algorithm, two methods of parallelisation are chosen and described, a
SIMD approach, where the channels of the source data are split and distributed equitably to the nodes
for dedispersion, and a MISD approach where each node performs the entire sequential algorithm for a
group of dispersion measures. An analysis of the computational requirements of each algorithm is
given, along with a prediction of their performance. This analysis indicates that the MISD approach is

likely to prove the most effective.

Chapter 5: Implementation

This chapter begins with a description of the ‘“‘apparatus” used, i.e. software libraries, cluster
specifications and input file formats. Following this is a section that describes the programming
methodologies used, and a description of the translation of the designs into code. Compromises made

on the design and unexpected problems with the implementation are also described in this chapter.

Chapter 6: Testing

This chapter illustrates the testing methodologies used in analysing the implemented parallel
algorithms. It begins with a comparison of the output of the sequential algorithm with that of the
parallel algorithms, all with identical inputs. A description of the comparison criteria is then given,
these being completion time, percentage speedup and communications efficiency. Graphs displaying

performance the each of the algorithms with regard to the aforementioned criteria are then shown.

Chapter 7: Analysis of results

An in depth analysis of the results obtained in the testing phase is performed in this chapter. It is shown
that all algorithms performed the processing on the data file identically, and can be considered to be
functional Pulsar Search Algorithms. The performance results of the MISD implementation are shown
to correspond to the results predicted in the design. The results of the SIMD implementation proved
anomalous, not achieving their theoretical potential, however, it still proves to be faster than the
sequential algorithm, also it is shown that this design does have unique benefits resulting from efficient

memory usage. The possible reasons for the results observed are given.

Chapter 8: Conclusion and Future Work

This chapter begins with a discussion of the process followed in completing the project, from design to
implementation. It is shown that the designs were somewhat naive. The results and their analysis are
assessed to ascertain if the objectives of the project have been achieved and to what degree. After this
are descriptions of possible enhancements to the implemented designs. Following this is a section
describing improvements to the implementations, and other possible future work that could be based on

the work carried out for this project.

2 Literature Review

The field of Parallel Pulsar Search Algorithms is not as documented as one would have expected.
Information available is generally targeted at GRID computing (computing nodes located at different
geographical locations, generally different academic institutions). The information that is available is

extremely general with no description of the algorithm, it is therefore outside of the scope of this thesis.

Information on parallel algorithms in general and parallel algorithms implemented for other
applications is readily available, the same is true for general pulsar search algorithms, although to a

lesser extent.

The first resource consulted was the Internet, specifically general reference sites, in order to gain
familiarity with the subjects handled in this thesis. Wikipedia, the online collaborative encyclopedia
proved to be a great asset, as it gave a very good overview of most of the subjects dealt with in this
document. The Internet is also a good source of Dissertations and Theses relating to the subjects at
hand. The most exciting resource available online was the new Google Books service, where the entire
scanned collections of many major libraries are made available. Material which is still under copyright
has limited access, and one is only able to view a few pages at a time. Tutorials provided by academic
institutions and government laboratories also proved helpful with respect to the implementation of the

parallel algorithms.

One of the most effective resources were the Masters dissertations from previous students at the
University of Cape Town. They helped immensely especially with the decisions made on the structure

of this thesis. They also proved to be a good source of other reference material.

Below are descriptions of the most helpful reference sources, they are also the most cited sources in this

thesis.

2.1 Pulsar Search Literature

The online encyclopedia, Wikipedia, was a good starting off point with regards to general information

on Pulsars.

The book Handbook of Pulsar Astronomy' is probably the only point of reference one needs when
creating a Pulsar Search Algorithm. It portions of it were available on Google books, and a
summarized excerpt of the most pertinent parts was also made available by Roger Deane. This resource
proved to be great help in the understanding of the problems and solutions to searching for Pulsars.

The writeup of a lecture given by Robert Hulse entitled, The Discovery of The Binary Pulsar'

provides
a well written, step by step examination of the process of Searching for Pulsars as well as containing
fascinating and often witty anecdotes with regards to the many potential problems the process can
throw up. This document had several excellent figures illustrating various concepts relating to Pulsars,

two of these figures are used in this thesis (Figure 1.1 and Figure 1.2).

2.2 Parallel Computing Literature

The book High Performance Cluster Computing by Rajkumar Buyya'”! was the first reference consulted
with regards to Parallel Computing. It is an extremely thorough source of information and contains
sections regarding everything from taxonomy to actual implementation. It includes many practical

notes such as the overhead associated with different middleware utilities.

The Design and Analysis of Parallel Algorithms, a book by G. Akl®!, was a good source of information

on the various strategies for splitting up a sequential algorithm into parallelizable components.

The Sourcebook of Parallel Computing by J. Dongarra et al'®, was available on Google books and
helped greatly in clarifying some of the basic concepts of Parallel Computing. It had a good section on

the taxonomy and classification of parallel Computers.

The Masters dissertations of T.G.H Bennet™ , S. Mukherjee®™ and O. Fadiran™” proved to be great

sources of information with regard to the design and implementation of parallel algorithms.

2.2 Parallel Pulsar Search Literature

Within the scope of this thesis, not much information is available on Parallel Pulsar Search algorithms.
Most institutions that have Pulsar Search programs seem to have implemented Parallel Computers to
perform searches although specifics of the algorithms are not mentioned. An example of an
implemented Parallel Computer used for Pulsar Searching is COBRA at the University of

Manchester!. Most of the focus on parallel Pulsar Search Algorithms appears to be focused on GRID

computing®. Information about these projects is also lacking.

The most relevant information that could be found was on the AIPS++ package. AIPS++ stands for
Astronomical Information Processing System™!. It is a software package that implements commonly
used radio astronomy data processing functions. It defines data structures and functions that are of use
to in the calculations carried out in the analysis of data from a radio telescope observation. AIPS++ has

been expanded to include parallel functionality®®,

3 Pulsar Search Algorithm Design

This chapter begins with a description of Pulsars, they are shown to be remnants of stars, that
have collapsed in on themselves to form rapidly rotating and highly magnetic Neutron Stars''.
The scientific implications of this are briefly discussed as a justification for searching for them.
The source of their radio signals is briefly described, along with the reasons for dispersion. The
next section deals with the components of a basic Pulsar Search Algorithm, De-dispersion, FFT,
Frequency Domain Search. This chapter concludes with an analysis of the computational

requirements of the algorithm.

3.1 Background to Pulsars

Stars rely on the fusion of hydrogen as their source of energy. The radiant energy generated by this
fusion counteracts the gravitational force created by the huge amount of matter present in a star. When
a large star (one with a mass greater than two or three times that of the sun) exhausts its hydrogen fuel,
the gravitational forces, now without any opposition, force the star to collapse in on itself'!. The intense
and now concentrated gravitational forces create a super-dense sphere about 20 km in diameter, known

as a neutron star'!,

Because the angular momentum of the star is conserved and the moment of inertia is significantly
decreased, the rotation of the neutron star is much greater than that of its parent star'!, This rotation and
the strong magnetic forces present in the pulsar result in the emission of beams of radio at the pulsar’s
magnetic poles'™. The magnetic poles of some pulsars are not in alignment with the rotational poles, as
a result these radio beams are not necessarily co-linear with the axis of rotation. If the pulsar is
correctly orientated, the radio beams point towards the Earth periodically during the rotation of the

Pulsar, resulting in a lighthouse effect, which we can perceive as periodic pulses of radio™.

Pulsar i} _F_Iutaﬁun Axis

Aadio
Waves

l,-"’:,"l 'lJ Magnstic

Radio -~ .
< / Figld
Waves - ’,/ A
- .,_f

Perlod

L
| T N T

TIME —

Figure 3.1: Illustration of a Pulsar and the associated periodic signal

(Taken from R Hulse, The Discovery of the Binary Pulsar®)

Interstellar space is not a true vacuum, and can be considered to be a sea of charged particles. Different
frequency components of a pulsar’s radio pulse interact with this sea of particles differently, resulting in
different velocities of propagation for different frequency components® . The observed signal is
therefore “smeared” in the frequency and time domains, resulting in a signal that is superficially
indistinguishable from the background noise. This smearing is called dispersion. As dispersion is due
to the passage of the signal through the interstellar medium, the amount of dispersion that a signal
suffers is proportional to the distance it has traveled. The amount of Dispersion experienced by a
Pulsar's signal is known as the Dispersion Measure. The Dispersion of a pulsar's signal is unknown,

therefore a Pulsar Search Algorithm should iterate through a range of Dispersion Measures™.

10

Period

f /t\ ﬁ[*_ Width
A A
N A\

Frequency

-
I
I
I
I
I

|
Dispersion Delay

Time

Figure 3.2: The effects of dispersion on a Pulsar's signal

(Taken from R Hulse, The Discovery of the Binary Pulsar®)

To detect a Pulsar's signal in the data collected by a radio telescope, a dedispersion operation must be
applied to the signal data to counteract the effects of dispersion, this process is described in section 3.2.
Once this compensation has been made, the signal's frequency spectrum is analyzed using a Fast
Fourier Transform (FFT). The FFT is an efficient digital implementation of the Fourier Transform, it
decomposes a time domain signal into a set of sinusoidal bases, which represent the different frequency
components in the signal. The frequency spectrum is analyzed to see if any periodic signals indicative
of a pulsar are present. This is done by analyzing the frequency components of the signal , looking for
frequency components which have a larger amplitude than that of the background noise, and also

looking at the characteristics of the periodic signal to ascertain that they are not of terrestrial or non-

11

pulsar origins. This process is described in section 3.3.

Once possible pulsars signals are discovered, the signals are folded, which basically means that, a few
periods of the each potential signal are added and averaged, creating an accurate definition of the

characteristics of a single period of the possible Pulsar.

