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Abstract

Embedded systems are taking on more complicated tasks as the processors involved 

become more powerful.  As the number of transistors per area of silicon increases in a 

fairly predictable fashion as forecast by Gordon E Moore in 1965 we have more resources 

available for features that speed up development and time to market.  The extra computer 

resources being fitted into the same space allows some embedded projects to consider an 

operating system while still maintaining the required speed of response.  Operating 

systems can greatly reduce the time to market of an embedded project and save the 

developers handling chores like race conditions, multitasking and hardware access.

The partitioning decision in any project as to which portion of the project to implement in 

hardware and which portion to implement in software has always been fundamental to 

embedded projects.  The decision is usually based on the project's performance 

requirements and hardware used when software solutions are not fast enough.  Software 

provides better versatility and flexibility and with the increase in performance in the 

computing field software can take on more and still have resources left over for improving 

code structure and development features.  

Altera provide soft-core processors implemented on a Field Programmable Gate Array and 

the performance of these processors have become competitive with conventional 

processors.  Using the Altera Cyclone 1 evaluation board and Cyclone 2 development board 

both running the NIOS2 soft-core processor; this thesis investigates the versatility and 

performance as well as the time-to-market which this soft-core processor technology 

brings to the embedded systems field.
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Acronyms and conventions

Code:

As little code as possible has been placed in the report.  All of the code written 

for this project can be found in appendix E.  Where code has been used in 

the report it is written as in the example below:

1: int main ()
2: {
3:   return 0;
4: }

Paths:

Paths within a directory structure will be displayed surrounded by <> when 

used.  Usually these are generic paths based on the location in which 

particular pieces of software are installed.

Different operating environments use different conventions: Linux paths use 

a forward slash '/' when specifying paths while Windows uses a back slash '\'. 

In addition Windows paths are not case sensitive whereas Linux paths are.  

Where necessary it will be made clear which environment is being specified.

Linux commands:

Linux commands such as />ls for listing directory contents and />chmod 

for changing file permissions will be written with a preceding /> as is 

displayed as the prompt for the sash shell and in bold typeface.  Note that 

Linux is case sensitive and so all commands are written exactly as they are 

used on the command line.
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Acronyms:

VII

API – Application Programming Interface
CMOS – Complementary Metal-Oxide Semiconductor
CPU – Central Processing Unit
DDR – Double Data Rate
DMIPS – Dhrystone  Millions of Instructions Per Second
FPGA – Field Programmable Gate Array
HAL – Hardware Abstraction Layer
HDL – Hardware Definition Language
IDE – Integrated Development Environment
JTAG – Joint Test Action Group
LCD – Liquid Crystal Display
LVCMOS – Low Voltage CMOS
LVTTL – Low Voltage Transistor-Transistor Logic
MMU – Memory Management Unit
PDA – Personal Digital Assistant
PIO – Parallel Input Output
PLL – Phase Locked Loop
POSIX – Portable Operating System Interface
RAM – Random Access Memory
RISC – Reduced Instruction Set Computer
ROMFS – Read Only Memory File System
SOF – SRAM Object File
SOPC – System On Programmable Chip
SRAM – Static Random Access Memory
SSTL-2 – Stub Series Terminated Logic for 2.5V
SSTL-3 - Stub Series Terminated Logic for 3.3V
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1  Introduction

 1.1 Terms of Reference

 1.1.1 Original Brief
“The ARM9 microprocessor is a high performance embedded processor that 

finds wide application in devices such as PDAs and cellular telephones. The 

ARM9 is capable of running Linux and various Linux ports exist. In this project 

you will look at writing and integrating device drivers for a small ARM9 board.

Our board will have a miniature (low resolution) graphics LCD and a simple 

keypad. 

If you're very daring we could also try modifying the board's hardware (e.g the 

memory system) and porting and running small open-source applications on 

the system.”

As proposed by thesis supervisor Samuel Ginsberg.

 1.1.2 Final Brief and deliverables
The processor used in the project is the NIOS2 soft-core processor instead of 

the ARM9.  Both processors are 32bit RISC pipelined processors and the only 

significant difference is that the NIOS2 is soft-core, making it more 

customisable and suited to development.

The driver requirements remain the same; that is to write drivers for a small 16 

button keypad and the PG12864F graphical LCD for a driver control system 

such as an operating system or in the case of NIOS2 the HAL provided by 

Altera.
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 1.1.3 Objectives
 To implement a driver abstraction layer.  In most embedded projects this is 

in the form of a highly customisable operating system.  Examples of 

operating systems are Linux (and more specifically uClinux), Microsoft 

Windows CE and MicroC/OS 2 to name just a few.  Another option for the 

driver abstraction layer is the HAL provided by Altera in the NIOS2 IDE. 

 To develop an efficient device driver for the PG12864F graphical LCD that 

runs on the chosen driver abstraction layer

 To develop an efficient device driver for a 16 key keypad that runs on the 

chosen driver abstraction layer

 To show that the structure is expandable to more complicated systems

 Determine whether the driver abstraction layer will provide a faster time to 

market and improved code re-use. 

 To provide a report of the design and research process

 1.2 Scope of the project
The design of the drivers is limited to character devices.  Both the keypad and LCD 

fall into this category, along with many other simple hardware components such as 

serial devices.

The implementation of the drivers will be done for the uClinux kernel only, even 

though Altera's HAL is discussed in some detail.  There are some useful comparisons 

to be made between these two systems.
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 1.3 Hardware introduction
The hardware used for this project was partially changed during the project.  Initially 

the Cyclone 1 evaluation board, referred to as the 1c12 board was used and the drivers 

implemented in uClinux, due to the HAL being non-configurable on the evaluation 

board (more details on the 1c12 board in the hardware chapter).  

The Cyclone 2 development board, referred to as the 2c35 board, was then tested and 

proved much more successful for developing HAL drivers. Unfortunately  it arrived 

very late in the design process and not much time could be spared for testing and 

developing HAL drivers or further systems such as the real time kernel provided.  

Additional hardware consists of a PG12864F LCD graphical display and a standard 16 

key keypad shown below.  The PG12864F LCD is a  128 x 64 pixel display that 

supports text and graphics modes.

Figure 1.1 The PG12864F graphical LCD and the 16 key keypad used in the project
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 2 Literature review

As stated in the terms of reference section, drivers are required to be written as part 

of a coding structure such as an operating system.  A number of options exist and this 

section contains a review of some of the literature associated with the NIOS2 

processor and three of the options for implementing the driver support layer as 

outlined in the introduction section.

 2.1 NIOS2 background
The processor used on both boards is the 32bit NIOS2 RISC processor which is 

a fully customisable, pipelined, soft-core microprocessor.  It exists only as HDL 

code until it is fitted onto an FPGA, at which point it is implemented on fully 

general hardware.  The NIOS2 core itself uses only a small portion of the total 

FPGA space which allows other standard components to be added alongside, as 

well as any custom hardware that is desired.   This allows for the processor, 

components and even instructions to be customised.  The NIOS2 currently has 

three processor cores to choose from: Nios2/f: fast, Nios2/e: economy and 

Nios2/s: standard.

