
A uClinux driver system for the

NIOS2 processor

Prepared for Samuel Ginsberg

by Nicholas Thorne

22 October 2007

Plagiarism

I know that plagiarism is wrong. Plagiarism is using another’s work and to pretend that it

is ones own.

This thesis project is entirely my own work. Where necessary quotes and references have

been provided and their sources acknowledged. The author-date system convention for

referencing will be used for references where appropriate.

I have not allowed, and will not allow, anyone to copy my work with the intention of

passing it off as his or her own work.

Name: Nicholas James Thorne

Signature:

Date: 22 October 2007

I

Ethics

Name of Principal Researcher/Student: Nicholas James Thorne

Department: Electrical Engineering

Degree: B.sc (electrical and computer engineering)

Supervisor: Samuel Ginsberg

Research Project Title: SIG01 - Hand-held Embedded Linux Device

Overview of ethics issues:

Question 1: Is there a possibility that your research could cause

harm to a third party (i.e. a person not involved in your

project)?
NO

Question 2: Is your research making use of human subjects as

sources of data?

If your answer is YES, please complete Addendum 2.

NO

Question 3: Does your research involve the participation of or

provision of services to communities?

If your answer is YES, please complete Addendum 3.

NO

Question 4: If your research is sponsored, is there any potential

for conflicts of interest?

If your answer is YES, please complete Addendum 4.

NO

If you have answered YES to any of the above questions, please append a copy of

your research proposal, as well as any interview schedules or questionnaires

(Addendum 1) and please complete further addenda as appropriate.

II

I hereby undertake to carry out my research in such a way that:

 There is no apparent legal objection to the nature or the method of research

 The research will not compromise staff or students or the other responsibilities

of the University

 The stated objective will be achieved, and the findings will have a high degree of

validity

 Limitations and alternative interpretations will be considered

 The findings could be subject to peer review and publicly available

 I will comply with the conventions of copyright and avoid any practice that

would constitute plagiarism.

Signed by:

Full name and signature Date

Principal Researcher/Student: Nicholas James Thorne

16 October 2007

This application is approved by:

Supervisor (if applicable): Samuel Ginsberg

16 October 2007

HOD (or delegated nominee):

Final authority for all assessments

with NO to all questions and for all

undergraduate research.

16 October 2007

III

Abstract

Embedded systems are taking on more complicated tasks as the processors involved

become more powerful. As the number of transistors per area of silicon increases in a

fairly predictable fashion as forecast by Gordon E Moore in 1965 we have more resources

available for features that speed up development and time to market. The extra computer

resources being fitted into the same space allows some embedded projects to consider an

operating system while still maintaining the required speed of response. Operating

systems can greatly reduce the time to market of an embedded project and save the

developers handling chores like race conditions, multitasking and hardware access.

The partitioning decision in any project as to which portion of the project to implement in

hardware and which portion to implement in software has always been fundamental to

embedded projects. The decision is usually based on the project's performance

requirements and hardware used when software solutions are not fast enough. Software

provides better versatility and flexibility and with the increase in performance in the

computing field software can take on more and still have resources left over for improving

code structure and development features.

Altera provide soft-core processors implemented on a Field Programmable Gate Array and

the performance of these processors have become competitive with conventional

processors. Using the Altera Cyclone 1 evaluation board and Cyclone 2 development board

both running the NIOS2 soft-core processor; this thesis investigates the versatility and

performance as well as the time-to-market which this soft-core processor technology

brings to the embedded systems field.

IV

Acknowledgements

Many thanks to:

Samuel Ginsberg for supervising this project and always being around when a little bit of

help is needed.

The NIOS2 community (located at www.niosforum.com) for providing some great

resources and support when needed.

V

http://www.niosforum.com/

Acronyms and conventions

Code:

As little code as possible has been placed in the report. All of the code written

for this project can be found in appendix E. Where code has been used in

the report it is written as in the example below:

1: int main ()
2: {
3: return 0;
4: }

Paths:

Paths within a directory structure will be displayed surrounded by <> when

used. Usually these are generic paths based on the location in which

particular pieces of software are installed.

Different operating environments use different conventions: Linux paths use

a forward slash '/' when specifying paths while Windows uses a back slash '\'.

In addition Windows paths are not case sensitive whereas Linux paths are.

Where necessary it will be made clear which environment is being specified.

Linux commands:

Linux commands such as />ls for listing directory contents and />chmod

for changing file permissions will be written with a preceding /> as is

displayed as the prompt for the sash shell and in bold typeface. Note that

Linux is case sensitive and so all commands are written exactly as they are

used on the command line.

VI

Acronyms:

VII

API – Application Programming Interface
CMOS – Complementary Metal-Oxide Semiconductor
CPU – Central Processing Unit
DDR – Double Data Rate
DMIPS – Dhrystone Millions of Instructions Per Second
FPGA – Field Programmable Gate Array
HAL – Hardware Abstraction Layer
HDL – Hardware Definition Language
IDE – Integrated Development Environment
JTAG – Joint Test Action Group
LCD – Liquid Crystal Display
LVCMOS – Low Voltage CMOS
LVTTL – Low Voltage Transistor-Transistor Logic
MMU – Memory Management Unit
PDA – Personal Digital Assistant
PIO – Parallel Input Output
PLL – Phase Locked Loop
POSIX – Portable Operating System Interface
RAM – Random Access Memory
RISC – Reduced Instruction Set Computer
ROMFS – Read Only Memory File System
SOF – SRAM Object File
SOPC – System On Programmable Chip
SRAM – Static Random Access Memory
SSTL-2 – Stub Series Terminated Logic for 2.5V
SSTL-3 - Stub Series Terminated Logic for 3.3V

Table of Contents
Plagiarism..I
Ethics...II
Abstract..IV
Acknowledgements...V
Acronyms and conventions..VI

1 Introduction..1
 1.1 Terms of Reference..1

 1.1.1 Original Brief..1
 1.1.2 Final Brief and deliverables..1
 1.1.3 Objectives...2

 1.2 Scope of the project...2
 1.3 Hardware introduction...3

 2 Literature review...4
 2.1 NIOS2 background..4
 2.2 Drivers as part of Altera's HAL...5
 2.3 uClinux...6
 2.4 MicroC/OS 2 Real Time Kernel..7

 3 Embedded Integrated Development Environment...8
 3.1 Introduction..8

 3.1.1 Altera packaged software tool-chain..10
 3.1.1.1 System on Programmable Chip builder...10
 3.1.1.2 Generating SRAM Object File using Quartus2...13
 3.1.1.3 NIOS2 IDE..14

 3.1.2 uClinux tool-chain..15
 3.1.2.1 System on Programmable Chip builder...15
 3.1.2.2 Generating SRAM Object File using Quartus2...15

 4 Hardware Layer..19
 4.1 Selecting a NIOS2...19
 4.2 Physical Hardware...20

 4.2.1 Cyclone 1 Evaluation Board (1c12 Board)..20
 4.2.2 NIOS2 2c35 Development Board...21

 4.3 SOPC Hardware...23
 4.4 FPGA Hardware...25

 4.4.1 Assigning the proto area on the 1c12 board...25
 4.4.2 Assigning the proto area on the 2c35 Board...26
 4.4.3 Board logic levels...26

 4.4.3.1 Interfacing circuitry for the PG12864F...27
 4.4.3.2 Interfacing circuitry for the 16 key keypad...27

 4.4.4 PG12864F Graphical LCD...27
 4.4.5 16 Key Keypad...28

 5 Kernel Layer...29
 5.1 Writing Linux Drivers...29

VIII

 5.2 Software development ..30
 5.2.1 Basic Linux modules..30
 5.2.2 Adding modules to the kernel...31
 5.2.3 IOCTL..31

 5.3 PG12864F device driver..34
 5.4 16 key keypad device driver..35

 6 Results..36
 6.1 Implementing a driver abstraction layer..36
 6.2 HAL driver implementation for 1c12 board..37
 6.3 HAL driver implementation for the 2c35 board..38
 6.4 Porting uClinux to 1c12 board...38
 6.5 Driver implementation for the 1c12 board..38
 6.6 Porting uClinux to 2c35 board...39
 6.7 Driver implementation on the 2c35 board...39

 7 Conclusions and Recommendations...40
 7.1 Project goals...40
 7.2 Operating system advantages...41
 7.3 Further development..41

 8 Summary...42
 9 Bibliography...43
Appendices ...i

Appendix A – uClibc..ii
Appendix B – BusyBox..iii
Appendix C – Downloading images to the target board...iv
Appendix D – Addressing table for the SOPC system to be run on the 2c35 board....................v
Appendix E – Files located on the CD...vii