The operations described above are computationally expensive, this is exacerbated by the large amount
of data that must be sifted through. This can be remedied by increasing the speed of the computer that
the algorithm is running on. This has limitations in that after a certain threshold, increasing the speed
of a computer is subject to the law of diminishing returns, in that cost of increasing the speed of the
computer(in terms of both financial and complexity), begins to exceed the benefit gained from the

speed increase. There are also finite limits on the performance capabilities of a computer.

A possible way to compensate for this would be to run the algorithm in parallel on multiple machines.

The following design was primarily based on the research carried out by Roger Deane.

12

3.2 De-Dispersion

De-dispersion operates on the raw data file by shifting each channel by an amount that compensates for
the delay experienced by that channel's frequency. The delay for a given frequency is given by the

equation:

r F, F;

4.148741601x10°) (11
S= X DM
0

Equation 3.1: Dispersion delay of channel F;

Equation 3.1 gives the shift S in terms of number of samples shifted back in time to compensate for the
dispersion delay at channel F;. The value 4.178741601x10° known is as the the dispersion constant™,
DM is the Dispersion Measure, T is the sampling interval of the observation, F is the frequency of the
first channel and F; is the frequency of the ith channel below the first, ie. the channel to be shifted. F,
is always the highest frequency, and as can be seen in the equation never experiences a shift, all other

channels are therefore shifted in relation to channel F,,.

The range of Dispersion Measures to search is governed by the location of the observed point with

respect to Galactic Longitude'™

. Galactic Longitude being the angular measure of the observed point
relative to the Galactic Equator. Density of the Interstellar Medium, within our Galaxy, is greatest
near the Galactic Equator i.e. for low Galactic Longitude, and decreases as Galactic Longitude
increases. As the Interstellar Medium is the main contributor to dispersion, it follows that dispersion
increases with a decrease in Galactic Longitude'. Therefore observations near the Galactic Equator
will search a range of large Dispersion Measures, whereas observations that are far from the Galactic

Equator will search a range of relatively small Dispersion Measures'..

The value by which the Dispersion Measure is incremented when traversing a range of Dispersion

Measures is given in Equation 3.2.

13

-1
_ tsamp 1 1

M = =
TP 4.148741601x10° | F, F?

Equation 3.2: Dispersion Step Size
As can be seen from equation 3.1, the only knowledge needed to perform a de-dispersion shift is the
dispersion constant, T, DM, F,, F,. This has profound implications for a parallel implementation of a
Pulsar Search Algorithm, as it means that any node can perform a de-dispersion operation on any
channel, provided it has of the aforementioned values, which can all be assigned at the start of

operation as they are constant for the duration of the algorithm.

Once this operation has been performed the data can now be considered to have its time series
aligned, at least in the context of the dispersion measure used, therefore each sample within each
channel corresponding to an instance of time is added to sample at each time instance instance of all the
other channels, resulting in a vector that represents the de-dispersed time series of the observation over

the entire bandwidth of the observation. The de-dispersion operation is illustrated in Figure 3.3.

14

1 2 22 7 9 23 2 2 20 0 4 22 9 6
i2 0 9 17 g 2 19 1 4 23 g 3 23 g
s
S izl 19 0 7 17 7 7 24 1 1 23 1 4 24
G
fa 8 21 5 5 15] g 19 8 8 15 5 7
15] 8 16 6 3 18 4 3 16 3 5 17 7
st 17 3 7 19 1] 20 3 8 20 1 5 16 I
ol 20 8 3 21 1] 20 5 9 24 5] I 24 I << 0
H 22 7] 23 2 2 20 0 4 22 9 8 ‘ 0 <<1
2 17 9 2 19 1 4 23] 3 23 9 0 0 <<2
=
= 43 17 7 7 24 1 1 23 1 4 24 0 0 0 <<3
=
(&)
4 15 9 9 19] 6 15 5 7 0 0 0 0 <<4
i5 18 4 3 16 3 5 17 7 0 0 0 0 0 <<5
sl 20 3] 20 1 5 16 0 0 0 0 0 0 <<6

Sum of Channels

I 129 I 47 41 I 142 I 17 3z I 134 I

Figure 3.3: Graphical Example of the De-dispersion Operation

Rows represent time series, bold blocks indicate presence of a pulse peak from a pulsar

15

3.3 Frequency Domain Processing

Pulsar signals are periodic, therefore if their period of rotation is sufficiently regular, which they
generally are'" then if one analyses their signals in the frequency domain, the majority of their signals

power will lie at the frequency that most contributes to their period of rotation™".

To convert a Pulsar's de-dispersed time series into the Frequency Domain, a Fourier Transform must be
applied to the data. Because the signal is sampled and represented digitally, a Discrete Fourier

[18]

Transform (DFT) is the appropriate transform to use"™, in this case a computationally efficient variant

called a Fast Fourier Transform (FFT).

The output of an FFT is a complex vector, representing the amplitudes and phase of the various
frequency components that combine to form a signal™!. As the energy in each frequency component is
shared over the real and imaginary parts of the complex vector, a more useful method of analysing the
data is to convert the output of the FFT into a Power Spectral Density, or Power Spectrum. This
involves squaring each real and imaginary term of the FFT output and adding the results for each
frequency component. This gives a vector that represents the power present in each frequency

component16],

Data collected from a radio telescope contains noise from the many astrophysical radio sources and also
from the thermal noise of telescope components'”. This noise is generally not white noise', which has

a flat Power Spectrum”

, its shape is characterised by higher amplitudes in the low frequencies,
tapering off as the frequency increases, this type of noise is termed Brown or Red noise. If a Pulsar's
signal is present in the signal and an amplitude threshold detection scheme is used to identify it, Brown
noise in the low frequencies may have a higher amplitude than the frequency component generated by
the Pulsar, hiding the Pulsar's signal from the detection algorithm. An operation called whitening is
performed on the Power Spectrum to counteract the effects Brown noise!®. This entails splitting the

Power Spectrum into segments, calculating the median value of each segment, subtracting this median

from each component of the segment. This decreases the mean for each segment, and the entire power

16

spectrum, to zero, counteracting the tapering shape of brown noise™. In addition to this functions, the
Whiten operation also divides the whitened Power Spectrum by its root mean square", this, combined
with the subtraction of the mean has the effect of normalising the Power Spectrum, this implies that the
amplitude of each frequency component in the normalised Power Spectrum represents the signal to

noise ratio of that component'?,

A pure sinusoidal signal will give a single frequency component at its frequency of oscillation™", this
frequency is termed the fundamental frequency. However any periodic signal deviating from the purely

[2]

sinusoidal form in terms of its duty cycle'”, will have a frequency component at the fundamental, and

will tend to have additional frequency components at integer multiples of the fundamental™, these
additional frequencies are termed harmonics". Therefore if a Pulsar's signal is not truly sinusoidal, the
power in its frequency components will be spread amongst the fundamental component as well as the
harmonic components. An operation called Harmonic Summing, iterates through the frequencies of the
Power Spectrum, and at each frequency adds the components at integer multiples of that frequency'.
Once Harmonic Summing has been performed on a Power Spectrum, each frequency component will

have the power of its own component in addition to the power present in its harmonics™!.

3.4 Candidate Selection

The ultimate aim of the above operations is to put the observation data into a form from which the
presence of a Pulsar can be most easily detected. The data now represents a vector of Frequency
Components, with the amplitude of each component being the Signal to Noise ratio of that component.
To detect possible Pulsars or candidates, a threshold signal to noise ratio can now be selected. This
threshold can be arbitrary, so long as it is set at a level that eliminates spurious peaks in amplitude due
to noise and other unwanted sources. For simplicity's sake, the highest amplitude in the Power
Spectrum can be selected as the candidate. Dedispersion and the Frequency Domain Processing each
occur once for every Dispersion Measure tested. Therefore a list of candidate Pulsar's will be generated

by each Dispersion Measure tested.

17

A Pulsar whose signal has been dispersed by a Dispersion Measure M will have progressively more of
its unsmeared signal recovered by de-dispersing with Dispersion Measures progressively closer to M.
This is because the closer the Dispersion Measure gets to M, the more the peaks and troughs of the
Pulsar's signal align. This further implies that the Signal to Noise ratio of a Pulsar 's signal will also
increase, as the Dispersion Measure gets closer to M. The main implication of this is that if a frequency
of a single candidate Pulsar is selected, and the signal to noise ratio is plotted against the Dispersion
Measure used, then for that frequency selected, the most probable Dispersion Measure by which it has
been dispersed by will be the one at which the Signal to Noise ratio is maximised. This method can be

used to generate a final list of Pulsar candidates.

18

Master Node I

Read Data

v

Calculate Min, Max
DM and DM step

<H

Iterate
Current DM d

<H

Dedisperse
Channels

<H

Compute FFT

<H

Calculate
Power Spectrum

<H

Whiten
Power Spectrum

<H

Harmonic
Summing

v

Candidate
Selection

\/

V

Compare
Candidates

Figure3.5: Sequential Pulsar Search Algorithm

19

3.5 Computational Analysis of the Sequential Algorithm

To gain insight into the ability of the sequential algorithm to be parallelised, it is advantageous to
analyse the computational requirements of each step of the algorithm. The computational time of each
step will be measured in the number of operations required to complete the task. This analysis makes
the assumption that all operations require the same amount of processing time. Calculations of this
kind, termed Big O™ calculations, generally compute the order of magnitude of the computational
requirements rather than the actual than the actual requirements, therefore integer factors are generally
excluded™”, however for illustrative purposes they have been retained.

Assuming that the input file contains C channels, with S samples per channel, and our range of

Dispersion Measures contains M dispersion Measures:

Read Data: Reading in the file will require at least C*S operations. Reading the data in from a
hard drive is typically very slow when compared to the speed at which a CPU operates,
therefore C*S is an optimistic estimate. It must be noted that Pulsar search data will typically

contain 128 channels with over 1 million samples per channel.

Calculate DM values: This step requires the computation of 3 different values, and so can be

considered to take O operations when compared with reading the data.

Iterate Current DM: The same applies as above. This step can be considered to take 0

operations.