Altera lists the NIOS2 features as follows [Altera, 2007]: 

• Separate instruction and data caches (512 bytes to 64 Kbytes) 

• Access to up to 2 Gbytes of external address space 

• Optional tightly coupled memory for instructions and data 

• Six-stage pipeline to achieve maximum DMIPS/MHz 

• Optional Single-cycle hardware multiply and barrel shifter (depending on 

NIOS2 model)

• Optional hardware divide option (depending on NIOS2 model)
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• Optional Dynamic branch prediction (depending on NIOS2 model) 

• Up to 256 custom instructions and unlimited hardware accelerators 

• JTAG debug module 

• Optional JTAG debug module enhancements, including hardware 

breakpoints, data triggers, and real-time trace 

The idea behind NIOS2 is that the soft-core feature of the processor should be 

completely transparent, therefore developing software for this processor should 

be no different from developing for a silicon wafer based processor.  

 2.2 Drivers as part of Altera's HAL
The discussion of implementing drivers into the HAL is discussed in the NIOS 

2 software developer's handbook [Altera 2007].  The HAL provides a simple 

interface for device drivers to allow programs to communicate with the 

underlying hardware.  The layered structure of the HAL as described in the 

NIOS2 software developer's handbook is shown below in Figure 2.1:

Figure 2.1 The layers for Altera's HAL

The process for creating a device driver is outlined in the “developing device 

drivers for the HAL” section of the software developer's handbook.  Although 
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not the main implementation, the driver structure of the HAL will be looked at 

in some detail as an alternative system to a full operating system.

 2.3 uClinux
uClinux started out as a port of Linux kernel 2 to micro-controllers, particularly 

those with no memory management units (MMUs).  It was created by D Jeff 

Dionne and Kenneth Albanowski in 1998 using the Linux 2.0.33 kernel and 

since then it has kept up to date with the Linux kernel releases and is now 

considered a full operating system supporting kernel version 2.6 and a 

selection of user applications and tool chains [Wikipedia 2007][uClinux.org 

2007].

Some of the desirable uClinux features are as follows [Michael Opdenacker, 

2007]:

 Linux: Build-in IP connectivity, reliability, portability, file systems and 

free

 Lightweight:  Full Linux 2.6 kernel occupies less than 300K and binaries 

are smaller when built with uClibc 

 Execute In Place:  Executables don't have to be loaded into RAM to run. 

This will cause the executables performance to decrease.

 Cheaper

 Faster:  No cache flushes allow for faster context switches

 User access to hardware

 Full Linux API:  uses familiar Linux system calls (with some minor 

exceptions) making it easier for developer's to learn

 Kernel Pre-emption

 Full multitasking

 Supported by many processors (including NIOS2)
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uClinux is based on the Linux-2.6.x kernel which handles critical sections, 

scheduling, interrupt service routines, multitasking and disk access to mention 

a few of it's tasks.  It starts out as a stripped down kernel as is expected for an 

embedded kernel, containing only a shell, http and ftp servers and a basic file 

system.  It is customisable to allow you to build in many other features.  The 

feature of interest to this project is the kernel support for loadable modules 

[uClinux.org, 2007].  

 2.4 MicroC/OS 2 Real Time Kernel
μC/OS2(as it is called by the author) is the real time kernel that comes with the 

Altera 2c35 board and looks on the surface to be very similar to uClinux.  It is 

not based on a Linux kernel; however it's kernel implements similar 

functionality.  If the 2c35 board had arrived at the start of the project this 

would probably have been the driver layer implemented instead of uClinux 

[microC/OS2, 2002]. 
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 3 Embedded Integrated 

Development Environment

 3.1 Introduction

The IDE for any embedded project is fundamental to the project and is a fairly 

unique area of software development.  Most programming projects involve 

compiling the system on the target that it is likely to run on in future, however 

in the case of embedded projects a cross-compiled environment must be set up. 

A cross-compile is the process of creating executable code for a platform other 

than the one on which the compiler is run[Wikipedia 2007].   In the case of 

developing for the NIOS2 processor there is an additional HDL layer to 

consider.

Due to the layered structure of embedded systems it is common to implement a 

tool-chain which effectively bridges the different coding techniques and 

languages that exist on different layers.  The Figure (3.1) shows the layers that 

are common to most embedded projects and how they relate to this project.   It 

also shows the tool-chain used to bridge the layers.
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Figure 3.1 The layering structure and associated tool-chain for uClinux running on 

NIOS2

Key:

The top layer is where user applications are developed.

The middle layer (referred to as Kernel space) is where the 

PG12864F LCD driver and the 16 key keypad will be 

implemented.  The drivers are added to the kernel and are the 

inputs to this portion of the tool-chain.  The full kernel is then 

compiled to target a specific PTF and the output is a uClinux  

image which can be downloaded to the board (see appendix C).
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The bottom layer (referred to as hardware space/layer) has the 

Linux image as its input and the SOF file is used to download 

this image to the board.

The purpose of this section and Figure 3.1 is to introduce the concepts of tool-

chains and cross-compilation.  Section 3.1.1 and 3.1.2 outline the specific details 

of the tool-chain used for implementing the drivers. 

 3.1.1 Altera packaged software tool-chain
The Altera IDE consists of a selection of software packages each of which plays 

a part in the development toolchain.  They are as follows:

 3.1.1.1 System on Programmable Chip builder

The SOPC builder allow us to add components to the NIOS2 processor 

and then wrap the whole package into a single HDL block.  The extract 

from the SOPC builder below (Figure 3.2) shows the NIOS2 CPU 

(highlighted), as well as some of the components that are currently 

attached.

 Figure 3.2 An extract from the SOPC builder

Components are then added and connected using the Avalon Switching 

Fabric [Altera, 2007].  There are many standard components written in 

HDL code that can be inserted which can be easily added to the system 

(examples include Ethernet cards and PCI buses).   Parallel Input Output 

ports (PIO ports) are required to control the peripherals and these have 

been added into the SOPC builder.  Figure 3.2 illustrates the standard 
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components attached to a 1c12 board, as well as the PIO ports added to 

control the PG12864F LCD and 16 button keypad.  

Figure 3.3 NIOS2 components generated into a single SOPC HDL entity  

The file generated by this process is a .ptf file which is used to update the 

entity in Quartus2.  In Figure 3.3 shows that there are additional ports to 

lcd_data_pio, lcd_cmd_pio and keypad_pio (for a full size image see 

Appendix E).