CD pouch..viii

IX

List of figures

Figure 1.1 The PG12864F graphical LCD and the 16 key keypad used in the

project

3

Figure 2.1 The layers for Altera's HAL 5

Figure 3.1 The layering structure and associated tool-chain for uClinux

running on NIOS2

9

Figure 3.2 An extract from the SOPC builder 10

Figure 3.3 NIOS2 components generated into a single SOPC HDL entity 11

Figure 3.4 definitions for the LED's found in the system.h file 11

Figure 3.5 Changing the CPU's exception vector to target the DDR RAM

instead of the on-chip RAM (full size image found in Appendix E)

12

Figure 3.6 The required directory structure for implementing drivers using the

HAL

13

Figure 4.1 The NIOS2 Cyclone 1c12 evaluation board 20

Figure 4.2 The 2c35 development board. 22

Figure 4.3 Placement of the Quartus2 primitive pins and connections to the

SOPC added PIO ports

24

Figure 4.4 list of supported logic standards[Cyclone FPGA Family datasheet,

2003]

26

Figure 5.1 The interaction between user space applications and the hardware

through the kernel and IOCTL structure

32

Figure 6.1 uClinux running on the 2c35 board. Image shows boot sequence

and command prompt with the PG12864F driver about to be added

to the kernel

36

X

List of tables

Table 4.1 Extract from the SOPC builder 18

Table 4.2 Cyclone device features 19

Table 4.3 An extract from the nios2_system.h when compiling the uClinux

kernel for the 1c12 board

22 - 23

Table 4.4 Details of the added SOPC components 23

XI

1 Introduction

 1.1 Terms of Reference

 1.1.1 Original Brief
“The ARM9 microprocessor is a high performance embedded processor that

finds wide application in devices such as PDAs and cellular telephones. The

ARM9 is capable of running Linux and various Linux ports exist. In this project

you will look at writing and integrating device drivers for a small ARM9 board.

Our board will have a miniature (low resolution) graphics LCD and a simple

keypad.

If you're very daring we could also try modifying the board's hardware (e.g the

memory system) and porting and running small open-source applications on

the system.”

As proposed by thesis supervisor Samuel Ginsberg.

 1.1.2 Final Brief and deliverables
The processor used in the project is the NIOS2 soft-core processor instead of

the ARM9. Both processors are 32bit RISC pipelined processors and the only

significant difference is that the NIOS2 is soft-core, making it more

customisable and suited to development.

The driver requirements remain the same; that is to write drivers for a small 16

button keypad and the PG12864F graphical LCD for a driver control system

such as an operating system or in the case of NIOS2 the HAL provided by

Altera.

1

 1.1.3 Objectives
 To implement a driver abstraction layer. In most embedded projects this is

in the form of a highly customisable operating system. Examples of

operating systems are Linux (and more specifically uClinux), Microsoft

Windows CE and MicroC/OS 2 to name just a few. Another option for the

driver abstraction layer is the HAL provided by Altera in the NIOS2 IDE.

 To develop an efficient device driver for the PG12864F graphical LCD that

runs on the chosen driver abstraction layer

 To develop an efficient device driver for a 16 key keypad that runs on the

chosen driver abstraction layer

 To show that the structure is expandable to more complicated systems

 Determine whether the driver abstraction layer will provide a faster time to

market and improved code re-use.

 To provide a report of the design and research process

 1.2 Scope of the project
The design of the drivers is limited to character devices. Both the keypad and LCD

fall into this category, along with many other simple hardware components such as

serial devices.

The implementation of the drivers will be done for the uClinux kernel only, even

though Altera's HAL is discussed in some detail. There are some useful comparisons

to be made between these two systems.

2

 1.3 Hardware introduction
The hardware used for this project was partially changed during the project. Initially

the Cyclone 1 evaluation board, referred to as the 1c12 board was used and the drivers

implemented in uClinux, due to the HAL being non-configurable on the evaluation

board (more details on the 1c12 board in the hardware chapter).

The Cyclone 2 development board, referred to as the 2c35 board, was then tested and

proved much more successful for developing HAL drivers. Unfortunately it arrived

very late in the design process and not much time could be spared for testing and

developing HAL drivers or further systems such as the real time kernel provided.

Additional hardware consists of a PG12864F LCD graphical display and a standard 16

key keypad shown below. The PG12864F LCD is a 128 x 64 pixel display that

supports text and graphics modes.

Figure 1.1 The PG12864F graphical LCD and the 16 key keypad used in the project

3

 2 Literature review

As stated in the terms of reference section, drivers are required to be written as part

of a coding structure such as an operating system. A number of options exist and this

section contains a review of some of the literature associated with the NIOS2

processor and three of the options for implementing the driver support layer as

outlined in the introduction section.

 2.1 NIOS2 background
The processor used on both boards is the 32bit NIOS2 RISC processor which is

a fully customisable, pipelined, soft-core microprocessor. It exists only as HDL

code until it is fitted onto an FPGA, at which point it is implemented on fully

general hardware. The NIOS2 core itself uses only a small portion of the total

FPGA space which allows other standard components to be added alongside, as

well as any custom hardware that is desired. This allows for the processor,

components and even instructions to be customised. The NIOS2 currently has

three processor cores to choose from: Nios2/f: fast, Nios2/e: economy and

Nios2/s: standard.

Altera lists the NIOS2 features as follows [Altera, 2007]:

• Separate instruction and data caches (512 bytes to 64 Kbytes)

• Access to up to 2 Gbytes of external address space

• Optional tightly coupled memory for instructions and data

• Six-stage pipeline to achieve maximum DMIPS/MHz

• Optional Single-cycle hardware multiply and barrel shifter (depending on

NIOS2 model)

• Optional hardware divide option (depending on NIOS2 model)

4

• Optional Dynamic branch prediction (depending on NIOS2 model)

• Up to 256 custom instructions and unlimited hardware accelerators

• JTAG debug module

• Optional JTAG debug module enhancements, including hardware

breakpoints, data triggers, and real-time trace

The idea behind NIOS2 is that the soft-core feature of the processor should be

completely transparent, therefore developing software for this processor should

be no different from developing for a silicon wafer based processor.

 2.2 Drivers as part of Altera's HAL
The discussion of implementing drivers into the HAL is discussed in the NIOS

2 software developer's handbook [Altera 2007]. The HAL provides a simple

interface for device drivers to allow programs to communicate with the

underlying hardware. The layered structure of the HAL as described in the

NIOS2 software developer's handbook is shown below in Figure 2.1:

Figure 2.1 The layers for Altera's HAL

The process for creating a device driver is outlined in the “developing device

drivers for the HAL” section of the software developer's handbook. Although

5

not the main implementation, the driver structure of the HAL will be looked at

in some detail as an alternative system to a full operating system.

 2.3 uClinux
uClinux started out as a port of Linux kernel 2 to micro-controllers, particularly

those with no memory management units (MMUs). It was created by D Jeff

Dionne and Kenneth Albanowski in 1998 using the Linux 2.0.33 kernel and

since then it has kept up to date with the Linux kernel releases and is now

considered a full operating system supporting kernel version 2.6 and a

selection of user applications and tool chains [Wikipedia 2007][uClinux.org

2007].

Some of the desirable uClinux features are as follows [Michael Opdenacker,

2007]:

 Linux: Build-in IP connectivity, reliability, portability, file systems and

free

 Lightweight: Full Linux 2.6 kernel occupies less than 300K and binaries

are smaller when built with uClibc

 Execute In Place: Executables don't have to be loaded into RAM to run.

This will cause the executables performance to decrease.

 Cheaper

 Faster: No cache flushes allow for faster context switches

 User access to hardware

 Full Linux API: uses familiar Linux system calls (with some minor

exceptions) making it easier for developer's to learn

 Kernel Pre-emption

 Full multitasking

 Supported by many processors (including NIOS2)

6

uClinux is based on the Linux-2.6.x kernel which handles critical sections,

scheduling, interrupt service routines, multitasking and disk access to mention

a few of it's tasks. It starts out as a stripped down kernel as is expected for an

embedded kernel, containing only a shell, http and ftp servers and a basic file

system. It is customisable to allow you to build in many other features. The

feature of interest to this project is the kernel support for loadable modules

[uClinux.org, 2007].