De-disperse Channels: This step requires the shifting of each sample in each channel,
therefore it will take around C*S operations. It also requires the addition of all the samples into

a single time series, another C*S operations. Therefore de-dispersion requires 2C*S operations.

Compute FFT: An FFT takes N*log(N)"”, operations where N is the length of the input
vector. The output of the de-dispersion operation, the de-dispersed time series, is at most S

samples long. Therefore this step should take S*log(S) operations.

20

Calculate Power Spectrum: The power spectrum requires the squaring of each value of the
FFT, therefore it takes S operations as the output length of an FFT is the same as its input, S.

The length of the Power Spectrum is S/2.

Whitening: This stage is computes the mean of each element in the Power Spectrum and
subtracts each element by the mean. Assuming calculation of the Median requires S/2
calculations and subtraction the same, this step should take S operations. It also computes and
the RMS value of the Power Spectrum, which should take S/2 operations, then subtracts the
RMS from each value, again S/2 operations, resulting in S operations. The final outcome for

whitening is therefore 2S operations.

Harmonic Summing: Harmonic Summing requires traversing the length of the Power
Spectrum and adding the components at integer multiples of each frequency component, to
itself. If we assume that we add only the first 16 harmonics, Harmonic Summing has around

8S operations.

Candidate Selection: This step requires traversal of the the entire Power Spectrum, making a

comparison of each element with a threshold value, therefore this step has S/2 operations.

Compare Current DM with DM max: This is one comparison and will therefore be

considered to take 0 operations.

Compare Candidates: This operation compares the candidates generated by Candidate
Selection, over the entire range of Dispersion measures. Assuming one candidate generated per
Dispersion Measure tested, then this step requires M operations.
The steps from Iteration of the Dispersion Measure through to the Dispersion Measure comparison
occur once for each Dispersion Measure in the range, therefore the sequential algorithm takes:
C*S +0+ M*(0+ C*S + S*log(S)+S+S+2S+8S+S/2) + M
= C*S + M + M*(C*S + S*log(S) + 12.5S) operations

21

4 Parallel Algorithm Design

In this chapter the the theory of parallel computing is described as well as the four categories of
algorithms, Single Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD),
Multiple Instruction Single Data (MISD) and Multiple Instruction Multiple Data(MIMD). The

first being the sequential model and the others parallel.

After analysis of the sequential algorithm, two methods of parallelisation chosen and described, a
SIMD approach, where the channels of the source data are split and distributed to the nodes for
dedispersion, and a MISD approach where each node performs the entire sequential algorithm
for a group of dispersion measures. An analysis of the computational requirements of each
algorithm is given, along with a prediction of their performance. This analysis indicates that the

MISD approach is likely to prove the most effective.

4.1 Background to Parallel Computing

The traditional model of computing has consisted of a single processor, with dedicated memory (in
which instructions and data are stored) and input/output devices, the so called “Von Neumann”
design. Computers of this type execute instructions sequentially, i.e. one instruction travels from
memory along an instruction path to a processing unit, the processing unit interprets the instruction, it
then retrieves any data required by the instruction from memory via the data path, the operation
specified by the instruction is performed on the data, with the output being the result of the operation
on the data, this output may then be placed into memory (Note that the data path and the instruction
path may share a single physical connection), the next instruction is then read and is handled in the
same manner'™. Since their invention, computers of this design have increased exponentially in

[14]

performance, with the price decreasing in a similar manner™, allowing more and more applications to

benefit from better and better information processing.

22

Memory

Y
Data Instruction
Path Path
w w
Processing

Uit

Figure 4.1: Sequential Computer Architecture

This configuration is not without limitations, specifically the processor, its ancillary components, and
the connections between them are limited by the laws of physics in their speed and efficiency™’. These
limits result in a law of diminishing returns which affects any effort to increase a computer’s
performance™. This law manifests itself by requiring a progressively larger investment of design time
(and money) for each incremental increase in performance, and after a threshold, no further

performance increase is possible.

The above mentioned limits are reached with many modern scientific computing applications. These
applications are characterised by requiring many complicated calculations on a massive scale (Pulsar
Searching being an example), such that even the fastest possible traditional computers are rendered

unsuitable to running them.

An attempt to overcome the limitations of the traditional model has been attempted in the form of
Parallel Computing. Whereas a traditional computer processes instructions sequentially, a parallel
computer runs instructions concurrently. This requires that there are as many data paths, instruction

paths and processing units as the desired number of concurrently processed instructions™?.

23

Memory

7
Data Instiuction
Path 1 Path 1
w v
Processing
Uit 1

A
Data Instruction
Path 2 Path 2
b r
Processing

Unit 2

F

Data
Path 3

Instruction
Path 3

Processing
Unit 2

Note that in diagram 4.2 the processing units share memory, this is not always the case

Figure 4.2: Parallel Computer Architecture

(allowing concurrent execution of 3 instructions)

24

[13]

4.2 Parallel Computing Theory

Most algorithms have portions that are inherently sequential, and parts that can be executed in parallel.
The sequential parts, unlike the parallel parts cannot be shared among multiple processing units and
therefore do not benefit from parallelization. A formula called Amdahl's law, named after the computer
architect Gene Amdahl, gives the potential speedup of a parallel computer in relation to the sequential

and parallel parts of the algorithm'.

Equation 4.1: Amdahl's Law

S refers to the speedup factor, the amount of times that the parallel program is faster than the
sequential algorithm, f is the fraction of the algorithm that is inherently sequential. N refers to the

number of parallel processing units.

If one takes the sequential percentage of an algorithm to be constant, then this law represents an
example of the law of diminishing returns, as increasing the number of processing units to increase the
speed of computation is limited to a maximum threshold™, for example, if one takes the inherently
sequential percentage of an algorithm to be 20%, then using equation 1.1, the maximum speedup

[31

possible in the parallel computer is achieved when N —oco ', which gives a maximum theoretical

speedup factor of 5.
This law is simplistic and represents the ideal case because in a real parallel computer, communication
(such as assigning data to nodes and scheduling the nodes), housekeeping such as formating of data

and diagnostic operations are sources of overhead that are not represented by Amdahl's law.

Parallel Computing places certain requirements on the algorithm to be parallelised, firstly the

25

algorithm must be able to be split into individually executable components able to be executed on
separate processing units. Another requirement is that the prerequisites for execution of each of the
selected components are known before execution, so that the parallel algorithm can be efficiently
scheduled". If the prerequisites of the components are not known, or are not considered when creating
the algorithm, situations such as deadlock can occur. An example of deadlock is if two processes,
process A and process B are running in parallel, and process A requires an output from process B
before it can continue, but process B similarly requires an output from process A before it can continue,

obviously all execution will stop while the processes wait for each other.

26

4.3 Classification of Parallel Computers

Parallel Computers consist of a number of processing units, connected to each other in a manner that
allows the individual units to collaborate in the processing of an algorithm. These processing units are

known as nodes. The manner in which the nodes are arranged and connected are used to classify them.

Parallel Computers are implemented in a variety of sizes and flavours. Large particle physics
experiments which result in huge volumes of data (typically many gigabytes or terabytes) require
computational resources and academic skills that no one institute can provide, therefore they are split
amongst the best computers on offer at the various institutions (which themselves may be Parallel
Computers), each connected by high speed Internet connections. This paradigm of Parallel Computing

is termed Grid Computing.

Some problems can be tackled by more pedestrian computational resources, although a traditional
sequential computer will still take too much time to process them. These problems have traditionally
been tackled by monolithic so-called supercomputers whose software and hardware are provided by a
single vendor. These are extremely expensive when comparing the increase in price with the increase
in performance. They generally use arrays of cutting edge CPUs with high speed proprietary
interconnection networks that depend heavily on the vendor for implementation and maintenance. The
vendor may also not have the skill set required in dealing with the problem at hand and provide one size

fits all solutions with redundant and unnecessary features.

The trend in modern Parallel Computing tends to rely on relatively inexpensive networks of standard
Personal Computers or Commercial Servers to provide the parallel nodes. These Parallel Computers,
especially with regards to those constructed with Personal Computers, generally have open-source or
commodity tools and utilities to provide the synchronization and communication requirements. This
method of Parallel Computing is referred to generally as clustering, with the most predominant model

called the Beowulf Cluster. This is the method that is used in the implementation of this project.

The most popular method of classifying Parallel Computers is called Flynn's Taxonomy" This

27

classification scheme is based on the concept that computers conceptually have one instruction stream,
and one data stream. Parallel Computers can be considered to extend these to create multiple
pathways for instructions and/or data'® thereby increasing the throughput of the system. The categories

of classification are:

Single instruction/single data stream (SISD) - A traditional sequential computer!”.

Multiple instruction/single data stream (MISD) - Multiple processors simultaneously executing

different instructions on the same data .

Single instruction/multiple data streams (SIMD) - Multiple processors simultaneously executing the

same instructions on different data”’.

Multiple instruction/multiple data streams (MIMD) - Multiple processors simultaneously executing

different instructions on different data'”.

These categories can be further expanded to include factors such as memory architecture®, as well

methods of memory access®™"!,

Generally to efficiently schedule a Parallel Algorithm, a node may be retained that is not involved in the
direct computation of the algorithm™. This node assigns data and initiates the various steps of the
algorithm on the other nodes. The node that is not involved in the computation is termed the Master

node, and those that are involved in calculation are known as Slave nodes™.

28

4.4 Communication in Parallel Computers

If an algorithm can be parallelised, one of the more important factors regarding the efficiency of the
parallel algorithm is the amount of communication between the processing units'®. While
communications technology has increased in performance greatly over the last few years, it can be
assumed that the data rate of the communications paths between the processing units is not as fast as
the rate at which the processing units can process data. In many cases this difference is by many orders

of magnitude. As such communication in a parallel algorithm should be limited to the minimum as any

communication can be considered a bottleneck!® .

Therefore communications tends to put an upper limit on the processing efficiency and hence the
speedup of a parallel algorithm™. This should not be interpreted to imply that communication is a
“necessary evil,” as the fundamental difference, and the main source of benefit, between a parallel
computer and a group of sequential algorithms running on different computers is the communication
between different processing units. Therefore communication between processing units should be

implemented in the most efficient manner.