The .ptf file is used when building projects in the NIOS2 IDE to create the 

system.h file.  An excerpt of the system.h is shown below: 

/*
 * led_pio configuration
 *
 */

#define LED_PIO_NAME "/dev/led_pio"
#define LED_PIO_TYPE "altera_avalon_pio"
#define LED_PIO_BASE 0x02120870
#define LED_PIO_SPAN 16
#define LED_PIO_DO_TEST_BENCH_WIRING 0
#define LED_PIO_DRIVEN_SIM_VALUE 0
#define LED_PIO_HAS_TRI 0
#define LED_PIO_HAS_OUT 1
#define LED_PIO_HAS_IN 0
#define LED_PIO_CAPTURE 0
#define LED_PIO_DATA_WIDTH 10
#define LED_PIO_EDGE_TYPE "NONE"
#define LED_PIO_IRQ_TYPE "NONE"
#define LED_PIO_FREQ 85000000
#define ALT_MODULE_CLASS_led_pio altera_avalon_pio
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Figure 3.4 definitions for the LED's found in the system.h file

Both the 1c12 board and the 2C35 board run the same NIOS2 CPU and 

most of the peripherals remain similar (uart, led_pio, flash, etc.) however 

the one distinct difference is that the 2C35 board has DDR RAM.  When 

compiling the uClinux kernel we would like it to run from this space and 

this requires that the CPU's exception vector points to the DDR address 

space instead of the 64kb of on-chip RAM.  The CPU must therefore be 

edited in the SOPC builder to affect this change as shown below.
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Figure 3.5 Changing the CPU's exception vector to target the DDR RAM instead of the on-chip 

RAM (full size image found in Appendix E)

 3.1.1.2 Generating SRAM Object File using Quartus2

To program the FPGA we need to compile the Quartus2 project with the 

changes made in the SOPC builder.  Pin assignments are made in 

Quartus2 and the SRAM Object File is generated when the project is 

compiled.  See Appendix E for the generated files. Up to this point the tool 

chain for uClinux is exactly the same as the tool chain for the Altera 

packaged software. 
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 3.1.1.3 NIOS2 IDE

Using the system generated above we can create a driver using the Altera 

provided HAL.  The HAL instantiates and registers drivers automatically 

during system initialisation.  Drivers are structured according to what the 

parser expects and placed within the HAL directory structure to allow the 

automated system to build them into the project [NIOS2 Software 

Developers Handbook 2007].

Figure 3.6 The required directory structure for implementing drivers 

using the HAL

This method of development seems to provide a very swift method of 

implementing drivers and controlling underlying hardware.  A significant 

amount of time was spent trying to develop the necessary drivers for this 

structure using the 1c12 evaluation board.  After modifying some of the 

drivers already present in the HAL and finding that these drivers were not 

being parsed in the way outlined in the documentation it was decided that 

the evaluation board did not provide features for modifying the HAL.
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 3.1.2 uClinux tool-chain

The initial steps in the uClinux tool-chain remain the same as those of Altera's 

HAL.  They set up the hardware on which uClinux will run.  

 3.1.2.1 System on Programmable Chip builder

Construct a system .ptf as outlined in the Altera packaged software tool-

chain section.

 3.1.2.2 Generating SRAM Object File using Quartus2

Generate SRAM Object File(.sof) using Quartus2 as outlined in the Altera 

packaged software tool-chain section.

 3.1.2.3 Host-side uClinux kernel

Implementation of the uClinux kernel requires it to be compiled on the 

host side and then ported to the board, as is common for many embedded 

operating systems.  This requires a host system running Linux and also 

requires that the standard libraries are modified to target uClibc instead 

of glibc which normally runs on standard Linux based systems (see 

appendix A for more information on uClibc).

As with all Linux programming Makefiles are used to assist in compiling 

and linking projects.  Makefiles are shell scripts that call the compiler 

commands.  When compiling a kernel like uClinux a single makefile 

would be very complicated, so there are different makefiles for various 

subsections of the kernel.  The makefiles form a hierarchical structure 

where a global make calls lower tier makefiles and can only complete after 

each of the makefiles completes its compilation.
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As part of the tool-chain Fedora 5 was used as the host-side operating 

system for compiling the uClinux kernel and modified to use the uClibc 

library.  The uClinux kernel was downloaded from www.uclinux.org along 

with the most recent patch.

The Nios Community Forum provide a gcc cross-compiler which forms 

the basis for the kernel space tool-chain (this forms a small part of the 

overall project tool-chain).  Installing this tool-chain on the host-side 

allows the kernel and drivers to be cross-compiled, targeting the NIOS2 

processor.  The decision to run Fedora 5 on the host system was based on 

one of the requirements for installing the gcc tool-chain which requires 

version 3.4.6 or newer.  The installation instructions are found on the 

Nios community forum Wiki but a brief summary is as follows [Nios Wiki, 

2007]:

 Switch to the root or super-user on the host system's operating system

 Download the tool-chain binaries from the Nios Wiki and extract them

 Set up the Linux environment variable (which normally points to glibc) to 

target the directory where the binaries were placed

 Test to ensure that the installation was successful by checking that the 

nios2-linux-uclibc-gcc tool exists

The remainder of the IDE set up on the host system consists of extracting 

the kernel and configuring it.[Nios Wiki, 2007]:

 />make vendor_hwselect SYSPTF=<directory 

structure>/full_1c12.ptf

uClinux has been ported to many platforms; one of them being the NIOS2 

processor.  This means that we can inform the cross-compiler that our 

platform is a NIOS2 processor with any additional features that were 

added using the SOPC builder.  In the same way as the .ptf file gets built 

into a system.h in Altera's HAL, we insert the .ptf file at the start of the 
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compilation process and while building the kernel a nios2_system.h is 

generated in the </uClinux/linux-2.6.x/include> directory.  

 />make menuconfig

The menuconfig opens a menu based selection process which allows 

kernel features and applications to be added to the compile.  The loadable 

module support is the main feature that is required for implementing and 

testing drivers, however browsing this menu structure gives an indication 

of how powerful the uClinux kernel is and the various programs and 

features that can be added in.  Also of interest is the BusyBox application 

which contains many of the familiar Linux programs which have been 

modified to use very small coding footprints (see Appendix B for more 

details).  

 />make romfs

At this stage we make the files associated with the romfs which is a small 

read-only file system originally designed for Linux.  It is extremely simple 

and therefore has minimal overheads.  There are 2 ways in which the 

overhead is reduced:  Firstly it is a read-only file system which means that 

the disk cannot be “used”, it gets built with the uClinux kernel image and 

changes to must be made before building the kernel.  The second is that it 

stores the minimum number of features and notable exclusions are: no 

modification dates and no Linux style permissions [sourceforge.net, 

2007].