 2.4 MicroC/OS 2 Real Time Kernel
μC/OS2(as it is called by the author) is the real time kernel that comes with the

Altera 2c35 board and looks on the surface to be very similar to uClinux. It is

not based on a Linux kernel; however it's kernel implements similar

functionality. If the 2c35 board had arrived at the start of the project this

would probably have been the driver layer implemented instead of uClinux

[microC/OS2, 2002].

7

 3 Embedded Integrated

Development Environment

 3.1 Introduction

The IDE for any embedded project is fundamental to the project and is a fairly

unique area of software development. Most programming projects involve

compiling the system on the target that it is likely to run on in future, however

in the case of embedded projects a cross-compiled environment must be set up.

A cross-compile is the process of creating executable code for a platform other

than the one on which the compiler is run[Wikipedia 2007]. In the case of

developing for the NIOS2 processor there is an additional HDL layer to

consider.

Due to the layered structure of embedded systems it is common to implement a

tool-chain which effectively bridges the different coding techniques and

languages that exist on different layers. The Figure (3.1) shows the layers that

are common to most embedded projects and how they relate to this project. It

also shows the tool-chain used to bridge the layers.

8

Figure 3.1 The layering structure and associated tool-chain for uClinux running on

NIOS2

Key:

The top layer is where user applications are developed.

The middle layer (referred to as Kernel space) is where the

PG12864F LCD driver and the 16 key keypad will be

implemented. The drivers are added to the kernel and are the

inputs to this portion of the tool-chain. The full kernel is then

compiled to target a specific PTF and the output is a uClinux

image which can be downloaded to the board (see appendix C).

9

User Space

Kernel Space

Hardware

Device
Driver

Firmware

Kernel

Device
Driver

Device
Driver

User Applications

Common Layers in
Embedded Systems

User Applications
(outside of project scope)

NIOS2 development layers

uClinux Kernel for
NIOS2

Standard uClinux drivers
Driver for PG12864F

Driver for 16 key keypad

SOPC processor

HDL Hardware
implemented
on a FPGA

Tool-Chain

C/C++

FPGA via SOF

Any desired language
(outside of project scope)

uClibc

Linux Image
for specific PTF

SOPC generated
PTF

The bottom layer (referred to as hardware space/layer) has the

Linux image as its input and the SOF file is used to download

this image to the board.

The purpose of this section and Figure 3.1 is to introduce the concepts of tool-

chains and cross-compilation. Section 3.1.1 and 3.1.2 outline the specific details

of the tool-chain used for implementing the drivers.

 3.1.1 Altera packaged software tool-chain
The Altera IDE consists of a selection of software packages each of which plays

a part in the development toolchain. They are as follows:

 3.1.1.1 System on Programmable Chip builder

The SOPC builder allow us to add components to the NIOS2 processor

and then wrap the whole package into a single HDL block. The extract

from the SOPC builder below (Figure 3.2) shows the NIOS2 CPU

(highlighted), as well as some of the components that are currently

attached.

 Figure 3.2 An extract from the SOPC builder

Components are then added and connected using the Avalon Switching

Fabric [Altera, 2007]. There are many standard components written in

HDL code that can be inserted which can be easily added to the system

(examples include Ethernet cards and PCI buses). Parallel Input Output

ports (PIO ports) are required to control the peripherals and these have

been added into the SOPC builder. Figure 3.2 illustrates the standard

10

Hardware Space

components attached to a 1c12 board, as well as the PIO ports added to

control the PG12864F LCD and 16 button keypad.

Figure 3.3 NIOS2 components generated into a single SOPC HDL entity

The file generated by this process is a .ptf file which is used to update the

entity in Quartus2. In Figure 3.3 shows that there are additional ports to

lcd_data_pio, lcd_cmd_pio and keypad_pio (for a full size image see

Appendix E).

The .ptf file is used when building projects in the NIOS2 IDE to create the

system.h file. An excerpt of the system.h is shown below:

/*
 * led_pio configuration
 *
 */

#define LED_PIO_NAME "/dev/led_pio"
#define LED_PIO_TYPE "altera_avalon_pio"
#define LED_PIO_BASE 0x02120870
#define LED_PIO_SPAN 16
#define LED_PIO_DO_TEST_BENCH_WIRING 0
#define LED_PIO_DRIVEN_SIM_VALUE 0
#define LED_PIO_HAS_TRI 0
#define LED_PIO_HAS_OUT 1
#define LED_PIO_HAS_IN 0
#define LED_PIO_CAPTURE 0
#define LED_PIO_DATA_WIDTH 10
#define LED_PIO_EDGE_TYPE "NONE"
#define LED_PIO_IRQ_TYPE "NONE"
#define LED_PIO_FREQ 85000000
#define ALT_MODULE_CLASS_led_pio altera_avalon_pio

11

NIOS2

Memory

PLL

Lan91c111
Button_pio

Led_pio

Flash

lcd_data_pio
lcd_cmd_pio
keypad_pio

Figure 3.4 definitions for the LED's found in the system.h file

Both the 1c12 board and the 2C35 board run the same NIOS2 CPU and

most of the peripherals remain similar (uart, led_pio, flash, etc.) however

the one distinct difference is that the 2C35 board has DDR RAM. When

compiling the uClinux kernel we would like it to run from this space and

this requires that the CPU's exception vector points to the DDR address

space instead of the 64kb of on-chip RAM. The CPU must therefore be

edited in the SOPC builder to affect this change as shown below.

12

Figure 3.5 Changing the CPU's exception vector to target the DDR RAM instead of the on-chip

RAM (full size image found in Appendix E)

 3.1.1.2 Generating SRAM Object File using Quartus2

To program the FPGA we need to compile the Quartus2 project with the

changes made in the SOPC builder. Pin assignments are made in

Quartus2 and the SRAM Object File is generated when the project is

compiled. See Appendix E for the generated files. Up to this point the tool

chain for uClinux is exactly the same as the tool chain for the Altera

packaged software.

13

 3.1.1.3 NIOS2 IDE

Using the system generated above we can create a driver using the Altera

provided HAL. The HAL instantiates and registers drivers automatically

during system initialisation. Drivers are structured according to what the

parser expects and placed within the HAL directory structure to allow the

automated system to build them into the project [NIOS2 Software

Developers Handbook 2007].

Figure 3.6 The required directory structure for implementing drivers

using the HAL

This method of development seems to provide a very swift method of

implementing drivers and controlling underlying hardware. A significant

amount of time was spent trying to develop the necessary drivers for this

structure using the 1c12 evaluation board. After modifying some of the

drivers already present in the HAL and finding that these drivers were not

being parsed in the way outlined in the documentation it was decided that

the evaluation board did not provide features for modifying the HAL.

14

 3.1.2 uClinux tool-chain

The initial steps in the uClinux tool-chain remain the same as those of Altera's

HAL. They set up the hardware on which uClinux will run.

 3.1.2.1 System on Programmable Chip builder

Construct a system .ptf as outlined in the Altera packaged software tool-

chain section.

 3.1.2.2 Generating SRAM Object File using Quartus2

Generate SRAM Object File(.sof) using Quartus2 as outlined in the Altera

packaged software tool-chain section.

 3.1.2.3 Host-side uClinux kernel

Implementation of the uClinux kernel requires it to be compiled on the

host side and then ported to the board, as is common for many embedded

operating systems. This requires a host system running Linux and also

requires that the standard libraries are modified to target uClibc instead

of glibc which normally runs on standard Linux based systems (see

appendix A for more information on uClibc).

As with all Linux programming Makefiles are used to assist in compiling

and linking projects. Makefiles are shell scripts that call the compiler

commands. When compiling a kernel like uClinux a single makefile

would be very complicated, so there are different makefiles for various

subsections of the kernel. The makefiles form a hierarchical structure

where a global make calls lower tier makefiles and can only complete after

each of the makefiles completes its compilation.

15

As part of the tool-chain Fedora 5 was used as the host-side operating

system for compiling the uClinux kernel and modified to use the uClibc

library. The uClinux kernel was downloaded from www.uclinux.org along

with the most recent patch.