Communications in parallel computers can in general be classified in 2 ways, whether the
communication is point to point or collective and whether the communication is blocking or non-
blocking!. Point to point communication occurs between one node and another. Collective
communication involves communication between more than 2 nodes”. There are generally two forms,
Broadcast, where a single node sends a copy of a single piece of data to multiple nodes, and Gather,
where single node collects many pieces of data from multiple nodes™. A blocking communication
means that the nodes involved in the communication must wait for the communication to complete
before they continue other computations, non-blocking means that the nodes may attempt a

communication and then continue with other computations before the communication has completed™.

Communication in Parallel Computers can be implemented in many ways. The first way is to directly
program the networking commands into the implemented parallel program. This is a difficult and

intricate task and as the network infrastructure may vary between different systems, this method is

29

generally not portable (able to run on different architectures). Efforts have been made to create
Messaging Interfaces (also called middleware) which implement all the communication requirements of
Parallel Computers. The two most common are Parallel Virtual Machine (PVM), and Message Passing
Interface (MPI). These provide a common interface to a parallel program, and are implemented on

many architecture'”. The specified interface simplifies the creation of parallel programs and allows the

implemented programs to be run on any architecture that supports the messaging interface'”.

30

4.5 Parallelisation of a Pulsar Search Algorithm

As 1s illustrated in figure 3.3, a pulsar search algorithm can be split into the following components,
1. Read Data

Select a range of DMs, calculate DM step size

De-disperse Channels

Calculate Power Spectrum

Whiten

Harmonic Summing

Candidate Selection

Iterate DM and if within the range of DMs, go to step 3

I - Y R

Compare Candidates

Read Data: This step requires the reading in of an input file. Logically this takes place on the one node

where the input file has been stored, generally a master node, therefore it is not parallelisable.

Select a range of DMs: This step requires calculation of the Dispersion Measure step size given by
equation 3.2, after this the minimum and maximum dispersion measures are determined from the
orientation of the observation relative to the Galactic Plane. These values are determined from the
information in the input data and are common to all nodes, therefore they may be performed by the
master node that reads in the input data, and then distributed to all slave nodes, or if the relevant data

has been copied to the slave nodes, the slave nodes may compute these values for themselves.

De-disperse Channels: Each iteration of this step requires the time series data of the channel being
shifted, as well as the Dispersion Measure step size and maximum and minimum Dispersion Measures.
There are no other prerequisites to execution. Therefore assuming that the Dispersion Measure values
have been calculated and distributed to all slave nodes, and the channels have been split up and
distributed amongst the slave nodes, then this step is parallelisable. Once each slave node has added up
the channels assigned to it, it sends the de-dispersed time series back to the master, which further adds

the time series it receives, resulting in a single time series. Note that as indicated in section 3.2, the raw

31

data is generally not modified, but a copy of each channel is shifted and added to a summation vector

on the fly, preserving the raw data for future de-dispersions.

Calculate Power Spectrum: This step requires the computation of an FFT on the de-dispersed Time
Series. Parallel FFTs do exists, these split each step of the FFT and place them on individual slave
nodes, therefore if the summation vectors of all slave nodes have been sent to a master node, then all
slave nodes are now idle, and the parallel FFT may now be split up amongst the slave nodes, with the
resultant DFT being placed on the master node. The Power Spectrum of the time series is then
computed directly from the FFT. If however the choice has been made not to aggregate the time series
onto a single node, then each slave node may calculate the FFT, for the de-dispersed time series of the
channels allocated to it. The resultant DFT is then sent to the master node, which, due to the linearity
property of the Fourier Transform!", adds up the DFTs to create an aggregate DFT. The Power

Spectrum is then calculated from the DFT.

Whiten: This step involves whitening the Power Spectrum to compensate for red noise, and then
modifying the Power Spectrum into a form where the amplitude of a spectral component indicates
signal to noise ratio for that component. Whitening requires the root mean square of the entire Power
Spectrum to be calculated (requiring access to the entire Power Spectrum), therefore the Power
Spectrum cannot efficiently be split up over the nodes to parallelise this step, therefore from hereon this

step will be considered as part of the calculation of the Power Spectrum.

Harmonic Summing: This step requires that each component of the Power Spectrum have its
harmonics added to it, the harmonics may extend over the entire range of the Power Spectrum, therefore
this operation cannot be split up amongst many nodes to Parallelise it, therefore from hereon this step

will be considered as part of the calculation of the Power Spectrum.

Candidates Selection: This step involves choosing a threshold signal to noise ratio. If a component of
the power spectrum is above this threshold, then that component is considered to represent the
frequency at which a periodic signal indicative of a pulsar is located. The Power Spectrum vector may

be split up amongst the nodes and each slave node may search a segment of the Power Spectrum for

32

possible Pulsar Candidates.

Iterate DM: This step involves the calculation of the next Dispersion Measure to test. This can occur
on the master node which can then distribute this value to the slave nodes, or the slave nodes may
calculate this step for themselves if they have the required data. the algorithm then proceeds to the De-

dispersion step.

Compare Candidates: This step consists of accumulating the possible Pulsar candidates and
comparing them to each other as depicted in section 3.5. This requires that the all the information
related to all discovered candidates, such as Dispersion Measure used, the period of the candidate, and
the signal to noise ratio are known at the node where the comparison is taking place, as the selection
criteria of a final Pulsar candidate is based on measurements relative to the other possible candidates.

Therefore this step is not feasibly parallelisable and should occur at the master node.

On further analysis it can be seen that De-dispersion through till Iteration of the Dispersion Measure be
parallelised in their entirety. This is due to the fact that all that is required to De-disperse the data for
each iteration of the Dispersion Measure is the data itself, the parameters regarding frequency of the
channels and the channel bandwidth and equation 3.1. This requires that all nodes have all copies of or
access to data from the input file and the associated parameters such as frequency of the channels etc.
Thereafter the DM range can be split amongst the nodes, and the nodes proceed with the entire

algorithm from De-dispersion onwards.

As we have seen there are two feasible routes for parallelisation of a Pulsar Search Algorithm as

defined in section 3:

1. An algorithm where the raw data is split into groups of contiguous channels and distributed
equitably amongst the slave nodes. A range of Dispersion Measures is determined. The first
Dispersion Measure in the range is selected and each slave node then dedisperses its assigned
channels by this Dispersion Measure. The slave nodes send their De-dispersed time series to

the master node. The master adds the time series that it received and computes the FFT. The

33

master node then computes the Power Spectrum. It then whitens the Power Spectrum and
performs Harmonic Summing on it. After this the master selects candidates from the Power
Spectrum. Note that while the master Performs the frequency domain calculations, the slave
nodes are free to de-disperse their data by the next Dispersion Measure. This process is repeated
for every Dispersion Measure in the range. The final set of candidates are compared by the
master node and a candidates that best represent possible Pulsar signals are the output. As each
node computes the same operation on each segment of data, and each node's segment of data is
different. This algorithm has a Single Instruction in that the operations performed by the slave
nodes are identical, and Multiple Data in that the channels distributed to each node are unique,

therefore this is a SIMD algorithm.

An algorithm where all the data from the input file is distributed to each node. A range of
Dispersion Measures is calculated and each slave node is assigned a subrange of Dispersion
Measures. The slave nodes then de-disperse the data by their individual Dispersion Measures.
The slave nodes complete the steps of computing an FFT, Power Spectrum and candidate
selection. The nodes send their discovered candidates back to the master node once they have
searched the data over the entire range of Dispersion Measures. The retrieved candidates are
appended by the master, and compared, with the candidates that best represents possible Pulsar
signals being the output. This algorithm has Multiple Instructions in that each slave node de-
disperses by a different Dispersion Measure, and Single Data in that all slave nodes have

identical copies of the data, therefore this is a MISD algorithm.

34

Master Node |

Read Data

Vv

Distribute
Channels

Vv

Calculate Min, Max
OM and DM step

'D Retrieve and Add
Dedispersed Chans

:

Compute FFT

v

Calculate
Power Spectrum

!

Candidate
Selection

!

[terate DM

\/

Compare
Candidates

Figure 4.3: SIMD Parallel Pulsar Search Algorithm

Slave Node |

Receive
Channels

!

Receive
DM Parameters

!

Calculate
Current DM

!

Dedisperse
Channels

;

35

Send Dedispersed
Channels to Master

Vv

lterate DM

It
Master MNod

™
Slave No

Read Data
Broadcast Receive
Data D Data
Calculate Min, Max Receive

DM and DM step

Recieve
Candidate List

DM Parameters

<H

Calculate
local DM range

<H

Calculate
Current DM

<H

Dedisperse
Channels

<H

Compute FFT

<H

Calculate
Power Spectrum

v

Candidate
Selection

\/

\/

Send Candidates to
Master

v

Append to Master
Candidate List

v

Compare
Candidates

36

Figure 4.4: MISD Parallel Pulsar Search Algorithm

4.6 Computational Analysis of the Parallel Algorithms

The expected performance of the Parallel Algorithms with respect to the sequential algorithm are
calculated below. Amdahl's law will be used as the as measure of relative performance. The expression
created in the analysis of the sequential algorithm will be used as the basis for comparison. The same
assumptions are made as when calculating the performance of the sequential design. The

communication times are assumed to be zero, they will however they will be discussed.

Assuming that the observational data input file contains C = 128 channels, the is S = 270000 number of

samples per channel and DM range to search is M = 230, then the sequential algorithm will spend
3.456%10’ operations reading in the file, 1.59x 10" operations de-dispersing, 11.204 X 10°
operations computing the FFT, 6.21x 107 operations calculating the Power Spectrum, 1.242 x 108
Whitening, 4,968 x10® operations Harmonic Summing, 3.105x 10’ operations performing the
Candidate Selection and 2 .3x% 10> operations comparing the candidates. This gives a total of

approximately 2 . 785 x 10" operations.