 />make

This refers to the global makefile which calls up many other makefiles 

located in almost every directory.  For example the char drivers directory, 

<uClinux/linux-2.6.x/drivers/char>, has a makefile which systematically 
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compiles each driver stored.   In the case of the drivers that are being 

developed we edit the makefile that is in the <uClinux-dist/linux-

2.6.x/drivers/misc> directory such that our added drivers are compiled 

into the project.

 

 />make linux image

This takes the already compiled kernel and converts it into a single image 

file.  The image file can be found in the <uClinux-dist/images> directory 

and can be copied to the 1c12 board using the Quartus2 programmer and 

the .sof file generated by Quartus2.  Note that the .sof file has a finite life 

since a free Quartus2 licence was used to generate it. 

For instructions on how to download and run the generated zImage on 

one of the boards please see Appendix C. 
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 4 Hardware Layer

This section of the report is an in-depth discussion of the hardware developed in the 

project.

 4.1 Selecting a NIOS2
One of the advantages of running a soft-core processor is that you can select between 

different processor models.  The NIOS2 comes in 3 variations namely: economy, 

standard and fast.  The details of each model are listed in table 4.1 below and figure 

3.3 shows an extract from the SOPC builder.

NIOS2/e NIOS2/s NIOS2/f
NIOS 2 RISC RISC RISC
Features 32bit 32bit 32bit

Insruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Hardware Divide Hardware Divide

Barrel Shifter
Data Cache
Dynamic Branch 
Prediction

Performance at 
85MHz

Up to 8 DMIPS Up to 42 DMIPS Up to 86 DMIPS

Logic usage 600-700 LEs 1200 – 1400 LEs 1400 – 1800 LEs 
Memory Usage 2 M4Ks 2 M4Ks + cache 3 M4Ks + cache

Table 4.1 Extract from the SOPC builder

The trade-offs between the different CPUs are clear from the table, increasing the 

speed of the CPU takes up more space on the FPGA and requires more memory.  Any 
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of the above processors would have been suitable for the task of running uClinux and 

so the default NIOS2/s was chosen.   

 4.2 Physical Hardware

 4.2.1 Cyclone 1 Evaluation Board (1c12 Board)
The 1c12 board (officially called the Cyclone 1) houses the FPGA unit on which 

the NIOS2 processor is implemented.  Details of the FPGA unit (EP1C12F324) 

are found in table 4.3 reproduced directly from [Cyclone FPGA Family 

datasheet, 2003].

The board (as shown in figure 4.1) has a prototyping area in the top right hand 

corner to which the FPGA pins: proto_g1_io[7..0], proto_g2_io[7..0], 

proto_g3_io[7..0] and proto_g4_io[7..0] are linked.  The external hardware is 

attached to this prototyping area.  The pin mapping is covered in section 4.4.1.

Some of the physical attributes of the 1c12 board are listed in table 4.2 below. 

The maximum number of logic elements used by the NIOS2 standard core is 

1400 so only a small fraction (11.6%) of the total FPGA space is used by the 

processor.  Due to the fact that no other hardware was implemented on the 

FPGA it may have been better to use the NIOS2/f core, but in the end any of the 

three cores would have been able to run the operating system with resources to 

spare so it was decided to stay with the original decision.

Table 1. Cyclone Device Features
Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20
Logic Elements 2,910 4,000 5,980 12,060 20,060
M4K RAM blocks (128x 
36 bits)

13 17 20 52 64

Total RAM bits 59,904 78,336 92,160 239,616 294,912
Phase Locked Loops 1 2 2 2 2
Maximum user I/O pins 104 301 185 249 301

Table 4.2 Cyclone device features
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Figure 4.1 The NIOS2 Cyclone 1c12 evaluation board

 4.2.2 NIOS2 2c35 Development Board
The Cyclone 2 board, referred to as the 2c35 board,  houses and gives access to 

the EP2C35F672C6N FPGA unit, similar to the 1c12 board shown above.  The 

board is shown below in figure 4.2 and, similarly to the 1c12 board, the 

prototyping area will be used to access the drivers.  The important details 

pertaining to this board are found in the [Cyclone II Edition Reference Manual, 

2007] including the FPGA pins used to access the external pin headers.  The 

pin mapping will be covered in section 4.4.2.

Altera lists the 2c35 boards features as follows:

 Nios Development Board Cyclone II Edition A Cyclone II 

EP2C35F672C5 or EP2C35F672C5N FPGA with 33,216 logic elements 

(LE) and 483,840 bits of on-chip memory

 16 MBytes of flash memory

 2 MBytes of synchronous SRAM
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 32 MBytes of double data rate (DDR) SDRAM

 On-board logic for configuring the FPGA from flash memory

 On-board Ethernet MAC/PHY device and RJ45 connector

 Two 5.0 V-tolerant expansion/prototype headers each with access to

41 FPGA user I/O pins

 CompactFlash connector for Type I CompactFlash cards

 32-bit PMC Connector capable of 33 MHz and 66 MHz operation

 Mictor connector for hardware and software debug

 RS-232 DB9 serial port

 Four push-button switches connected to FPGA user I/O pins

 Eight LEDs connected to FPGA user I/O pins

 Dual 7-segment LED display

 JTAG connectors to Altera devices via Altera download cables

 50 MHz oscillator and zero-skew clock distribution circuitry

 Power-on reset circuitry
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Figure 4.2 The 2c35 development board.

 4.3 SOPC Hardware

As discussed in the IDE section the SOPC builder allows for a selection of HDL 

components to be bundled into a single HDL entity.  Initial development was done by 

attempting to keep the hardware fully general (unmodified).  The time spent trying to 

build drivers without modifying the SOPC symbol yielded no useful results.  The 

SOPC builder was then included in the tool-chain and additional PIO ports were 

added to the basic configuration.  The following memory mapped IO table is specified 

in the SOPC builder and is available to both the Altera HAL 

(<software\“project_name”\Debug\system_description\system.h> file) and uClinux 

(<uClinux/linux-2.6.x/include/nios2_system.h>).  This table is specific to the 

development done on the 1c12 board.  The addressing table for the 2c35 can be found 

in appendix D.