The Nios Community Forum provide a gcc cross-compiler which forms

the basis for the kernel space tool-chain (this forms a small part of the

overall project tool-chain). Installing this tool-chain on the host-side

allows the kernel and drivers to be cross-compiled, targeting the NIOS2

processor. The decision to run Fedora 5 on the host system was based on

one of the requirements for installing the gcc tool-chain which requires

version 3.4.6 or newer. The installation instructions are found on the

Nios community forum Wiki but a brief summary is as follows [Nios Wiki,

2007]:

 Switch to the root or super-user on the host system's operating system

 Download the tool-chain binaries from the Nios Wiki and extract them

 Set up the Linux environment variable (which normally points to glibc) to

target the directory where the binaries were placed

 Test to ensure that the installation was successful by checking that the

nios2-linux-uclibc-gcc tool exists

The remainder of the IDE set up on the host system consists of extracting

the kernel and configuring it.[Nios Wiki, 2007]:

 />make vendor_hwselect SYSPTF=<directory

structure>/full_1c12.ptf

uClinux has been ported to many platforms; one of them being the NIOS2

processor. This means that we can inform the cross-compiler that our

platform is a NIOS2 processor with any additional features that were

added using the SOPC builder. In the same way as the .ptf file gets built

into a system.h in Altera's HAL, we insert the .ptf file at the start of the

16

http://www.uclinux.org/

compilation process and while building the kernel a nios2_system.h is

generated in the </uClinux/linux-2.6.x/include> directory.

 />make menuconfig

The menuconfig opens a menu based selection process which allows

kernel features and applications to be added to the compile. The loadable

module support is the main feature that is required for implementing and

testing drivers, however browsing this menu structure gives an indication

of how powerful the uClinux kernel is and the various programs and

features that can be added in. Also of interest is the BusyBox application

which contains many of the familiar Linux programs which have been

modified to use very small coding footprints (see Appendix B for more

details).

 />make romfs

At this stage we make the files associated with the romfs which is a small

read-only file system originally designed for Linux. It is extremely simple

and therefore has minimal overheads. There are 2 ways in which the

overhead is reduced: Firstly it is a read-only file system which means that

the disk cannot be “used”, it gets built with the uClinux kernel image and

changes to must be made before building the kernel. The second is that it

stores the minimum number of features and notable exclusions are: no

modification dates and no Linux style permissions [sourceforge.net,

2007].

 />make

This refers to the global makefile which calls up many other makefiles

located in almost every directory. For example the char drivers directory,

<uClinux/linux-2.6.x/drivers/char>, has a makefile which systematically

17

compiles each driver stored. In the case of the drivers that are being

developed we edit the makefile that is in the <uClinux-dist/linux-

2.6.x/drivers/misc> directory such that our added drivers are compiled

into the project.

 />make linux image

This takes the already compiled kernel and converts it into a single image

file. The image file can be found in the <uClinux-dist/images> directory

and can be copied to the 1c12 board using the Quartus2 programmer and

the .sof file generated by Quartus2. Note that the .sof file has a finite life

since a free Quartus2 licence was used to generate it.

For instructions on how to download and run the generated zImage on

one of the boards please see Appendix C.

18

 4 Hardware Layer

This section of the report is an in-depth discussion of the hardware developed in the

project.

 4.1 Selecting a NIOS2
One of the advantages of running a soft-core processor is that you can select between

different processor models. The NIOS2 comes in 3 variations namely: economy,

standard and fast. The details of each model are listed in table 4.1 below and figure

3.3 shows an extract from the SOPC builder.

NIOS2/e NIOS2/s NIOS2/f
NIOS 2 RISC RISC RISC
Features 32bit 32bit 32bit

Insruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Hardware Divide Hardware Divide

Barrel Shifter
Data Cache
Dynamic Branch
Prediction

Performance at
85MHz

Up to 8 DMIPS Up to 42 DMIPS Up to 86 DMIPS

Logic usage 600-700 LEs 1200 – 1400 LEs 1400 – 1800 LEs
Memory Usage 2 M4Ks 2 M4Ks + cache 3 M4Ks + cache

Table 4.1 Extract from the SOPC builder

The trade-offs between the different CPUs are clear from the table, increasing the

speed of the CPU takes up more space on the FPGA and requires more memory. Any

19

of the above processors would have been suitable for the task of running uClinux and

so the default NIOS2/s was chosen.

 4.2 Physical Hardware

 4.2.1 Cyclone 1 Evaluation Board (1c12 Board)
The 1c12 board (officially called the Cyclone 1) houses the FPGA unit on which

the NIOS2 processor is implemented. Details of the FPGA unit (EP1C12F324)

are found in table 4.3 reproduced directly from [Cyclone FPGA Family

datasheet, 2003].

The board (as shown in figure 4.1) has a prototyping area in the top right hand

corner to which the FPGA pins: proto_g1_io[7..0], proto_g2_io[7..0],

proto_g3_io[7..0] and proto_g4_io[7..0] are linked. The external hardware is

attached to this prototyping area. The pin mapping is covered in section 4.4.1.

Some of the physical attributes of the 1c12 board are listed in table 4.2 below.

The maximum number of logic elements used by the NIOS2 standard core is

1400 so only a small fraction (11.6%) of the total FPGA space is used by the

processor. Due to the fact that no other hardware was implemented on the

FPGA it may have been better to use the NIOS2/f core, but in the end any of the

three cores would have been able to run the operating system with resources to

spare so it was decided to stay with the original decision.

Table 1. Cyclone Device Features
Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20
Logic Elements 2,910 4,000 5,980 12,060 20,060
M4K RAM blocks (128x
36 bits)

13 17 20 52 64

Total RAM bits 59,904 78,336 92,160 239,616 294,912
Phase Locked Loops 1 2 2 2 2
Maximum user I/O pins 104 301 185 249 301

Table 4.2 Cyclone device features

20

Figure 4.1 The NIOS2 Cyclone 1c12 evaluation board

 4.2.2 NIOS2 2c35 Development Board
The Cyclone 2 board, referred to as the 2c35 board, houses and gives access to

the EP2C35F672C6N FPGA unit, similar to the 1c12 board shown above. The

board is shown below in figure 4.2 and, similarly to the 1c12 board, the

prototyping area will be used to access the drivers. The important details

pertaining to this board are found in the [Cyclone II Edition Reference Manual,

2007] including the FPGA pins used to access the external pin headers. The

pin mapping will be covered in section 4.4.2.

Altera lists the 2c35 boards features as follows:

 Nios Development Board Cyclone II Edition A Cyclone II

EP2C35F672C5 or EP2C35F672C5N FPGA with 33,216 logic elements

(LE) and 483,840 bits of on-chip memory

 16 MBytes of flash memory

 2 MBytes of synchronous SRAM

21

 32 MBytes of double data rate (DDR) SDRAM

 On-board logic for configuring the FPGA from flash memory

 On-board Ethernet MAC/PHY device and RJ45 connector

 Two 5.0 V-tolerant expansion/prototype headers each with access to

41 FPGA user I/O pins

 CompactFlash connector for Type I CompactFlash cards

 32-bit PMC Connector capable of 33 MHz and 66 MHz operation

 Mictor connector for hardware and software debug

 RS-232 DB9 serial port

 Four push-button switches connected to FPGA user I/O pins

 Eight LEDs connected to FPGA user I/O pins

 Dual 7-segment LED display

 JTAG connectors to Altera devices via Altera download cables

 50 MHz oscillator and zero-skew clock distribution circuitry

 Power-on reset circuitry

22

Figure 4.2 The 2c35 development board.

 4.3 SOPC Hardware

As discussed in the IDE section the SOPC builder allows for a selection of HDL

components to be bundled into a single HDL entity. Initial development was done by

attempting to keep the hardware fully general (unmodified). The time spent trying to

build drivers without modifying the SOPC symbol yielded no useful results. The

SOPC builder was then included in the tool-chain and additional PIO ports were

added to the basic configuration. The following memory mapped IO table is specified

in the SOPC builder and is available to both the Altera HAL

(<software\“project_name”\Debug\system_description\system.h> file) and uClinux

(<uClinux/linux-2.6.x/include/nios2_system.h>). This table is specific to the

development done on the 1c12 board. The addressing table for the 2c35 can be found

in appendix D.