The parallel computer to be simulated in this analysis will be assumed to have between 1 and 24 nodes,

ignoring the difference between slave and master nodes.

37

4.6.1 Computational Analysis of the SIMD Algorithm

The SIMD algorithm only parallelises the De-dispersion stage, therefore the amount of operations that
are parallelisable is equal to the amount of operations in the De-dispersion stage, 1.59 x 100,
therefore the fraction of the sequential algorithm that is inherently sequential, with regard to the SIMD
algorithm, is:

TotalTime— ParallelTime _2.785x10'°—1.59x10"

=0.429
TotalTime 2.785%10"

Using this figure with Amdhal's law, and plotting against the number of nodes, from 1 to 24 (ignoring

the distinction between master and slave nodes) gives the following graph:

Theoretical Speedup of the SIMD design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Nodes

Figure 4.5: The Theoretical Speedup of the SIMD Algorithm

As N—oo , §—1.746 , giving this design a maximum theoretical speedup of nearly175%. This graph
illustrates that this algorithm approaches this limit fairly quickly for small numbers of nodes and then

temps asymptotically as the amount of nodes increases to Infinity.

38

4.5.2 Computational Analysis of the MISD Algorithm

The MISD algorithm parallelises everything between the calculation of the initial Dispersion Measure
values and the Candidate Comparison. The total time of these components in operations is
2.782x10' , therefore the fraction of the sequential algorithm that is inherently sequential, with
regard to the MISD algorithm is:

TotalTime— ParallelTime _2.785x10'°—2.782x10"

=0.0012
TotalTime 2.785x10"

Again using this value with Amdhal's Law and plotting against the number of nodes gives the following

graph:

Theoretical Speedup of the MISD design

Speedup (%)

1 2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Nodes

Figure 4.5: The Theoretical Speedup of the SIMD Algorithm

As N—ow , §—805.87, giving this algorithm a maximum theoretical speedup of a phenomenal
80587%. As can be seen from the graph the speedup is nearly linear, but from Amdahl's Law, it can be
inferred that the speedup will asymptotically approach 80587% as the number of Nodes tends to
Infinity. This high value and near linear speedup indicates that Pulsar Searching is Embarrassingly

Parallel.

39

4.5.3 Analysis of Communications in the Algorithms Designs

The parallel algorithms designed both have two main stages of communication, these stages are,

distribution of observation data, and retrieval of results.

Distribution of observation data is handled in different ways in each algorithm. In the SIMD algorithm,
the master node reads in the file in its entirety. It then distributes the channels equitably between the
nodes. This amounts to a transfer of single copy of the raw data independent of the amount of nodes. In
the MISD algorithm, an entire copy of the data is copied to each slave node. Therefore this amounts to

a transfer of the observation data size multiplied by the number of nodes.

Retrieval of results is also different in the two parallel algorithms. In the SIMD algorithm each of the
slave nodes returns the sum of its de-dispersed channels. this occurs once for each Dispersion Measure
tested. This will typically be in the order of a megabytes to a tens of megabytes of information,
depending on observation length and sample rate, therefore it might have an effect on the algorithm's

performance. As more nodes are added, this effect will increase.

In the MISD algorithm each slave node returns its accumulated list of Pulsar candidates. This occurs at
the end of the computation of all the Dispersion Measures. Typically if one candidate is generated for
each Dispersion Measure tested, this will be in the order of only a few hundred bytes, and should have

little effect on the performance.

40

S Implementation

This chapter begins with a description of the ‘“‘apparatus” used, i.e. software libraries, cluster
specifications and input file formats. Following this is a section that describes the programming
methodologies used, and a description of the translation of the designs into code. Compromises
made on the design and unexpected problems with the implementation are also described in this

chapter.
5.1 The KAT Cluster

The Parallel Computer to be used for the implementation is a 24 node cluster resident at the Karoo
Array Telescope offices in Pinelands Cape Town. Each node has an Intel Core Duo dual core processor
and 2GB of RAM. They are connected by 2 Gigabit Local Area Networks, providing a maximum of
around 1000Mbits/s data rate. One network is for administrative use, and the other for parallel
computing communications. They are arranged in a star topology, with a switch as the central hub
node. There is a command terminal for diagnostics and control of the cluster. All nodes run the Linux
operating system. The command terminal is connected to the Internet, enabling remote use of the

cluster.

Figure 5.1: KAT cluster Command Node (left)

41

Figure 5.2: KAT Cluster Switches (Inside the large black box on the right), and nodes (Computer

cases on the left)

Figure 5.3: KAT Cluster nodes

42

5.2 Messaging Interface

As mentioned earlier, Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) are the

two most prolific examples of middleware in contemporary parallel computing.

Both installed on the KAT cluster, however MPI was selected for the implementation of this project as

it has become somewhat of a standard in Paralle]l Computing.

The MPI functions used were®:

MPI_Isend: Non Blocking Point to Point send
MPI_Irecv: Non Blocking Point to Point receive

MPI_Wait: Waits for completion of a non-blocking communication, therefore turns
a non-blocking communication into a blocking communication.

MPI_Barrier: ~ When called, requires all nodes to reach the same point in the code
before execution can continue

MPI_Bcast: Point to Multi-point Broadcast

MPI_Reduce: = Multipoint to Point Gather, it also performs an operation on the
gathered data, eg. retrieve time series vectors from all nodes and add
them.

MPI_Time: Outputs the time in seconds from un unspecified point in the past. The
time recorded at the beginning of the program execution, is therefore
subtracted from the values recorded during execution.

In MPI, all nodes are identified by a unique ID called a rank. The master has a rank of 0, and slave
nodes have ranks, greater than 0. All nodes that participate in an MPI communication must call the
corresponding function, for example, if Node A wants to receive data from Node B, then Node A must
call MPI_Irecv, and Node B must call MPI_Isend. For a node A to broadcast data to Node B and Node
C, the must all call MPI_Bcast. The source and destination of communications is specified in the

function call.

MPI programs are compiled using an MPI specific compiler called mpicc.

99 ¢

MPI programs are run using the command mpiexec -n N “program” “args”. Where N is the number of

nodes to be used, “program” is the name of the compiled MPI program, and “args” are the arguments

43

passed to that program. A file called mpd.hosts must be created before an MPI program is run on
multiple computers. This file contains the hostnames of the nodes to be used in the parallel

computation.

5.3 Simulated Pulsar Data

Simulated Pulsar data was generated with a program called fake. This program is a part of the Sigproc
package of Pulsar searching applications. The program takes in the parameters as arguments when
executing the program. The parameters that were used in the implementation and testing of the
implemented algorithms specified the Period of the Pulsar, peak Signal to Noise Ratio, duty cycle of
the Pulsar, dispersion of the signal, observation length, sample time and number of bits per sample,
the other available parameters were set to the default values. The output of the program is a Filterbank

format file.

44

5.4 Search Data

The data format used is the called the Filterbank format. It is the format used by Duncan Lorimer's
Sigproc package and by many radio observatories around the world. The Filterbank format defines
many forms of data representation, however the format used by the software created for this thesis is the
channelised time series format. The file format is described in the Sigproc manual®. The file starts
with a header which contains all the values needed to perform a Pulsar search on it. The header data
used in this implementation are sample time (tsamp), bits per sample (nbits), number of channels
(nchans), frequency of the first channel (fchl), channel bandwidth (foff) and number of samples per
channel (nsamples). All other required values can be inferred from this data. The data is in the form of
a vector, with concatenated time instances for each sample, from each channel. This data format can

conceptually be considered to be a two dimensional array as indicated in the diagram below:

Channel

0 1 2
w0 |0 1]2
a
JnEU 1 3 4 5
B 2 6 7 8
s
5 3 9 10 | 11
< 4 12 113 14
£
= 5 15| 16 | 17

Figure 5.4: Example of Filterbank Data Format, for an observation with three channels and 6
samples per channel.
(Number inside the blocks indicates the index of the sample inside the file)
Therefore to access a sample in the file from its channel and sample instance, the formula for the index

is Index =SamplingInstance X nchans+Channellndex %

sample

45

5.5 Algorithm Implementation

The sequential algorithm discussed below was implemented jointly by Roger Deane and the author of
this document. The algorithms were implemented in the C programming language as this was the
language both authors of the code were most familiar with. Every attempt was made to stick to the

conventions of the ANSI C standard.

5.5.1 Sequential Algorithm Implementation

The sequential implementation is built in a modular fashion, with each block corresponding to a
component of the designed algorithm, although a extra functions are needed to perform the necessary

frontend functions for the ancillary calculations.

Read Data: There are two functions that implement the reading of the data file. The first called
readHeader(), reads the data file and extracts the header information, this function is copied
from the Sigproc program. The second function is called readData(), this reads the data file,
from the end of the header onwards 1 byte at a time and placed the extracted value directly into

an array called rawData.

Calculate DM values: The implemented algorithm does not calculate the Dispersion Measure,
but the user of the program specifies the a range of Dispersion Measures by passing the
minimum and maximum dispersion measure as arguments to the program. The first Dispersion
Measure to test is set to the minimum Dispersion Measure specified. The Dispersion Measure
step size is calculated by a function called initDM() which implements equation 3.2. All the

Following stages up until the Dispersion Measure comparison are in a loop.
Compare Current DM with DM max: This is a single comparison between the current

Dispersion Measure and the maximum specified by the user. If the current DM is greater than

the maximum, the loop ends.

46

De-disperse Channels: This is accomplished by a function called dedisperse(). This function
creates an empty array called sumChans to store the final de-dispersed time series. The function
iterates through each channel, and for each iteration calls a function called Dmshift().