#define na_dma 0x809208c0

#define na_dma_irq 0
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#define na_ext_flash 0000000000

#define na_ext_flash_size 0x00800000

#define na_ext_flash_end 0x00800000

#define na_epcs_controller 0x00900000

#define na_epcs_controller_size 0x00000800

#define na_epcs_controller_end 0x00900800

#define na_epcs_controller_irq 1

#define na_sys_clk_timer 0x80920800

#define na_sys_clk_timer_irq 2

#define na_jtag_uart 0x80920820

#define na_jtag_uart_irq 3

#define na_button_pio 0x80920830

#define na_button_pio_irq 4

#define na_led_pio 0x80920840

#define na_high_res_timer 0x80920860

#define na_high_res_timer_irq 5

#define na_uart1 0x809208a0

#define na_uart1_irq 6

#define na_sdram 0x01000000

#define na_sdram_size 0x01000000

#define na_sdram_end 0x02000000

#define na_sysid 0x80920828

#define na_sdram_pll 0x80800000

#define na_lcd_pio_cmd 0x80800020

#define na_lcd_pio_data 0x80800030

#define na_keypad_pio_row 0x80800040

#define na_keypad_pio_row_irq 7

#define na_keypad_pio_col 0x80800050

Table 4.3 An extract from the nios2_system.h when compiling the uClinux kernel for the 1c12 board

The final five entries are the components added to control the device drivers.  The 

details entered into the SOPC builder are as follows:

Bus width Pin direction Additional options
lcd_pio_cmd 4 Output none

lcd_pio_data 8 Bi-directional none

lcd_keypad_col 4 Output none

lcd_keypad_row 4 Input Rising edge trigger, generate irq

Table 4.4 Details of the added SOPC components
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 4.4 FPGA Hardware
The FPGA hardware changes are very minimal and consist of adding access pins to 

the memory mapped IO ports created by the SOPC builder.  This was easily achieved 

on the Quartus2 project for the 1c12 board but proved more problematic when adding 

the pins to the 2c35 board.

 4.4.1 Assigning the proto area on the 1c12 board
When the project for the standard 1c12 board is opened it is presented as a 

schematic diagram consisting of the system created by the SOPC builder and 

associated connections.  After making the necessary changes to the SOPC 

builder the schematic file must be updated to reflect the added PIO ports.  This 

is done by simply accessing the blocks options and selecting: “update symbol or 

block”.  All that is required from there is to place primitive Quartus2 pins and 

attach them as shown in figure 4.3 below.  It is unfortunate that when assigning 

these pins sequentially to proto_g(1/2/3/4)_io[7..0] they are not linked 

sequentially to the physical pins.  This caused some of the physical hardware 

interfacing to be fairly untidy. 

Figure 4.3 Placement of the Quartus2 primitive pins and connections to the SOPC added PIO ports
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 4.4.2 Assigning the proto area on the 2c35 Board
This proved to be significantly more difficult than using the 1c12 board.  The 

SOPC builder generates a HDL file 

<Final_project_2c35\NiosII_cycloneII_2c35_standard_sopc.vhd> 

which defines all of the functionality and interconnections between the SOPC 

components.  This file has a wrapper file 

<Final_project_2c35\NiosII_cycloneII_2c35_standard.vhd> which 

is the equivalent of the schematic provided for the 1c12 board.  The problem is 

that it cannot be automatically updated, unlike the schematic of the 1c12 board. 

“If you modify and regenerate the SOPC Builder design, the port list of the 

SOPC Builder instance may change.  You must manually edit the HDL wrapper 

file to rectify any discrepancies.” [2c35 project readme.txt, unknown date]. This 

required a very quick refresher course in VHDL port mapping.  Another 

problem with this method was that simply naming a pin “proto1_io[7..0]” did 

not assign it to the FPGA pins.  This had to be done manually using the Pin 

assignment editor and required another crash course in Quartus2 PIN 

assignments.

 4.4.3 Board logic levels
Both the 1c12 board and the 2c35 board support the following logic standards: 
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Figure 4.4 list of supported logic standards[Cyclone FPGA Family datasheet, 2003]

The default standard for the PIO pins is LVTTL 3.3V.  This means that for 

interfacing with the PG12864F LCD some conversion circuitry is required.  

 4.4.3.1 Interfacing circuitry for the PG12864F

The voltage conversion circuitry consists of 2 sets of 8 octal buffers 

packaged on  2 74HCT541 chips.  A schematic of the board is shown in 

appendix E, as well as a picture of the strip(or vero) board prototype.

 4.4.3.2 Interfacing circuitry for the 16 key keypad

No voltage conversions were necessary so the keypad circuitry consists 

only of simple pull-up resistors and connectors.  The schematics and 

images of the physical board are provided in appendix E.

 4.4.4 PG12864F Graphical LCD
“The Powertip PG12864 is a 128x64 pixel, intelligent graphic LCD based on the 

Toshiba T6963C controller chip. It has a 128 word character generator ROM 

and a 4Kb RAM for text or graphics. It can function in either textual or 
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graphical mode.” [Richard Armstrong, 2006] For the implementation of the 

drivers the textual mode will be used.

 4.4.5 16 Key Keypad
The standard 16 key keypad has a pin for each row and each column.  Reading 

the keypad is often done by polling the keypad for key presses.  Usually the 

rows are read until a change is detected.  Then the columns are cycled through 

to determine the exact key pressed.  This system is highly inefficient due to the 

fact that it occupies the processor for the duration of polling.  The idea behind 

the structure is to use the least possible number of pins to access the maximum 

number of buttons.  See sections 5.4 for the implementation details.  
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 5 Kernel Layer

Writing software for Linux (and most other protected mode operating systems) is 

divided into 2 disciplines; namely writing user space applications and writing kernel 

space (or layer) applications.  These different areas of software development are defined 

by the sections of memory from which they run.  They are strictly separated, each with 

its' own section of memory and under normal circumstances they cannot access each 

other's space.  User space applications often swap memory out to the hard drive using a 

page swapping system to increase the visible size of the memory.  This technique is very 

rarely applied to kernel memory because (amongst many other reasons) it contains the 

code necessary to manage the swapping procedure.  It would be unfortunate to have the 

code necessary to get data swapped off the hard drive residing on the hard drive 

[Wikipedia, 2007][Linux Device Drivers, 2005].

The drivers that have been written as part of the deliverables for this project are kernel 

space applications.

The on-line book: “Linux Device Drivers” [Linux Device Drivers, 2005] provides very 

useful insight into the data structures involved in writing drivers.

 5.1  Writing Linux Drivers
The concept of open source software and more specifically open source operating 

systems allows anyone with the necessary programming background to examine and 

modify the kernel.  Drivers for Linux are written such that the underlying hardware is 

completely hidden from the application layers.  Driver modules should allow users 

(usually other programmers) to transparently access hardware as if they are reading 
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and writing to a file.  When opening a file for reading and/or writing Linux assigns a 

file descriptor to the opened file.  The kernel manages a table of all open files and the 

file descriptor is an index to that table.  Processes can access the required file by 

making a system call with the appropriate file descriptor as an argument.  In Linux 

(and other Unix-like systems) drivers aim to appear no different from files and 

therefore character drivers must be written such that a file descriptor can be opened 

for the device (often referred to as a special file)[Wikipedia, 2007].

Drivers, commonly referred to in Linux as modules, can be loaded into the kernel at 

runtime.  This feature is particularly important to this section of the project and the 

set up of these features for uClinux is discussed in chapter 3.  Modules in the kernel 

can usually be classified into three categories: character module, block module or 

network module.  Character modules usually deal with streams of individual bits and 

the keypad and LCD devices fall into this group.  