#define na_dma 0x809208c0

#define na_dma_irq 0

23

#define na_ext_flash 0000000000

#define na_ext_flash_size 0x00800000

#define na_ext_flash_end 0x00800000

#define na_epcs_controller 0x00900000

#define na_epcs_controller_size 0x00000800

#define na_epcs_controller_end 0x00900800

#define na_epcs_controller_irq 1

#define na_sys_clk_timer 0x80920800

#define na_sys_clk_timer_irq 2

#define na_jtag_uart 0x80920820

#define na_jtag_uart_irq 3

#define na_button_pio 0x80920830

#define na_button_pio_irq 4

#define na_led_pio 0x80920840

#define na_high_res_timer 0x80920860

#define na_high_res_timer_irq 5

#define na_uart1 0x809208a0

#define na_uart1_irq 6

#define na_sdram 0x01000000

#define na_sdram_size 0x01000000

#define na_sdram_end 0x02000000

#define na_sysid 0x80920828

#define na_sdram_pll 0x80800000

#define na_lcd_pio_cmd 0x80800020

#define na_lcd_pio_data 0x80800030

#define na_keypad_pio_row 0x80800040

#define na_keypad_pio_row_irq 7

#define na_keypad_pio_col 0x80800050

Table 4.3 An extract from the nios2_system.h when compiling the uClinux kernel for the 1c12 board

The final five entries are the components added to control the device drivers. The

details entered into the SOPC builder are as follows:

Bus width Pin direction Additional options
lcd_pio_cmd 4 Output none

lcd_pio_data 8 Bi-directional none

lcd_keypad_col 4 Output none

lcd_keypad_row 4 Input Rising edge trigger, generate irq

Table 4.4 Details of the added SOPC components

24

 4.4 FPGA Hardware
The FPGA hardware changes are very minimal and consist of adding access pins to

the memory mapped IO ports created by the SOPC builder. This was easily achieved

on the Quartus2 project for the 1c12 board but proved more problematic when adding

the pins to the 2c35 board.

 4.4.1 Assigning the proto area on the 1c12 board
When the project for the standard 1c12 board is opened it is presented as a

schematic diagram consisting of the system created by the SOPC builder and

associated connections. After making the necessary changes to the SOPC

builder the schematic file must be updated to reflect the added PIO ports. This

is done by simply accessing the blocks options and selecting: “update symbol or

block”. All that is required from there is to place primitive Quartus2 pins and

attach them as shown in figure 4.3 below. It is unfortunate that when assigning

these pins sequentially to proto_g(1/2/3/4)_io[7..0] they are not linked

sequentially to the physical pins. This caused some of the physical hardware

interfacing to be fairly untidy.

Figure 4.3 Placement of the Quartus2 primitive pins and connections to the SOPC added PIO ports

25

 4.4.2 Assigning the proto area on the 2c35 Board
This proved to be significantly more difficult than using the 1c12 board. The

SOPC builder generates a HDL file

<Final_project_2c35\NiosII_cycloneII_2c35_standard_sopc.vhd>

which defines all of the functionality and interconnections between the SOPC

components. This file has a wrapper file

<Final_project_2c35\NiosII_cycloneII_2c35_standard.vhd> which

is the equivalent of the schematic provided for the 1c12 board. The problem is

that it cannot be automatically updated, unlike the schematic of the 1c12 board.

“If you modify and regenerate the SOPC Builder design, the port list of the

SOPC Builder instance may change. You must manually edit the HDL wrapper

file to rectify any discrepancies.” [2c35 project readme.txt, unknown date]. This

required a very quick refresher course in VHDL port mapping. Another

problem with this method was that simply naming a pin “proto1_io[7..0]” did

not assign it to the FPGA pins. This had to be done manually using the Pin

assignment editor and required another crash course in Quartus2 PIN

assignments.

 4.4.3 Board logic levels
Both the 1c12 board and the 2c35 board support the following logic standards:

26

Figure 4.4 list of supported logic standards[Cyclone FPGA Family datasheet, 2003]

The default standard for the PIO pins is LVTTL 3.3V. This means that for

interfacing with the PG12864F LCD some conversion circuitry is required.

 4.4.3.1 Interfacing circuitry for the PG12864F

The voltage conversion circuitry consists of 2 sets of 8 octal buffers

packaged on 2 74HCT541 chips. A schematic of the board is shown in

appendix E, as well as a picture of the strip(or vero) board prototype.

 4.4.3.2 Interfacing circuitry for the 16 key keypad

No voltage conversions were necessary so the keypad circuitry consists

only of simple pull-up resistors and connectors. The schematics and

images of the physical board are provided in appendix E.

 4.4.4 PG12864F Graphical LCD
“The Powertip PG12864 is a 128x64 pixel, intelligent graphic LCD based on the

Toshiba T6963C controller chip. It has a 128 word character generator ROM

and a 4Kb RAM for text or graphics. It can function in either textual or

27

graphical mode.” [Richard Armstrong, 2006] For the implementation of the

drivers the textual mode will be used.

 4.4.5 16 Key Keypad
The standard 16 key keypad has a pin for each row and each column. Reading

the keypad is often done by polling the keypad for key presses. Usually the

rows are read until a change is detected. Then the columns are cycled through

to determine the exact key pressed. This system is highly inefficient due to the

fact that it occupies the processor for the duration of polling. The idea behind

the structure is to use the least possible number of pins to access the maximum

number of buttons. See sections 5.4 for the implementation details.

28

 5 Kernel Layer

Writing software for Linux (and most other protected mode operating systems) is

divided into 2 disciplines; namely writing user space applications and writing kernel

space (or layer) applications. These different areas of software development are defined

by the sections of memory from which they run. They are strictly separated, each with

its' own section of memory and under normal circumstances they cannot access each

other's space. User space applications often swap memory out to the hard drive using a

page swapping system to increase the visible size of the memory. This technique is very

rarely applied to kernel memory because (amongst many other reasons) it contains the

code necessary to manage the swapping procedure. It would be unfortunate to have the

code necessary to get data swapped off the hard drive residing on the hard drive

[Wikipedia, 2007][Linux Device Drivers, 2005].

The drivers that have been written as part of the deliverables for this project are kernel

space applications.

The on-line book: “Linux Device Drivers” [Linux Device Drivers, 2005] provides very

useful insight into the data structures involved in writing drivers.

 5.1 Writing Linux Drivers
The concept of open source software and more specifically open source operating

systems allows anyone with the necessary programming background to examine and

modify the kernel. Drivers for Linux are written such that the underlying hardware is

completely hidden from the application layers. Driver modules should allow users

(usually other programmers) to transparently access hardware as if they are reading

29

and writing to a file. When opening a file for reading and/or writing Linux assigns a

file descriptor to the opened file. The kernel manages a table of all open files and the

file descriptor is an index to that table. Processes can access the required file by

making a system call with the appropriate file descriptor as an argument. In Linux

(and other Unix-like systems) drivers aim to appear no different from files and

therefore character drivers must be written such that a file descriptor can be opened

for the device (often referred to as a special file)[Wikipedia, 2007].

Drivers, commonly referred to in Linux as modules, can be loaded into the kernel at

runtime. This feature is particularly important to this section of the project and the

set up of these features for uClinux is discussed in chapter 3. Modules in the kernel

can usually be classified into three categories: character module, block module or

network module. Character modules usually deal with streams of individual bits and

the keypad and LCD devices fall into this group.

 5.2 Software development
This section discusses the strategy for developing the drivers required in the terms of

reference. Development consists of writing software and then adding it and re-

compiling the kernel. The result is an image which can be downloaded to the

targeted board. A selection of image files have been provided in appendix E and

these demonstrate some of the explanations below. For information on how to

download an image please see appendix C.

 5.2.1 Basic Linux modules
The most basic 'hello world' module is found on the [Nios Wiki, 2007] and

must be added into the appropriate makefile and the Kconfig file must also be

modified to include the new module. A basic shell for the PG12864F and

keypad modules has been created and compiled into a Linux image and is

provided in appendix E. Please see the [Nios Wiki, 2007] or [Linux Device

Drivers {page 16}, 2005] for more details on compiling a basic module.

30

 5.2.2 Adding modules to the kernel
The device control system for Linux has changed considerably over the various

kernel versions. Originally kernels contained large amounts of redundant data

stored in a static </dev> directory structure. Newer kernel versions allow

devices to be assigned as they are needed to save space and a device manager

controls the allocation process. The first device manager was devfs but this has

largely been replaced by the udev device manager. The device management

system must ensure that drivers can be accessed as files from the /dev directory

and due to the change from static to dynamic systems each device is assigned a

major and a minor number. These can be requested from the kernel or

assigned statically within the driver [Wikipedia,]. The file: </uClinux-

dist/linux-2.6.x/Documentation/devices.txt> contains details of which major

and minor numbers have been used, which devices are using them and which

are still free to be allocated. Major and minor numbers for the PG12864F LCD

and the 16 key keypad were chosen from the 240-254 range which is set aside

for experimental/local use on character devices.

The />modprobe “device name” command registers the major and minor

numbers with the kernel and calls the device init function.

The />rmmod “device name” command de-registers the device and calls

the device exit function.

Once major and minor numbers have been assigned a device file is opened

using />mknod “device” c “major number” “minor number” and

placed in the </dev> directory.