Dmshift() takes the index of the current channel in relation to the highest channel, and returns
the amount by which the current channel should be shifted. A function called shiftRow() is then
called which takes in the shift value and the current channel index as parameters. shiftRow()
then iterates through each sample of the channel and adds this to the sumChans array, although
at an index equal to the index of the sample — shift value. the contents of the data in memory is

accessed by using a function called getSample, this implements the equation:

Index =SamplingInstance X nchans+Channellndex

sample

and returns the value of data at that index in RawData. Note that rawData must be cast
into the appropiate datatype to extract the sample eg. if there are 8, 16 or 32 bits per sample,
rawData is cast into an unsigned char, short or int array. For 4 bits per sample, the

appropriate nibble of the byte referred to by double the index is returned.

Compute FFT: A library called FFTW is used to implement the FFT. This library

requires the creation of a “plan” which is a data structure, holding the parameters and relevant
optimisation information for the FFT. The plan and the vector sumChans are then passed as
parameters to a function called rfftw_one(), which is an FFT algorithm optimised for real, one
dimensional data. This function returns the vector of the FFT of the array sumChans. The first
half of the vector contains the real part of each frequency, arranged in ascending order of the
frequency of the component, the second half contains the imaginary parts, arranged in

descending order of frequency. This all takes place inside a function called getPS().

Calculate Power Spectrum: The real and imaginary parts of the FFT vector are squared and
the squared components corresponding to each frequency are added. The results are placed in an
array called PowerSpectrum. This also takes place inside getPS(). The code has been copied

from the FFTW documentation, but has been modify to work with our code.

47

Whitening: The function that performs this operation is called whiten() on the array
PowerSpectrum. This code has been copied from the Sigproc package. The mean is calculated
by a function called getMean(), also copied from the Sigproc package, but originally by

Numerical Recipes Software.

Harmonic Summing: Harmonic Summing is accomplished by a function called
HarmonicSumming(). This function iterates through the array PowerSpectrum, and for each
iteration, adding the components at integer multiples of its index, up to a maximum harmonic.

The maximum harmonic is defined in the code as 16.

Candidate Selection: This step takes the component with the highest amplitude present in the
post Harmonic Summing and whitened Power Spectrum. It appends this value along with the

period of the candidate and the current Dispersion Measure to an array called candidates.

Calculate Current DM: This merely adds the DM stepsize to the current DM, after this has
been performed, the loop moves back to the comparison between the current and maximum

Dispersion Measures.

Compare Candidates: This function has not been implemented as such. The program simply
writes all the candidates collected to a file, which the user can view. The user may plot the data
within the file to observe if any frequencies have had their signal to noise ration maximised by

a Dispersion Measure.

48

5.5.2 Parallel Algorithm Implementation

Both Parallel Algorithms required major changes to the code implemented for the sequential algorithm.
The most visible being the requirement for MPI initialisation. these were placed in the beginning of the
main() function. The changes to the algorithm are described along with the relevant steps of the

algorithms.

The nodes (including the master and slave) in the implementation all use the same executable and
therefore the flow of execution of their programs are the same. If a function in the executable requires
activities to be performed by only the master, the activity is placed inside an if statement to compare the

rank of the node calling the function with that of the master, the statement is of the form:
if (myRank == 0){

.Activity...

where myRank is the rank of the node calling the data similarly and the master node's rank is 0, if the

activity is to be performed only by the slaves the form is:

if (myRank != 0){

.JActivity...

Both parallel algorithms call a function called distParallelData() before the processing of the data

begins, this function distributes the header to the slave nodes using the MPI_Bcast() function.

49

SIMD Implementation:

All functions described here are called from the processSIMD() function, which is in turn called from

the main function when the operation mode is specified as SIMD.

Read Data and Distribute Channels: This is implemented in a function called
readDataSIMD(). When the master calls the function, it reads data from the file, one sample at
a time (note, not 1 byte), but does not place it directly into memory. Instead the Master

computes the location in the rawData array if the data is laid out thus:

Time Instance of Sample
0 1 2 3 4 5

0:0 3:1 6:2 9:3 12:4 15:5
1:6 47 7:8 10:9 | 13:10 | 16:11
2:12 | 5:13 | 8:14 | 11:15 | 14:16 | 17:17

Channel
bo — ==

Figure 5.5: Layout of rawData in memory for the SIMD implementation, for an observation with
three channels and 6 samples per channel.

(The first number inside each block refers to the index of the sample in the file, the second, refers to the

index of the sample in rawData)

This is to ensure that when the data is distributed to the nodes, the adjacent channels are
contiguous in memory, allowing the channels being passed to a node, to be passed as a single
block of data. Once this has been performed, then for each node the master calls MPI_Isend()
with the block of data containing the channels assigned to that node. The slave node receives the

data by calling MPI_Irecv().

Calculate DM values: The minimum and maximum Dispersion Measure values are passed to

the master as arguments when the program is run. These are in turn distributed to the slave

50

nodes when the distParallelData() function is called. In operation this stage works in an

identical manner to the sequential implementation.

De-disperse Channels: In the SIMD implementation, the dedisperse() function is

replaced with dedisperseSIMD(). This function is only called from the slave nodes. This
function iterates through the channels allocated to the node, and when DMshift() is called,

the offset of the channel index of the first channel allocated to the node is given, so that the
appropriate shift value for the channel is obtained. shiftRow() is replaced by shiftRowSIMD().
This function is identical to shiftRow(), except that it calls getSampleSIMD() instead of
getSample(). getSampeSIMD() retrieves the sample in the reformatted rawData array using the

equation:

Index sample = Channellndex X nsamples+SamplingInstance

Send and Retrieve De-dispersed Channels: The slave and master nodes both call the
retrieveSIMDdata() function. This function calls the MPI_Reduce() function. The slave nodes
specify sumChans as the input to the MPI_Reduce() function, and the master node specifies an
empty array, the same length as sumChans, as the output. The reduce operation is MPI_SUM,
this adds the corresponding elements in the input arrays and places them in the output array on
the master. The master then assigns sumChans the address of the array, effectively copying the
temporary array into its own sumChans vector. Once the slave nodes have performed this, they
may continue De-dispersing the next iteration of the Dispersion Measure, while the Master

performs the Frequency Domain ~ operations.

Compute FFT: This is only performed by the master, and is identical in operation to in the

sequential implementation.

Calculate Power Spectrum: This is only performed by the master, and is identical in operation

to in the sequential implementation.

Whitening: This is only performed by the master, and is identical in function to the sequential

51

implementation.

Harmonic Summing: This is only performed by the master, and is identical in function to the

sequential implementation.

Candidate Selection: This is only performed by the master, and is identical in function to the

sequential implementation.

Calculate Current DM: This merely adds the DM stepsize to the current DM, after this has
been performed, the loop moves back to the comparison between the current and maximum

Dispersion Measures. This occurs on both the slave and the master nodes.

Compare Candidates: This is only performed by the master, and is identical in function to the

sequential implementation.

52

MISD Implementation:

All functions described here are called from the processMISD() function, which is in turn called from

the main function when the operation mode is specified as MISD.

Read Data and Broadcast Data: This is implemented in readDataMISD(). The master calls
the same readData() function as the sequential implementation. The master and the slave nodes
all call MPI_Bcast() on the rawData array, with the master specified as the source. This sends a

copy of rawData to each slave node.

Calculate DM values: This operates in the same manner as in the sequential, however, the
DM values are broadcast to the slave nodes when distParallelData() is called. The slave nodes
calculate their portion of the Dispersion Measure range by comparing their rank to the total

number of nodes.

Compare Current DM with DM max: This is a only called by the slave nodes, and is identical

to the sequential implementation.

De-disperse Channels: This is a only called by the slave nodes, and is identical to the

sequential implementation.

Compute FFT: This is a only called by the slave nodes, and is identical to the sequential

implementation.

Whitening: This is a only called by the slave nodes, and is identical to the sequential

implementation.

Harmonic Summing: This is a only called by the slave nodes, and is identical to the sequential

implementation.

53

Candidate Selection: This is a only called by the slave nodes, and is identical to the sequential

implementation.

Calculate Current DM: This is a only called by the slave nodes, and is identical to the

sequential implementation.

Send and Retrieve Pulsar Candidates: This operation is performed in retrieveDataSIMD().
Each slave node creates an empty vector that is as long as the amount of Dispersion Measure
iterations times the amount of values used to represent each candidate (3, one for DM, one for
Signal to Noise and one for the frequency). The candidate information generated by the slave
node is then placed in this vector, the initial index depending upon which subrange of the
Dispersion Measure range the node searched. These are added into the candidates array on the

master using the MPI_Reduce() command.

Compare Candidates: This is a only called by the master node, and is identical to the

sequential implementation.

54

6 Testing

This chapter illustrates the testing methodologies used in analysing the implemented parallel
algorithmes. It begins with a comparison of the output of the sequential algorithm, with that of the
parallel algorithms, all with identical inputs. A description of the comparison criteria is then
given, these being completion time, percentage speedup and communications efficiency. Graphs
displaying performance the each of the algorithms with regard to the aforementioned criteria are

then shown.

6.1 Testing Methodology

Testing was performed on the implemented algorithms by generating simulated Pulsar signals using the
“fake” program. Testing involved two stages. First, the designs were verified by feeding them data with
known characteristics and observing the output to ensure that it matched the expected values. The next

stage of the testing was to ascertain whether the objectives set out at the beginning of the project had

been achieved, and to gather data on the algorithms for further analysis.

55

6.2 Verification Test

Using the fake program provided with Sigproc, simulated observation data was created. This data
simulated a pulsar with a peak signal to noise ratio of 5, a period of 1s and a duty cycle of 30%, the
level of dispersion was set to 121. The three implemented algorithms were then run using the simulated
data as input. The Dispersion Measure range was specified to be from 0 to 200. Signal to Noise ratio
and Dispersion Measure for each candidate was extracted from each algorithm's output file. These
values were plotted against each other to see whether the outputs of each algorithm matched, and to see

if the algorithms had correctly processed the data from the file.