 5.2 Software development 
This section discusses the strategy for developing the drivers required in the terms of 

reference.  Development consists of writing software and then adding it and re-

compiling the kernel.  The result is an image which can be downloaded to the 

targeted board.  A selection of image files have been provided in appendix E and 

these demonstrate some of the explanations below.  For information on how to 

download an image please see appendix C.

 5.2.1 Basic Linux modules
The most basic 'hello world' module is found on the [Nios Wiki, 2007] and 

must be added into the appropriate makefile and the Kconfig file must also be 

modified to include the new module.  A basic shell for the PG12864F and 

keypad modules has been created and compiled into a Linux image and is 

provided in appendix E.  Please see the [Nios Wiki, 2007] or [Linux Device 

Drivers {page 16}, 2005] for more details on compiling a basic module.
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 5.2.2 Adding modules to the kernel
The device control system for Linux has changed considerably over the various 

kernel versions.  Originally kernels contained large amounts of redundant data 

stored in a static </dev> directory structure.  Newer kernel versions allow 

devices to be assigned as they are needed to save space and a device manager 

controls the allocation process.  The first device manager was devfs but this has 

largely been replaced by the udev device manager.  The  device management 

system must ensure that drivers can be accessed as files from the /dev directory 

and due to the change from static to dynamic systems each device is assigned a 

major and a minor number.  These can be requested from the kernel or 

assigned statically within the driver [Wikipedia, ].  The file: </uClinux-

dist/linux-2.6.x/Documentation/devices.txt> contains details of which major 

and minor numbers have been used, which devices are using them and which 

are still free to be allocated.  Major and minor numbers for the PG12864F LCD 

and the 16 key keypad were chosen from the 240-254 range which is set aside 

for experimental/local use on character devices.  

The />modprobe “device name” command registers the major and minor 

numbers with the kernel and calls the device init function.  

The />rmmod “device name” command de-registers the device and calls 

the device exit function.

Once major and minor numbers have been assigned a device file is opened 

using />mknod “device” c “major number” “minor number” and 

placed in the </dev> directory.

 5.2.3 IOCTL
Most drivers cannot function with only the ability to read to and write from 

them; additional hardware control needs to be done through the driver.  A good 

example is the serial port which needs baud rate settings and a few other 
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parameters before data can be exchanged.  The IOCTL data structure is often 

used to support these requirements. It is a data structure that consists of a 

collection of function pointers and allows the various hardware operation 

modes to be supported.  An example of the IOCTL struct is shown below:

struct file_operations lcd_fops =
{
  .read = device_read,

    .write = device_write,
  .ioctl = device_ioctl,

   .open = device_open,
   .release = device_release,

};

Where each element of the struct points to one of the following functions:

device_read ()
device_write ()
device_ioctl ()
device_open ()
device_release ()

This structure is registered with the kernel during the modules initialisation 

(init function) and a pointer is added to the kernel devices table.  When the 

kernel sees a call to that device it has a pointer to the structure which in turn 

points to a specific function.  Figure 5.1 below shows an example of the 

interaction between user space applications and the underlying hardware using 

the IOCTL functionality.  The steps for producing this result are as follows:

1. Add driver module to kernel using />modprobe and />mknod.

2. The driver module init function is called by />modprobe and within 

the init function are the calls to register the IOCTL.

3. When IOCTL is registered  with the kernel a pointer to the IOCTL fops 

struct is added to the kernel's devices table.

4. User Applications can now request for the kernel to attempt to open the 

device and hand back a file descriptor.  A pointer to the device_open () 

function in the driver code exists in the fops struct and is called at this 

point.  If the open function returns successfully then the Kernel allocates 

a file descriptor and returns it to the user application.

5. The file descriptor is then used to allow user space programs to access 

the driver through normal file reads and writes.  These calls are 
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submitted to the kernel which in turn calls the fops struct for the correct 

function pointers to access the drivers read and write functions.

6. Releasing the device calls the appropriate function as before and releases 

the file descriptor.  It does not however remove the module from the 

kernel.  If desired the driver can be removed using />rmmod but this is 

not shown in figure 5.1, it would call the drivers exit function.

Figure 5.1 The interaction between user space applications and the hardware through the kernel  

and IOCTL structure

Of particular interest is the ioctl function call.  This is not to be confused with 

the overall IOCTL structure.   An ioctl function exists within the fops structure 
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and is used to control the device's settings.  The keypad requires only data to be 

exchanged so the ioctl function remains empty, however for the LCD it would 

be useful to be able to switch between graphical and non-graphical modes. 

This would be taken care of using the ioctl function's argument.

1

 5.3 PG12864F device driver
The implementation of the PG12864F device driver is fairly straight forward.  A 

module shell is created such that the init function will run when the device is added 

to the kernel (see section 5.2.1) and the init function registers the fops structure with 

the kernel.  The LCD is then accessed through the input and output pins assigned in 

the SOPC builder via memory mapped io.  The control of these pins is through the 

pointer assignments shown below.  It is important not to allow the compiler to 

optimise these addresses by caching them so the volatile reserved word is used (see 

[Wikipedia , 2007] for more information). 

//assigning pointers to the memory-mapped-io locations
volatile unsigned int * UI_LCD_C = (unsigned int *)na_lcd_cmd_pio;
volatile unsigned int * UI_LCD_D = (unsigned int *)na_data_cmd_pio;
 
//Writing to the memory and therefore to the output pins
*UI_LCD_C = 0xA; //Places hex value A on the lcd_cmd output ports
*UI_LCD_D = 0xFF; //Places hex value FF on the lcd_data output ports

The bit manipulations used to control the LCD were used by Richard Armstrong 

[Richard Armstrong, 2006] and referenced there to John P Beale.  These individual 

bit manipulations are then wrapped so that bytes can be written to the LCD.  

write_c_byte (unsigned int byte)
write_d_byte (unsigned int byte)

Higher level functions use the command and data writing functions to allow 

characters to be written to the display.

Code for the PG12864F device driver can be found in appendix E.
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 5.4 16 key keypad device driver
The keypad device driver is implemented in a similar way to the LCD driver.  The init 

and exit core of the module is used to register the fops structure however for an 

efficient driver we also need to register the interrupts.  The SOPC builder allowed 

interrupt numbers to be assigned to the input PIO ports when the .ptf file was 

generated.  The interrupt numbers therefore appear in the nios2_system.h file and 

can be registered with the kernel using the following code:

register_chrdev_region (“device structure”, 1, “device name”);
unregister_chrdev_region (“device structure”, 1, “device name”);
 
Once an interrupt is captured the keypad is polled briefly to determine the exact key 

pressed.  Applications in user space do not have access to interrupts and therefore 

keypresses are stored in a buffer until they are read from the driver.

Code for the 16 key keypad device driver can be found in appendix E.
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 6 Results

 6.1 Implementing a driver abstraction layer
The initial implementation of a hardware abstraction layer was to write drivers for 

Altera’s HAL which is already set up in the packaged Altera software.  This was not 

strictly in line with the terms of reference and when this tactic failed on the 1c12 

board it was a great excuse to push for a full operating system.  Initial driver 

implementations were unsuccessful and then editing of the original drivers that 

make up the HAL failed as well.  Since changes made to a working driver did not 

reflect in subsequent builds it was assumed that the 1c12 evaluation board does not 

support these features and a full development board was ordered.  Since there was 

a 2-week waiting period for the new hardware an attempt was made to port 

uClinux to the 1c12 board.  This was successful and uClinux was run as the driver 

abstraction layer from that point.  When the 2c35 board arrived a significant 

amount of time had been spent on getting the drivers developed and therefore it 

was decided to stick to uClinux on the 2c35 board.  Implementing this was more 

challenging, mostly due to the 2c35’s DDR RAM, but was successful and proved to 

be a better solution than using Altera’s HAL.  The figure below shows uClinux 

running on the 2c35 board just after it has been booted.
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Figure 6.1 uClinux running on the 2c35 board.  Image shows boot sequence and command prompt  

with the PG12864F driver about to be added to the kernel

 6.2 HAL driver implementation for 1c12 board
A substantial amount of time was spent attempting to implement the LCD and 

keypad drivers for the Altera HAL.  Altera documentation [NIOS2 software 

developer's handbook, 2007] claims that the HAL is capable of instantiating, 

initialising and registering drivers automatically.  This was the original tactic for 
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implementing a driver abstraction layer and developing the drivers as outlined in 

section 3.1.1.  The relevant data structures were created and placed in the required 

directory structure.  “Taking advantage of the automation provided by the HAL is 

mainly a process of placing files in the appropriate place in the HAL data 

structure” [NIOS2 software developer’s handbook, 2007].  Despite many hours of 

creating driver shells and moving them in and out of directory structures the HAL 

parser did not appear to recognise the changes.  After much experimentation it was 

decided to modify some of the existing drivers and the changes inflicted on the 

button driver did not register in any of the re-builds.  The Altera HAL was 

abandoned as a driver abstraction layer for the 1c12 board. 

 6.3 HAL driver implementation for the 2c35 board
Due to the time spent on attempting to get the uClinux experiment to run no 

attempts were made to run the Altera HAL on the 2c35 board however changes 

made to the native LCD driver did appear when it was run.  

 6.4 Porting uClinux to 1c12 board
Porting uClinux to the 1c12 board was very successful.  Both user space software 

and kernel space software can be written and executed.  An image called 

1c12_uClinux_test.zim can be found with the uClinux images in appendix E.  It can 

be uploaded to the board and the user space application linux_test and the 2 

drivers can be run. 

 6.5 Driver implementation for the 1c12 board
The implementation of the driver in the kernel space appeared to work well.  The 

drivers were written, makefiles edited, Kconfig edited and the kernel built.  The 

drivers were successfully added into the kernel using />modprobe and the inti 

and exit functions ran without error.  The devices were successfully registered 

using the major and minor numbers with the kernel.  A file in the /dev directory 
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was created and the drivers can open, read, write and close this file.  The process 

went exactly as expected and showed no signs of failure at any point however when 

testing began there was no sign of data coming through the prototyping pins.  This 

functionality was then tested by writing to the on-board LEDs instead of the proto 

pins.  When these gave no visible response the basic input output functionality was 

tested using the Nios IDE.  It was found that the input and output pins were 

functioning.  Repeated testing on the uClinux environment revealed that the LEDs 

were in fact working however none of the output ports were latching.  If a write to 

the LEDs was placed in an infinite loop they responded as expected however 

placing a delay within this loop caused them to appear to remain off or come on for 

so brief a period of time that no response could be detected.  This problem was 

very surprising and eventually led to the 1c12 board being abandoned.  Some 

correspondence with one of the members of the Nios Forum did not shed any light 

on the problem (the correspondence can be found in appendix E).  One possible 

solution would be to implement the latching on the FPGA hardware outside of the 

SOPC system.  The code created for running the driver system can be found in 

appendix E.

 6.6 Porting uClinux to 2c35 board
Porting uClinux to the 2c35 board caused a surprising number of new problems 

most of them surrounding the DDR RAM.  Firstly the CPU exception pointer had 

to be redirected to target the ddr_sram_0 component in the SOPC builder.  The 

Quartus2 builds also failed when trying to allocate DDR pins if the project was not 

cleaned before compilation.  Once these simple but frustrating problems had been 

sorted out uClinux was ported to the 2c35 board successfully.  An image called 

2c35_uClinux_test.zim with a basic test program and kernel module has been 

complied and can be found in the zImages section of appendix E.

 6.7 Driver implementation on the 2c35 board
The PG12864F and 16 key keypad drivers have been implemented and can be 

added to the kernel using />modprobe.  They function as expected calling the 
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init and exit functions when the module is created.  The fops is registered within 

the inti function and associated to the driver's major and minor numbers.  Using 

/>mknod “desired path” c “major number” “minor number” a file can be 

added to the /dev directory and from there the drivers can be opened like files.

 7 Conclusions and 

Recommendations

 7.1 Project goals
Implementation of a hardware abstraction layer was very successful.  uClinux is a 

powerful tool that has already been applied to a number of commercial applications. 

The kernel is flexible as expected and required by embedded developers.  It functions 

very much like a regular Linux operating system and is reasonably easy to get up and 

running.  Particular thanks to the Nios community and the developers at 

www.uclinux.org for supporting this software.

The expandable nature of the operating system has been shown by adding the 

required drivers to the kernel.  In addition to module support uClinux provides 

almost all of the applications that a Linux developer would expect to see on a regular 

Linux system using BusyBox and uClibc.  Of course some of the functionality has 

been scaled down but if the BusyBox version of an application is insufficient for a 

developer's needs the full application can be integrated into the kernel.  Between 

uClibc and BusyBox most of the native Linux features are supported by uClinux but 

using only a fraction of the space.
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The device driver goals were less successful.  It was hoped that a comprehensive 

PG12864F driver would be written however the limited time allowed only for a very 

basic driver.  There is still much room for improvement on the PG12864F driver in 

particular.  The keypad requires only read functionality with no additional 

parameters that can be set so the driver developed is significantly more 

comprehensive but could still be improved upon.

Based on the terms of reference most of the project goals were achieved.  Not all of 

the desired functionality was implemented and much improvement could be made 

particularly on the PG12864F device driver.

 7.2 Operating system advantages
There are many advantages gained by adding an operating system to an embedded 

project however the focus of this thesis project is on improvements in the time-to-

market and code re-use.  With the functionality provided by uClinux a full operating 

system, drivers and applications are implemented on two separate development 

boards (both running the same processor) by a single developer, with little previous 

experience in embedded Linux and over a relatively short period of time.  This 

demonstrates the some advantages gained by using uClinux however more 

complicated projects would have to be investigated to determine whether a 

significant advantage exists when used in practice. 

 

 7.3 Further development
There is still significant amount of development that could be done on the PG12864F 

device driver.  The graphical mode needs to be properly supported.  This support 

would probably be in the form of an API outside of the driver itself.  The driver would 

only provide the mechanics regarding writing to individual pixels but a user space 

API would provide some better access controls.  For example functions like:

void plot_sin_wave (int phase, int amplitiude)
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should be implemented in a user space API.

 

Further development on the PG12864F device driver would include full graphical 

support as well as passing arguments to the LCD using the IOCTL structure which 

has been registered.  These arguments would allow the text and graphical modes to 

be properly separated perhaps even with completely separate read and write 

functions.   

 

 8 Summary

A driver abstraction layer was implemented using the uClinux kernel.  A device driver for 

the PG12864F and a generic 16 key keypad have been developed and can be added to the 

kernel at runtime.  The aim was to investigate improvements in the time-to-market of an 

embedded project.
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Appendix A – uClibc

uClibc is a library developed for embedded projects.  It it much smaller than glibc which is 

the regular C library for Linux .  uClibc claims that almost all applications supported by 

glibc will run on uClibc.  It can run on standard Linux as well as MMU-less systems such as 

µClinux.   The uClibc  project started because glibc does not support MMU-less systems 

and because it is complies with many standards and runs on just about every operating 

system and architecture making it a very large library.  The size of glibc alone makes it a 

poor choice for embedded systems. 

uClibc space saving advantages:

“Some of the space savings in uClibc is obtained at the cost of performance, and some is 

due to sacrificing features. Much of it comes from aggressive re-factoring of code to 

eliminate redundancy. In regards to locale data, elimination of redundant data storage 

resulted in substantial space savings. The result is a libc that currently includes the 

features needed by nearly all applications and yet is considerably smaller than glibc. To 

compare "apples to apples", if you take uClibc and compile in locale data for about 170 

UTF-8 locales, then uClibc will take up about 570k. If you take glibc and add in locale data 

for the same 170 UTF-8 locales, you will need over 30MB!!!  The end result is a C library 

that will compile just about everything you throw at it, that looks like glibc to application 

programs when you compile, and is many times smaller.” [http://www.uclibc.org/]

uClinux strongly recommends the use of uClibc rather than glibc and for this project uClibc 

was used for all kernel space compilation.
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Appendix B – BusyBox
BusyBox was originally written by Bruce Perens in 1996 and was designed to allow a 

complete boot-able system to exist on a 1.44mb floppy disk that could be used as a rescue 

disk or to install a larger operating system, in this case Bruce Perens wanted to use 

BusyBox to install Debian.  BusyBox is a package of software tools that provide the same 

functionality as the GNU core utilities.  Items such as />ls (list directory)and />chmod 

(modify permissions of file) through to vi (a small text editor)  are included in BusyBox 

In the />make menuconfig  menu a list of the possible BusyBox utilities can be found. 

Each con be added using this menu structure and there are over 200 utilities that a Linux 

user or programmer would expect to find on a regular Linux system. It can provide most of 

the utilities specified in the Single Unix Specification plus many others that a user would 

expect to see on a Linux system. 

It consists of a single small executable or binary package that replicates most of the tools in 

GNU fileutils, shellutils, etc.  The BusyBox utilities are generally more limited than the full-

featured GNU counterparts however the functionality that is provided behaves very much 

like the GNU equivalent.  The much smaller size that BusyBox occupies makes it ideal for 

running on embedded systems.
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Appendix C – Downloading 

images to the target board
Software required for downloading the kernel is: Quartus2 and the NIOS2 IDE either the 

Linux or the Windows version.

Once a uClinux image is generated it is placed in the <uClinux/images> directory and 

called <zImage> with no file extension.  It was decided that an extension should be used 

and so zImage is re-named zImage.zim.  

Also it is important to note that when compiling the kernel a system PTF is used.  The PTF 

is defined by the SOPC builder and is therefore specific to only 1 board.  The naming 

convention has been to put the board title on the front of the file name.  Example 

2c35_module_template.zim is a zImage that can be downloaded to the 2c35 board. 

Accompanying each zImage is a readme.txt explaining the purpose and functionality of 

each zImage.

To download an image follow the following steps:

1. Open 2 NIOS2 command shells

2. In the first command shell navigate to the Quartus2 project directory (the directory 

containing the .sof file generated by Quartus2)

3. enter the command: 

/>nios2-configure-sof NiosII_cycloneII_2c35_standard_time_limited.sof

4. wait until prompted to press i for information and q for quit. 

5. Leave the first shells running (don't press quit or close it) and switch to the second 

shell.  

6. In the second shell navigate to the directory containing the zImage and enter: 

>/nios2-download -g “*.zim”

7. Once download is complete start a NIOS terminal />nios2-terminal
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Appendix D – Addressing table 

for the SOPC system to be run on 

the 2c35 board
The extract is from the nios2_system.h file found in the kernel directory structure at 

</uClinux-dist/linux-2.6.x/include/nios2_system.h>.

#define na_dma                                                0x809208c0

#define na_dma_irq 0

#define na_ext_flash                                          00000000000

#define na_ext_flash_size 0x00800000

#define na_ext_flash_end 0x00800000

#define na_epcs_controller 0x00900000

#define na_epcs_controller_size 0x00000800

#define na_epcs_controller_end 0x00900800

#define na_epcs_controller_irq 1

#define na_sys_clk_timer 0x80920800

#define na_sys_clk_timer_irq 2

#define na_jtag_uart 0x80920820

#define na_jtag_uart_irq 3

#define na_button_pio 0x80920830

#define na_button_pio_irq 4

#define na_led_pio                                            0x80920840

#define na_high_res_timer 0x80920860

#define na_high_res_timer_irq 5
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#define na_uart1                                              0x809208a0

#define na_uart1_irq 6

#define na_sdram                                              0x01000000

#define na_sdram_size 0x01000000

#define na_sdram_end 0x02000000

#define na_sysid                                              0x80920828

#define na_sdram_pll 0x80800000

#define na_lcd_pio_cmd 0x80800020

#define na_lcd_pio_data 0x80800030

#define na_keypad_pio_row 0x80800040

#define na_keypad_pio_row_irq 7

#define na_keypad_pio_col 0x80800050
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Appendix E – Files located on the 

CD
Appendix D consists of all the files located on the CD.  Below is the directory structure of 

the CD.

Documents

− Datasheets

− Design schematics

− Images of connector boards

Project Files

− Final 1c12 project

− Final 2c35 project

Code

− Drivers

− User space applications

Thesis report

− Report

− Images

zImages

− 1c12 board images

− 2c35 board images

Additional Files
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