 5.2.3 IOCTL
Most drivers cannot function with only the ability to read to and write from

them; additional hardware control needs to be done through the driver. A good

example is the serial port which needs baud rate settings and a few other

31

parameters before data can be exchanged. The IOCTL data structure is often

used to support these requirements. It is a data structure that consists of a

collection of function pointers and allows the various hardware operation

modes to be supported. An example of the IOCTL struct is shown below:

struct file_operations lcd_fops =
{
 .read = device_read,

 .write = device_write,
 .ioctl = device_ioctl,

 .open = device_open,
 .release = device_release,

};

Where each element of the struct points to one of the following functions:

device_read ()
device_write ()
device_ioctl ()
device_open ()
device_release ()

This structure is registered with the kernel during the modules initialisation

(init function) and a pointer is added to the kernel devices table. When the

kernel sees a call to that device it has a pointer to the structure which in turn

points to a specific function. Figure 5.1 below shows an example of the

interaction between user space applications and the underlying hardware using

the IOCTL functionality. The steps for producing this result are as follows:

1. Add driver module to kernel using />modprobe and />mknod.

2. The driver module init function is called by />modprobe and within

the init function are the calls to register the IOCTL.

3. When IOCTL is registered with the kernel a pointer to the IOCTL fops

struct is added to the kernel's devices table.

4. User Applications can now request for the kernel to attempt to open the

device and hand back a file descriptor. A pointer to the device_open ()

function in the driver code exists in the fops struct and is called at this

point. If the open function returns successfully then the Kernel allocates

a file descriptor and returns it to the user application.

5. The file descriptor is then used to allow user space programs to access

the driver through normal file reads and writes. These calls are

32

submitted to the kernel which in turn calls the fops struct for the correct

function pointers to access the drivers read and write functions.

6. Releasing the device calls the appropriate function as before and releases

the file descriptor. It does not however remove the module from the

kernel. If desired the driver can be removed using />rmmod but this is

not shown in figure 5.1, it would call the drivers exit function.

Figure 5.1 The interaction between user space applications and the hardware through the kernel

and IOCTL structure

Of particular interest is the ioctl function call. This is not to be confused with

the overall IOCTL structure. An ioctl function exists within the fops structure

33

and is used to control the device's settings. The keypad requires only data to be

exchanged so the ioctl function remains empty, however for the LCD it would

be useful to be able to switch between graphical and non-graphical modes.

This would be taken care of using the ioctl function's argument.

1

 5.3 PG12864F device driver
The implementation of the PG12864F device driver is fairly straight forward. A

module shell is created such that the init function will run when the device is added

to the kernel (see section 5.2.1) and the init function registers the fops structure with

the kernel. The LCD is then accessed through the input and output pins assigned in

the SOPC builder via memory mapped io. The control of these pins is through the

pointer assignments shown below. It is important not to allow the compiler to

optimise these addresses by caching them so the volatile reserved word is used (see

[Wikipedia , 2007] for more information).

//assigning pointers to the memory-mapped-io locations
volatile unsigned int * UI_LCD_C = (unsigned int *)na_lcd_cmd_pio;
volatile unsigned int * UI_LCD_D = (unsigned int *)na_data_cmd_pio;

//Writing to the memory and therefore to the output pins
*UI_LCD_C = 0xA; //Places hex value A on the lcd_cmd output ports
*UI_LCD_D = 0xFF; //Places hex value FF on the lcd_data output ports

The bit manipulations used to control the LCD were used by Richard Armstrong

[Richard Armstrong, 2006] and referenced there to John P Beale. These individual

bit manipulations are then wrapped so that bytes can be written to the LCD.

write_c_byte (unsigned int byte)
write_d_byte (unsigned int byte)

Higher level functions use the command and data writing functions to allow

characters to be written to the display.

Code for the PG12864F device driver can be found in appendix E.

34

 5.4 16 key keypad device driver
The keypad device driver is implemented in a similar way to the LCD driver. The init

and exit core of the module is used to register the fops structure however for an

efficient driver we also need to register the interrupts. The SOPC builder allowed

interrupt numbers to be assigned to the input PIO ports when the .ptf file was

generated. The interrupt numbers therefore appear in the nios2_system.h file and

can be registered with the kernel using the following code:

register_chrdev_region (“device structure”, 1, “device name”);
unregister_chrdev_region (“device structure”, 1, “device name”);

Once an interrupt is captured the keypad is polled briefly to determine the exact key

pressed. Applications in user space do not have access to interrupts and therefore

keypresses are stored in a buffer until they are read from the driver.

Code for the 16 key keypad device driver can be found in appendix E.

35

 6 Results

 6.1 Implementing a driver abstraction layer
The initial implementation of a hardware abstraction layer was to write drivers for

Altera’s HAL which is already set up in the packaged Altera software. This was not

strictly in line with the terms of reference and when this tactic failed on the 1c12

board it was a great excuse to push for a full operating system. Initial driver

implementations were unsuccessful and then editing of the original drivers that

make up the HAL failed as well. Since changes made to a working driver did not

reflect in subsequent builds it was assumed that the 1c12 evaluation board does not

support these features and a full development board was ordered. Since there was

a 2-week waiting period for the new hardware an attempt was made to port

uClinux to the 1c12 board. This was successful and uClinux was run as the driver

abstraction layer from that point. When the 2c35 board arrived a significant

amount of time had been spent on getting the drivers developed and therefore it

was decided to stick to uClinux on the 2c35 board. Implementing this was more

challenging, mostly due to the 2c35’s DDR RAM, but was successful and proved to

be a better solution than using Altera’s HAL. The figure below shows uClinux

running on the 2c35 board just after it has been booted.

36

Figure 6.1 uClinux running on the 2c35 board. Image shows boot sequence and command prompt

with the PG12864F driver about to be added to the kernel

 6.2 HAL driver implementation for 1c12 board
A substantial amount of time was spent attempting to implement the LCD and

keypad drivers for the Altera HAL. Altera documentation [NIOS2 software

developer's handbook, 2007] claims that the HAL is capable of instantiating,

initialising and registering drivers automatically. This was the original tactic for

37

implementing a driver abstraction layer and developing the drivers as outlined in

section 3.1.1. The relevant data structures were created and placed in the required

directory structure. “Taking advantage of the automation provided by the HAL is

mainly a process of placing files in the appropriate place in the HAL data

structure” [NIOS2 software developer’s handbook, 2007]. Despite many hours of

creating driver shells and moving them in and out of directory structures the HAL

parser did not appear to recognise the changes. After much experimentation it was

decided to modify some of the existing drivers and the changes inflicted on the

button driver did not register in any of the re-builds. The Altera HAL was

abandoned as a driver abstraction layer for the 1c12 board.

 6.3 HAL driver implementation for the 2c35 board
Due to the time spent on attempting to get the uClinux experiment to run no

attempts were made to run the Altera HAL on the 2c35 board however changes

made to the native LCD driver did appear when it was run.

 6.4 Porting uClinux to 1c12 board
Porting uClinux to the 1c12 board was very successful. Both user space software

and kernel space software can be written and executed. An image called

1c12_uClinux_test.zim can be found with the uClinux images in appendix E. It can

be uploaded to the board and the user space application linux_test and the 2

drivers can be run.

 6.5 Driver implementation for the 1c12 board
The implementation of the driver in the kernel space appeared to work well. The

drivers were written, makefiles edited, Kconfig edited and the kernel built. The

drivers were successfully added into the kernel using />modprobe and the inti

and exit functions ran without error. The devices were successfully registered

using the major and minor numbers with the kernel. A file in the /dev directory

38

was created and the drivers can open, read, write and close this file. The process

went exactly as expected and showed no signs of failure at any point however when

testing began there was no sign of data coming through the prototyping pins. This

functionality was then tested by writing to the on-board LEDs instead of the proto

pins. When these gave no visible response the basic input output functionality was

tested using the Nios IDE. It was found that the input and output pins were

functioning. Repeated testing on the uClinux environment revealed that the LEDs

were in fact working however none of the output ports were latching. If a write to

the LEDs was placed in an infinite loop they responded as expected however

placing a delay within this loop caused them to appear to remain off or come on for

so brief a period of time that no response could be detected. This problem was

very surprising and eventually led to the 1c12 board being abandoned. Some

correspondence with one of the members of the Nios Forum did not shed any light

on the problem (the correspondence can be found in appendix E). One possible

solution would be to implement the latching on the FPGA hardware outside of the

SOPC system. The code created for running the driver system can be found in

appendix E.