MWMWWM " seq.tat +
14.8 | it iy,

14.7 | i gy
14.6 |
14.5 |
14.4 |

14.3

14.2

Signal to Noise ratio

14.1

14

13,9 L L L L L L L L L
] 28 48 68 88 108 128 148 168 188 200

Dispersion Measure

Figure 6.1: Candidates Output by Sequential Implementation

56

Signal to Noise ratio

' sind.txé +

T T T
W ﬂmum,w
At iy
14,8 A iy,
i "y,
A iy
al Hy
14.7 # Ty
e .
4 y,
oy
14,6 Fi o
i

Fa kS

14,5 # iy
#
&
14,4 r3
£
£
14,3 | £
£
£
¥
14,2 £
+
i
14,1 | F
7
14 ff
13.9
1 29 40 60 80 100 128 148 168 188 200

Dispersion Measure

Figure 6.2: Candidates Output by SIMD Implementation

14.9

MM Ir|.isd.l;m£ +
it iy
14,8 | e iy,
s i

14,7 | _,E’*# *‘H%
Re I Y
-'ra' 14,6 | Eﬂ#‘ *n;ﬁ 1
o & %,
@ L
» 14.5 #ﬂmf iy
o] _ﬂff
= 14.a4f #ﬂ{f
° £
: 14,3 | #
T i
c #
oy M.2r }#
n £

£
14,1 | F
¥
14 f*
13.9
[} 20 48 60 80 1608 128 148 168 188 200

Dispersion Measure

Figure 6.3: Candidates Output by MISD Implementation

57

6.3 Algorithm Performance Tests

These tests involved inserting MPI_Time() functions in the implemented program to record the time
taken to complete various operations. The entire run time of each algorithm was measured, and for the
parallel algorithms, the amount of time spent sending the data from the master to the nodes, and also
retrieving data. As the processing load on the cluster was not constant (due to use by other users), each

test was performed twice and the average value of the two runs was for plotting the results.

The metrics used for the tests were the completion time of the algorithms, the percentage speedup of
the parallel algorithms over the sequential algorithm and the efficiency of the parallel algorithms, with
efficiency defined here as the fraction of the running time time spent processing (as opposed to
communicating). The tests were performed on the cluster using 2 nodes (1 master node and 1 slave
node) to 24 nodes (1 master and 23 slaves). The data was 65 megabytes in size, consisted of 128
channels with 266752 16 bit samples per channel. The Dispersion Measure range was set to 0 to 200
and consisted of 232 increments. The sequential implementation had an average run time of 778

seconds. The data collected for the tests is tabulated in Appendix A.

SIMD Implementation Completion Time

Completion Time (s)

2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of Nodes

Figure 6.4: SIMD Implementation Completion Time

58

SIMD Implementation Speedup

13 14 15 16 17 18 19 20 21 22 23 24
Number of Nodes

12

Figure 6.5: SIMD implementation Speedup over the the Sequential Implementation

MISD Implementation CompletionTtime

I I I I
o o o o
o o o o

800

11 uonajdwo)

12 13 14 15 16 17 18 19 20 21 22 23 24

7 8 9 10 11

6

Number of Nodes

Figure 6.6: MISD Implementation Completion Time

59

MISD Implementation Speedup

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Nodes

Figure 6.6: MISD Implementation Speedup over the Sequential Implementation

Algorithm Completion Times

@

©

£

|—

c

5 I MISD
© M siMD
o M sEQ
£

o)
©)]

2 34 56 7 8 9 1011 12 13 14 15 16 17 18 19
Number of Nodes

Figure 6.6: Comparison of the Algorithm Completion Times

(Note that sequential algorithm is always executed on one node, it is displayed for comparison)

60

Algorithm Efficiency

Aousioyg

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of Nodes

Figure: 6.8: Algorithm Efficiency (Proportion of Time Spent Processing)

61

7 Results and Analysis

An in depth analysis of the results obtained in the testing phase is described in this chapter. All
algorithms performed the processing on the data file identically, and can be considered to
function as Pulsar Search Algorithms. The performance results of the MISD implementation are
shown to correspond to the results predicted in the design, although there are some performance
penalties. The results of the SIMD implementation proved anomalous, not achieving their
theoretical potential or exhibiting signs of parallel execution, however, it was faster than the

sequential algorithm. The possible reasons for the results observed are given.
7.1 Verification

All algorithms gave identical outputs when presented with identical inputs. This was not only observed

in the verification test, but also when gathering data for performance and analysis tests.

The graphs indicate that as the Dispersion Measure being tested, approaches 121, the signal to noise
ratio increases and is maximised when the Dispersion Measure reaches 121. This corresponds with the

expected behavior of a Pulsar Search Algorithm, and also with the values specified in the data file.

The signal to noise ratio output proved to be anomalous. When converted to decibels, the maximum
signal to noise ratio observed in the verification test was seen to be 11.7. This proved to be the case for
all tests performed with all three of the algorithms. The signal to noise ratio as defined in fake is termed
the “peak” signal to noise ratio, no adequate definition of this term could be found, and as such no
relationship can be inferred between the signal to noise ratio in the input file, and the signal to noise
ratio in the algorithms' output, other than the fact that the signal to noise ratio dynamics with respect to
the Dispersion Measure are correct. This discrepancy should have little to no effect on the detection of
possible Pulsars, as it is the relative differences in the components of Power Spectrum is used to select

candidates.

62

7.2 Algorithm Performance

The performance tests indicated that both algorithms have a definite speed advantage over the
sequential algorithm. However, when compared with the performance predicted in the design, both
algorithms fall short. All the results obtained were displayed fluctuations, probably due to different
operating loads present on the cluster for each of the test runs. The results discussed below ignore this
fluctuation in the interpretation of the test results, unless the fluctuations are deemed to have greatly

affected the outcome of the tests.

The graphs indicate that the SIMD implementation shows no observable increase in speed when more
nodes were added, however, it is consistently faster than the sequential algorithm, even with one master
and one slave node. This is to some extent, expected, as while de-dispersion stage in the slave nodes is
paralellised, there is further parallelisation, in that after data from the slaves has been collected, the
master node is able to perform the frequency domain search as the slaves compute the next Dispersion
Measure iteration. This holds even for the case of one slave and one master, although the level of
speedup, 300%, is much greater than expected. The maximum speedup for one node and one master
should be 200%, as the greatest efficiency should be experienced when the sequential algorithm is split

evenly between them.

A factor that may contribute to this speed benefit in the SIMD design is that the data for the SIMD
implementation is reordered into concatenated time series, therefore consecutive samples are physically
next to each other in memory, whereas with the sequential and MISD implementations, consecutive
samples are nchans -1 apart. If the processor on which the algorithm is being run implements caching,
which the Core Duo definitely does, then for each memory access, the processor will fetch the
surrounding blocks of memory to the cache to speed up the next access (the processor assumes that the
next access will occur next to or near the first), then there is a greater chance that consecutive samples
in the SIMD implementation will be fetched from the cache, which is much faster than a fetch from
memory. The time of completion for the de-dispersion operation for the nodes in the SIMD operation is
given in table 2 in Appendix A. For the case of 2 nodes, then there is one slave, and this slave is

allocated the entire contents of the raw data. Therefore the dedispersion operation is performed on the

63

same amount of data as with the sequential implementation. Note that the time taken for de-disperision
is 0.64s, when the sequential algorithm was run with the same input data, the time taken to de-disperse
data was 1.86 seconds, almost 3 times as long, indicating that there are definite advantages to the SIMD

algorithms data storage format.

The lack of increase in computation speed when more nodes are added is probably due to the fact that
as the frequency domain search time on the master node remains constant due to the operations being
performed being constant. If the de-dispersion stage on the slaves is computed faster than the frequency
domain stage is on the master (due to parallelisation), then the slave nodes will have to wait for the
master to finish the the frequency domain processing, then send their results to the master before they
will be able to continue into the next iteration of the Dispersion Measure. Therefore the lower limit on
the completion time is dependent on the time it takes to perform the frequency domain search. A
further test was performed to see if the de-dispersion stage did indeed proceed faster than the frequency

domain processing.

SIMD Dedispersion and Frequency Domain Processing Time

0.65
0.6
0.55 —
0.5
0.45 —
0.4 —
0.35 —
0.3
0.25 —
0.2
0.15 —
0.1 —
0.05 —
0 —

Completion Time (s)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Nodes

[Dedispersion (slave)

M Frequency Domain Proc
(master)

Figure 6.9: Comparison of the De-dispersion and Frequency domain processing in the SIMD
implementation
When designing the algorithm it was assumed that de-dispersion would always be many times slower
than any of the other operations even for large numbers of slave nodes. Obviously this is not the case.

This does not however explain the relatively constant completion time exhibited by the SIMD

64

implementation. This proved to be an elusive feature to analyse, and none of the tests performed

indicated any reason for this.

The communication efficiency of the SIMD implementation is as predicted in the analysis of the
design. The data in Table 1 of Appendix A shows that for more than one node, the time required to
distribute the data is relatively constant (ignoring fluctuations in the data), especially when compared to
the time required to retrieve the channels, this is as expected as the same amount of data is transferred
irrespective of the number of nodes. The small increases in the time required to distribute the data as
the number of nodes increases, is probably due to the overhead involved with each additional point to
point communication. The time required for retrieving the time series increased as expected with each

additional node.

The MISD implementation was a lot more well behaved with regard to its predicted performance. The
effects of adding additional nodes to the computation are clearly visible. Up to approximately ten
nodes, the graph displays an almost linear increase in performance, increasing from one slave node to
two, increases the speedup to 197.3%, very close to the theoretical prediction of 200%. after ten nodes,
the incremental increase in performance appears to decrease although, fluctuations in the values makes
interpretation difficult. However if one calculates the percentage difference between the theoretical
speedup and the achieved speedup, the discrepancy is seen to increase almost linearly, as the number of
nodes increases, this is illustrated in figure 6.9 giving a clear indication of the effects of communication

and other overheads. Despite this, this algorithm clearly provides the most scope for parallel execution.

Discrepancy Between Theoretical and Observed Speedup

Difference (%)

2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Nodes

Figure: 6.10: Discrepancy Between the Theoretical and Observed Speedup
for the MISD Implementation

65

8 Conclusions

All the implemented algorithms are able to detect simulated Pulsar's in the simulated observation data,
therefore the algorithms can be considered to function as Pulsar Search Algorithms. The method of
Candidate Detection implemented is however crude, and does not automate the detection of the

optimum Dispersion Measure.

The parallel algorithms are both faster than the sequential algorithm, although by different degrees, All
in all, the MISD algorithm proves to be the most effective in terms of a parallel speedup. A benefit of
the SIMD implementation, is that as the number of nodes increases, the the more the data is split up,
and therefore the less memory required by each node for execution leading to a relatively efficient
usage of memory. All in all, the objectives set out at the beginning of the project have most definitely

been achieved.

The SIMD algorithm proved to be of a fairly naive design, as illustrated by the discrepancies between
the designed and implemented performance. The performance increase from its use is definite, however
further parallelisation beyond the use of 2 nodes is of no benefit. The MISD algorithm would therefore
be the most appropriate in a real Parallel Pulsar Searching environment, as it is greatly parallelisable

and provides the greatest ultimate performance boost.

Implementation of a more thorough candidate selection, and Dispersion Measure optimisation strategy
would be the next step if the sequential algorithm is to be further refined. For the Parallel Algorithms,
an in depth analysis of the communications would probably prove to be the most effective method of
improving performance. Implementation of further Parallelisation schemes, such as a parallel FFT
would be the logical next step in refining their design. An investigation into different algorithm

topologies such as a pipeline might result in even better parallel algorithms.

66

Bibliography

[1]

[10]

[11]

Wikipedia Article on Pulsars, en.wikipedia.org/wiki/Pulsars

D.R. Lorimer, M. Kramer,Handbook of Pulsar Astronomy, Cambridge University Press

T.G.H. Bennett, Development of a Parallel SAR Processor on a Beowulf Cluster, Cape Town:

University of Cape Town, 2003

Wikipedia Article on Amdahl's Law, http://en.wikipedia.org/wiki/Amdahl's_law

S. Mukherjee, Parallel Implementation of an Algorithm for High Resolution Range
Profiling using Stepped Frequency Radar, Cape Town: University of Cape Town, 2004

J. Dongarra, I. Foster, G.C. Fox, W. Gropp, K. Kennedy, L. Torczon, & A.White The
Sourcebook of Parallel Computing, Morgan Kaufman Publishers, San Francisco, USA, 2003

R. Buyya, High Performance Cluster Computing Volume 1, Prentice Hall, New Jersey, USA,
1999

S.G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, USA, 1989

R.A. Hulse, The Discovery of the Binary Pulsar, Nobel Lecture, December 8, 1993 Princeton

University, Plasma Physics Laboratory, Princeton, NJ 08543,
USA

O. Fadiran, Design and Implementation of a Parallel Registration Algorithm for SAR Images,

Cape Town: University of Cape Town, 2001

N. Morrison, Introduction to Fourier Analysis, Wiley-Interscience, USA, October 1994

67

http://en.wikipedia.org/wiki/Amdahl's_law
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521828236

[12]

[13]

[14]

[15]

[16]

Wikipedia Article on the Central Procesing Unit

http://en.wikipedia.org/wiki/Central_processing_unit

Wikipedia Article on Parallel Computing http://en.wikipedia.org/wiki/Parallel_computing

Wikipedia Article on Moore's Law

http://en.wikipedia.org/wiki/Moore%27s_law

Wikipedia Article on the Galactic Coordinate System

http://en.wikipedia.org/wiki/Galactic_coordinate_system

A.J. Wilkinson, EEE3058S Notes on Power Spectral Density, Cape Town: University of Cape
Town, 2001

A.J. Wilkinson, EEE3058S Notes on Noise Power, Cape Town:

University of Cape Town, 2001

F.Nicolls, EEE4086F Notes on Discrete time Signal Processing, Cape Town: University of Cape
Town, 2001

Wikipedia Article on the Fast Fourier Transform

http://en.wikipedia.org/wiki/FFT

Wikipedia Article on Big O notation

http://en.wikipedia.org/wiki/Big_O_notation

[21] Ars Technica Article on the Ultimate Limits of Computers

http://arstechinca.com/wankerdesk/01q2/limits/limits-1.html

68

D.R. Lorimer, Sigproc Manual

http://sourceforge.org/sigproc/

MPI Specification

www.mpi-forum.org/docs/docs.html

University of Manchester Cobra cluster website

www.jb.man.ac.uk/~pulsar/cobra/science/

J. Blythe et al, Transparent Grid Computing: a Knowledge-Based Approach
www.isi.edu/~gil/papers/iaai03.pdf

University of Illinois at Urbana-Champaign Radio Astronomy Imaging Group Website

http://monet.ncsa.uiuc.edu/

A.G. Willis, Astronomical Data Reduction on Parallel Computers Using AIPS++

http://monet.ncsa.uiuc.edu/aips++/index.html

Parallel and Distributed Processing with glish and AIPS++

www.drao-ofr.hia-iha.nrc-cnrc.gc.ca/science/ska/other_formats/jodrell_parallel_proc.pdf

69

http://www.drao-ofr.hia-iha.nrc-cnrc.gc.ca/science/ska/other_formats/jodrell_parallel_proc.pdf

Appendix A: Test Data Results

MISD SIMD

Number of Nodes |Completion Time |Send Time |Receive Time |Completion Time |Send Time
2 7771 0.59 0 241.6 0.59
3 394.02 1.18 0 239.55 0.59
4 273.56 1.24 0 245.49 0.59
5 210.68 1.85 0 240.41 0.6
6 169.48 1.85 0 245.61 0.6
7 145.92 1.9 0 242.62 0.6
8 128.9 1.28 0 239.98 0.61
9 109.6 1.22 0 244.57 0.61
10 100.93 1.21 0 246.28 0.61
11 97.47 1.36 0 243.7 0.62
12 91.62 1.24 0 240.92 0.64
13 80.9 1.34 0 245.53 0.65
14 80.14 1.34 0 240.84 0.64
15 72.95 1.33 0 244.32 0.68
16 70.55 1.33 0 242.84 0.7
17 65.22 1.28 0 246.34 0.69
18 65.61 1.29 0 24251 0.69
19 60.37 2.26 0 242.82 0.74
20 57.57 1.33 0 238.46 0.78
21 57.7 1.37 0 240.75 0.76
22 56.78 1.44 0 238.19 0.76
23 54.11 1.43 0 239.12 0.76
24 54.15 3.34 0 241.96 0.97

Table 1: Running time, The taken to Distribute Data, and Time taken to
Receive Data

(The Sequential Algorithm had a runtime of)

70

Number of Nodes Dedispersion (slave) |Frequency Domain Proc (master)
2 0.64 0.08
3 0.43 0.08
4 0.23 0.08
5 0.18 0.08
6 0.14 0.08
7 0.12 0.08
8 0.1 0.08
9 0.09 0.08
10 0.08 0.08
11 0.07 0.08
12 0.07 0.08
13 0.06 0.08
14 0.06 0.08
15 0.06 0.08
16 0.05 0.08
17 0.05 0.08
18 0.04 0.08
19 0.04 0.08
20 0.04 0.08
21 0.04 0.08
22 0.04 0.08
23 0.03 0.08
24 0.03 0.08

Table 2: Comparison of the De-dispersion and Frequency domain

processing in the SIMD implementation.

71

Appendix B: Readme File

Tsepo Montsi

mnttse002

This CD contains the document and source code of Tsepo Montsi's

undergraduate Thesis.

The document is inside the Document Folder, the source code is inside the

Source folder.

The layout of the files is:
Folder File Description

./Document/PDF:Cover.pdf Front Cover in PDF format
Pre.pdf Table of contents and preamble in PDF format
Body.pdf Thesis Document in PDF format
./Document/DOC:Cover.odt Thesis Document in Open Document Text format
Pre.odt Table of contents and preamble in Open Document
Text format

Body.odt Thesis Document in Open Document Text format

./Source makefile Makefile to compile the source code
header.h Sequential algorithm header file
frontend.c Source file containing sequential algorithm

frontend functions
processing.c Source file containing processing functions

P header.h Parallel algorithm header file

72

P_psa_main.c Source file containing main function

P _functions.c Source file containing functions used in the
parallel algorithms

moveexe.c Program to read in hostnames from
mod.hosts, and copy the compiled executable

to the different nodes

The code within the header.h, processing.c and frontend.c source
files was jointly implemented by Tsepo Montsi and Roger Deane,
except where otherwise indicated. The code in all the other source

files was implemented by Tsepo Montsi.

Compilation Instructions:

This Program requires an MPI library and the FFTW library to be installed!

1. Open a terminal and enter the directory where you have placed the

source folder

2. Open the makefile and follow the instructions at the top

2. Type make

3. To run the program an MPD ring must be established, consult your MPI

distribution's documentation as to the procedure

4. to run the program type:
mpiexec -n N ./ppsa -mode "mode of execution"

-f "name of data file"

73

-dmmin [minimum DM]

-dmmax [maximum DM]

-0 "candidate file name"

Where, N is the number of Nodes to use, mode of execution is (all

without quotes) "misd" to run the MISD algorithm, "simd" to run the

SIMD algorithm, and "seq" to run the sequential algorithm

"Name of data file" refers to the name of the Data file used

minimum DM refers to the minimum DM in the range

maximum DM refers to the maximum DM in the range

"candidate file name" refers to the name of the candidates output file

A file called moveexe.c has been included. Compile this by typing:

gcc moveexe.c -0 moveexe (substitute whatever C compiler you

use if you don't use gcc)

usage: moveexe "source binary" "destination directory"

For example if your executable is in /home/tsepo/bin and you want the

executable copied to

the same directory on the nodes type:

./moveexe /home/tsepo/bin/ppsa /home/tsepo/bin/

Run this program in the same directory as the mpd.hosts file

74

	Body.pdf
	Single instruction/single data stream (SISD) - A traditional sequential computer[7].
		