 6.6 Porting uClinux to 2c35 board
Porting uClinux to the 2c35 board caused a surprising number of new problems

most of them surrounding the DDR RAM. Firstly the CPU exception pointer had

to be redirected to target the ddr_sram_0 component in the SOPC builder. The

Quartus2 builds also failed when trying to allocate DDR pins if the project was not

cleaned before compilation. Once these simple but frustrating problems had been

sorted out uClinux was ported to the 2c35 board successfully. An image called

2c35_uClinux_test.zim with a basic test program and kernel module has been

complied and can be found in the zImages section of appendix E.

 6.7 Driver implementation on the 2c35 board
The PG12864F and 16 key keypad drivers have been implemented and can be

added to the kernel using />modprobe. They function as expected calling the

39

init and exit functions when the module is created. The fops is registered within

the inti function and associated to the driver's major and minor numbers. Using

/>mknod “desired path” c “major number” “minor number” a file can be

added to the /dev directory and from there the drivers can be opened like files.

 7 Conclusions and

Recommendations

 7.1 Project goals
Implementation of a hardware abstraction layer was very successful. uClinux is a

powerful tool that has already been applied to a number of commercial applications.

The kernel is flexible as expected and required by embedded developers. It functions

very much like a regular Linux operating system and is reasonably easy to get up and

running. Particular thanks to the Nios community and the developers at

www.uclinux.org for supporting this software.

The expandable nature of the operating system has been shown by adding the

required drivers to the kernel. In addition to module support uClinux provides

almost all of the applications that a Linux developer would expect to see on a regular

Linux system using BusyBox and uClibc. Of course some of the functionality has

been scaled down but if the BusyBox version of an application is insufficient for a

developer's needs the full application can be integrated into the kernel. Between

uClibc and BusyBox most of the native Linux features are supported by uClinux but

using only a fraction of the space.

40

http://www.uclinux.org/

The device driver goals were less successful. It was hoped that a comprehensive

PG12864F driver would be written however the limited time allowed only for a very

basic driver. There is still much room for improvement on the PG12864F driver in

particular. The keypad requires only read functionality with no additional

parameters that can be set so the driver developed is significantly more

comprehensive but could still be improved upon.

Based on the terms of reference most of the project goals were achieved. Not all of

the desired functionality was implemented and much improvement could be made

particularly on the PG12864F device driver.

 7.2 Operating system advantages
There are many advantages gained by adding an operating system to an embedded

project however the focus of this thesis project is on improvements in the time-to-

market and code re-use. With the functionality provided by uClinux a full operating

system, drivers and applications are implemented on two separate development

boards (both running the same processor) by a single developer, with little previous

experience in embedded Linux and over a relatively short period of time. This

demonstrates the some advantages gained by using uClinux however more

complicated projects would have to be investigated to determine whether a

significant advantage exists when used in practice.

 7.3 Further development
There is still significant amount of development that could be done on the PG12864F

device driver. The graphical mode needs to be properly supported. This support

would probably be in the form of an API outside of the driver itself. The driver would

only provide the mechanics regarding writing to individual pixels but a user space

API would provide some better access controls. For example functions like:

void plot_sin_wave (int phase, int amplitiude)

41

should be implemented in a user space API.

Further development on the PG12864F device driver would include full graphical

support as well as passing arguments to the LCD using the IOCTL structure which

has been registered. These arguments would allow the text and graphical modes to

be properly separated perhaps even with completely separate read and write

functions.

 8 Summary

A driver abstraction layer was implemented using the uClinux kernel. A device driver for

the PG12864F and a generic 16 key keypad have been developed and can be added to the

kernel at runtime. The aim was to investigate improvements in the time-to-market of an

embedded project.

42

 9 Bibliography

Note that underscores are not easily visible in hyper-linked web-addresses.

ALTERA [Altera 2007 (A)]: All documentation from Altera can be found on their website

however the relevant material has been placed in appendix E.

 NIOS2 software developer's handbook. [Online]. Available: Appendix E

 NIOS Cyclone 1 datasheet. [Online]. Available: Appendix E

 NIOS Development Board Cyclone II Edition Reference Manual. [Online]. Avalible:

Appendix E

 Cyclone FPGA Family datasheet, 2003

 SOPC Builder's System Interconnect Fabric. [Online]. Available:

http://www.altera.com/products/software/products/sopc/avalon/nio-

avalon_bus.html

Wikipedia, [Online]. Available:
 http://en.wikipedia.org/wiki/cross_compiler [October 2007]
 http://en.wikipedia.org/wiki/BusyBox [October 2007]
 http://en.wikipedia.org/wiki/Executable_and_Linkable_Format [October 2007]
 http://en.wikipedia.org/wiki/File_descriptor [October 2007]
 http://en.wikipedia.org/wiki/Input/Output_standards [June 2007]
 http://en.wikipedia.org/wiki/Inter-process_communication [October 2007]
 http://en.wikipedia.org/wiki/Kernel_(computer_science) [October 2007]
 http://en.wikipedia.org/wiki/POSIX [October 2007]
 http://en.wikipedia.org/wiki/User_space [September 2007]
 http://en.wikipedia.org/wiki/Volatile_variable [August 2007]

Armstrong, R.,(2006). A CORDIC Based Scientific Calculator Built on the Nios II,
University of Cape Town

43

http://en.wikipedia.org/wiki/Volatile_variable
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/Input/Output_standards
http://en.wikipedia.org/wiki/Kernel_(computer_science
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Input/Output_standards
http://en.wikipedia.org/wiki/File_descriptor
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/BusyBox
http://en.wikipedia.org/wiki/cross_compiler
http://www.altera.com/products/software/products/sopc/avalon/nio-avalon_bus.html
http://www.altera.com/products/software/products/sopc/avalon/nio-avalon_bus.html

Corbet, J., Kroah-Hartman, G,. Rubini, A. (2005). Linux Device Drivers. O'Reilly Media:
United States of America

Die.Net, sash (8) – Linux man page. [Online]. Available: http://linux.die.net/man/8/sash

[1999, Oct. 2]

Jotspot wiki, Binary Toolchain. [Online]. Available:

http://nioswiki.jot.com/WikiHome/OperatingSystems/%C2%B5Clinux/BinaryToolchain

[2007, Mar. 03]

Jotspot wiki, Module Programming. [Online]. Available:

http://nioswiki.jot.com/WikiHome/OperatingSystems/ModuleProgramming

[2007, Mar. 03]

Jotspot wiki, BusyBox. [Online]. Available:

http://nioswiki.jot.com/WikiHome/OperatingSystems/BusyBox

[2007, Mar. 03]

Jotspot wiki, Compile Hello. [Online]. Available:

http://nioswiki.jot.com/WikiHome/OperatingSystems/CompileHello

[2007, Mar. 03]

Jotspot wiki, uClinux Distribution. [Online]. Available:

http://nioswiki.jot.com/WikiHome/OperatingSystems/UClinuxDist

[2007, Mar. 03]

LinuxDevices.com, uClinux: World's most popular embedded Linux distro?. [Online]

Available: http://www.linuxdevices.com/articles/AT3267251481.html [2002, Sept. 24]

44

http://www.linuxdevices.com/articles/AT3267251481.html
http://nioswiki.jot.com/WikiHome/OperatingSystems/UClinuxDist
http://nioswiki.jot.com/WikiHome/OperatingSystems/ModuleProgramming
http://nioswiki.jot.com/WikiHome/OperatingSystems/ModuleProgramming
http://nioswiki.jot.com/WikiHome/OperatingSystems/ModuleProgramming
http://nioswiki.jot.com/WikiHome/OperatingSystems/?Clinux/BinaryToolchain
http://linux.die.net/man/8/sash

Opdenacker, M., Introduction to uClinux. [Online]. Available: http://free-electrons.com

[2006, Aug. 21]

Romfs.sourceforge.net, What is romfs?. [Online]. Available: http://romfs.sourceforge.net

[2007, Jun. 26]

GNU C library, [Online]. Avalible: http://www.gnu.org/software/libc/#Overview

uClibc C library, [Online]. Avalible: http://www.uclibc.org/

uClinux Embedded Linux/Microcontroller Project, [Online]. Available:

http://www.uclinux.org/

Quartus2 2c35 project readme.txt file, Available: within the 2c35 project directory

45

http://www.uclinux.org/
http://www.uclibc.org/
http://www.gnu.org/software/libc/#Overview
http://romfs.sourceforge.net/
http://free-electrons.com/

Appendices

Contents:

Appendix A – uClibc

Appendix B – BusyBox

Appendix C – Downloading images to the target board

Appendix D – Addressing table for the SOPC system to be run on
the 2c35 board

Appendix E – Files located on the CD

i

Appendix A – uClibc

uClibc is a library developed for embedded projects. It it much smaller than glibc which is

the regular C library for Linux . uClibc claims that almost all applications supported by

glibc will run on uClibc. It can run on standard Linux as well as MMU-less systems such as

µClinux. The uClibc project started because glibc does not support MMU-less systems

and because it is complies with many standards and runs on just about every operating

system and architecture making it a very large library. The size of glibc alone makes it a

poor choice for embedded systems.

uClibc space saving advantages:

“Some of the space savings in uClibc is obtained at the cost of performance, and some is

due to sacrificing features. Much of it comes from aggressive re-factoring of code to

eliminate redundancy. In regards to locale data, elimination of redundant data storage

resulted in substantial space savings. The result is a libc that currently includes the

features needed by nearly all applications and yet is considerably smaller than glibc. To

compare "apples to apples", if you take uClibc and compile in locale data for about 170

UTF-8 locales, then uClibc will take up about 570k. If you take glibc and add in locale data

for the same 170 UTF-8 locales, you will need over 30MB!!! The end result is a C library

that will compile just about everything you throw at it, that looks like glibc to application

programs when you compile, and is many times smaller.” [http://www.uclibc.org/]

uClinux strongly recommends the use of uClibc rather than glibc and for this project uClibc

was used for all kernel space compilation.

ii

Appendix B – BusyBox
BusyBox was originally written by Bruce Perens in 1996 and was designed to allow a

complete boot-able system to exist on a 1.44mb floppy disk that could be used as a rescue

disk or to install a larger operating system, in this case Bruce Perens wanted to use

BusyBox to install Debian. BusyBox is a package of software tools that provide the same

functionality as the GNU core utilities. Items such as />ls (list directory)and />chmod

(modify permissions of file) through to vi (a small text editor) are included in BusyBox

In the />make menuconfig menu a list of the possible BusyBox utilities can be found.

Each con be added using this menu structure and there are over 200 utilities that a Linux

user or programmer would expect to find on a regular Linux system. It can provide most of

the utilities specified in the Single Unix Specification plus many others that a user would

expect to see on a Linux system.

It consists of a single small executable or binary package that replicates most of the tools in

GNU fileutils, shellutils, etc. The BusyBox utilities are generally more limited than the full-

featured GNU counterparts however the functionality that is provided behaves very much

like the GNU equivalent. The much smaller size that BusyBox occupies makes it ideal for

running on embedded systems.

iii

http://en.wikipedia.org/wiki/Single_Unix_Specification
http://en.wikipedia.org/wiki/Bruce_Perens

Appendix C – Downloading

images to the target board
Software required for downloading the kernel is: Quartus2 and the NIOS2 IDE either the

Linux or the Windows version.

Once a uClinux image is generated it is placed in the <uClinux/images> directory and

called <zImage> with no file extension. It was decided that an extension should be used

and so zImage is re-named zImage.zim.

Also it is important to note that when compiling the kernel a system PTF is used. The PTF

is defined by the SOPC builder and is therefore specific to only 1 board. The naming

convention has been to put the board title on the front of the file name. Example

2c35_module_template.zim is a zImage that can be downloaded to the 2c35 board.

Accompanying each zImage is a readme.txt explaining the purpose and functionality of

each zImage.

To download an image follow the following steps:

1. Open 2 NIOS2 command shells

2. In the first command shell navigate to the Quartus2 project directory (the directory

containing the .sof file generated by Quartus2)

3. enter the command:

/>nios2-configure-sof NiosII_cycloneII_2c35_standard_time_limited.sof

4. wait until prompted to press i for information and q for quit.

5. Leave the first shells running (don't press quit or close it) and switch to the second

shell.

6. In the second shell navigate to the directory containing the zImage and enter:

>/nios2-download -g “*.zim”

7. Once download is complete start a NIOS terminal />nios2-terminal

iv

Appendix D – Addressing table

for the SOPC system to be run on

the 2c35 board
The extract is from the nios2_system.h file found in the kernel directory structure at

</uClinux-dist/linux-2.6.x/include/nios2_system.h>.

#define na_dma 0x809208c0

#define na_dma_irq 0

#define na_ext_flash 00000000000

#define na_ext_flash_size 0x00800000

#define na_ext_flash_end 0x00800000

#define na_epcs_controller 0x00900000

#define na_epcs_controller_size 0x00000800

#define na_epcs_controller_end 0x00900800

#define na_epcs_controller_irq 1

#define na_sys_clk_timer 0x80920800

#define na_sys_clk_timer_irq 2

#define na_jtag_uart 0x80920820

#define na_jtag_uart_irq 3

#define na_button_pio 0x80920830

#define na_button_pio_irq 4

#define na_led_pio 0x80920840

#define na_high_res_timer 0x80920860

#define na_high_res_timer_irq 5

v

#define na_uart1 0x809208a0

#define na_uart1_irq 6

#define na_sdram 0x01000000

#define na_sdram_size 0x01000000

#define na_sdram_end 0x02000000

#define na_sysid 0x80920828

#define na_sdram_pll 0x80800000

#define na_lcd_pio_cmd 0x80800020

#define na_lcd_pio_data 0x80800030

#define na_keypad_pio_row 0x80800040

#define na_keypad_pio_row_irq 7

#define na_keypad_pio_col 0x80800050

vi

Appendix E – Files located on the

CD
Appendix D consists of all the files located on the CD. Below is the directory structure of

the CD.

Documents

− Datasheets

− Design schematics

− Images of connector boards

Project Files

− Final 1c12 project

− Final 2c35 project

Code

− Drivers

− User space applications

Thesis report

− Report

− Images

zImages

− 1c12 board images

− 2c35 board images

Additional Files

vii

viii

	1 Introduction
	 1.1 Terms of Reference
	 1.1.1 Original Brief
	 1.1.2 Final Brief and deliverables
	 1.1.3 Objectives

	 1.2 Scope of the project
	 1.3 Hardware introduction

	 2 	Literature review
	 2.1 NIOS2 background
	 2.2 Drivers as part of Altera's HAL
	 2.3 uClinux
	 2.4 MicroC/OS 2 Real Time Kernel

	 3 Embedded Integrated 		Development Environment
	 3.1 Introduction
	 3.1.1 Altera packaged software tool-chain
	 3.1.1.1 System on Programmable Chip builder
	 3.1.1.2 Generating SRAM Object File using Quartus2
	 3.1.1.3 NIOS2 IDE

	 3.1.2 uClinux tool-chain
	 3.1.2.1 System on Programmable Chip builder
	 3.1.2.2 Generating SRAM Object File using Quartus2

	 4 Hardware Layer
	 4.1 Selecting a NIOS2
	 4.2 Physical Hardware
	 4.2.1 Cyclone 1 Evaluation Board (1c12 Board)
	 4.2.2 NIOS2 2c35 Development Board

	 4.3 SOPC Hardware
	 4.4 FPGA Hardware
	 4.4.1 Assigning the proto area on the 1c12 board
	 4.4.2 Assigning the proto area on the 2c35 Board
	 4.4.3 Board logic levels
	 4.4.3.1 Interfacing circuitry for the PG12864F
	 4.4.3.2 Interfacing circuitry for the 16 key keypad

	 4.4.4 PG12864F Graphical LCD
	 4.4.5 16 Key Keypad

	 5 Kernel Layer
	 5.1 Writing Linux Drivers
	 5.2 Software development
	 5.2.1 Basic Linux modules
	 5.2.2 Adding modules to the kernel
	 5.2.3 IOCTL

	 5.3 PG12864F device driver
	 5.4 16 key keypad device driver

	 6 Results
	 6.1 Implementing a driver abstraction layer
	 6.2 HAL driver implementation for 1c12 board
	 6.3 HAL driver implementation for the 2c35 board
	 6.4 Porting uClinux to 1c12 board
	 6.5 Driver implementation for the 1c12 board
	 6.6 Porting uClinux to 2c35 board
	 6.7 Driver implementation on the 2c35 board

	 7 Conclusions and Recommendations
	 7.1 Project goals
	 7.2 Operating system advantages
	 7.3 Further development

	 8 Summary
	 9 Bibliography
	Appendices
	Appendix A – uClibc
	Appendix B – BusyBox
	Appendix C – Downloading images to the target board
	Appendix D – Addressing table for the SOPC system to be run on the 2c35 board
	Appendix E – Files located on the CD
	uClibc space saving advantages:

