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Abstract

This report describes the relevant electrical engineeringissues involved with designing

and implementing a software correlator, more specifically an FX correlator, in software.

A correlator is a hardware or software device that combines sampled voltage time series

from one or more antennas to produce sets of complex visibilities. At all times it was

kept in mind that this correlator must be designed with the knowledge that it needs to be

implemented in hardware.

Certain radio astronomy and the DSP concepts required to construct a software correlator

are discussed and the reasons for needing a correlated made clear.

The output of the correlator and its uses are briefly described. DSP concepts used to

design and implement a working correlator are discussed. Basic digital filter concepts

and characteristics are reviewed and the ideas behind polyphase filter decomposition are

introduced. Other concepts such as analytic signal representation and cross-correlation

are briefly touched on.

The requirements of the correlator are reviewed and each stage of the correlator and its

operations presented. The sequential mathematical transformations are shown from real

time voltage signal input, through to the complex visibilities output. These mathematical

operations were simulated in python and the results presented. The python simulations

not only aid in the understanding of the correlator’s operations. They were developed to

test the mathematical operations that needed to be performed. These simulations were

all run on a finite set of ideal input data, from only one source. There were no invalid

inputs and the operations were not distributed over different computational devices. The

problems created by less ideal input that the correlator receives in reality and the actions

taken to produce the desired output is described.

The design of the KAT API provided for the software correlator and modifications to be

done to it to fully support the less than ideal input are discussed. The channel abstraction

from the KAT data frame is presented and its purpose described.

Various tests performed on sets of input data is shown. The results of this project are

discussed and conclusions are drawn.
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Glossary

DSP— Digital Signal Processing (DSP) is an electrical engineering field concerned with

the analyses, modification and extraction of information from digital represtations of sig-

nals.

Correlator — A correlator is a hardware or software device that combinessampled volt-

age time series from one or more antennas to produce sets of complex visibilities [15].

Angular Resolution— The minimum angular distance required between two objectssuch

that they can be differentiatedλ
D

[7].

Linear System — If the relationship between the input and the output of the system

satisfies the scaling and superposition properties, the system is linear.

Time-Invariant System — The system is time-invariant if when there is a time shift or

delay in the input to the system, then there is a corresponding time shift in the output. ie.

in a time invariant system, wherey[n] is the output to the inputx[n], theny[n− t]will be

the output tox[n− t] [14].

Linear Time-Invariant System (LTI) — Where a system is both linear and time-invariant.

Interferometry — Interferometry is the science of combining two or more waves, which

interfere with each other.[21]

Radio Astonomy —The study of celestial phenomena through measurement of thechar-

acteristics of radio waves emitted by physical processes occurring in space. [21]

Multirate Systems — Are systems that operate with one or more sample rate change

embedded in the signal processing acrchitecture.[11]

ANSI C — This is the C programming language which conforms to the American Na-

tional Standards Intitute (ANSI) standards, if followed, helps to create portable code.

ANSI C was used in this project to implement the final softwarecorrelator.

Base Line pair —An imaginary line between two anntenna.

Electromagnetic Wave —The radiated energy emitted by warm object can be clasiffied

as massless packets of energy call photons or quanta. These photons are radiated as trans-

verse waves with a frequency in proportion to the temperature of the radiating source.

These waves exibit a electric and magnetic field and thus are called electromagnetic

waves. [9]

Transverse Wave — “A transverse wave is a wave that causes a disturbance in the

medium perpendicular to the direction it advances.“ [21]

x



Chapter 1

Introduction

1.1 Subject of this Project

This project describes the relevant electrical engineering issues involved with designing

and implementing a correlator, more specifically an FX correlator, in software for the

Karoo Array Telescope. A correlator is a device used in radioastronomy that combines

sampled voltage time series from one or more antennas to produce sets of complex visi-

bilities [15].

1.2 Project Background

At the time of writing, South Africa is a potential candidateto host the Square Kilometre

Array (SKA). The SKA, on completion, will be the largest radio telescope in theworld.

To strengthen South Africa’s bid and to demonstrate its commitment to the SKA project,

the Karoo Array Telescope (KAT) is being constructed. The KAT is being built as a testing

ground for technologies that could potentially be implemented in the SKA. Although the

KAT will be about 0.5% of the size of the SKA, it will still be a powerful radio telescope.

[2]

The KAT will consist of 20 antenna stations, each of which have 7 beams with dual

polarisation. Each of these 280 points of reception will independently receive radio wave

emissions from astronomical objects. The radio waves from each antenna will be digitised

at a high sampling rate, producing massive streams of incoming data. This flood of data

needs to be combined and manipulated by acorrelator to produce useful information

which is used to create images of our Universe. To cope with this vast quantity of input,

the correlator needs to operate efficiently and quickly.

A correlator, in the radio astronomy world, is a hardware or software device that combines

sampled voltage time series data from one or more antennas toproduce sets of complex

visibilities. Many astronomy processes such as imaging, spectroscopy/polarimetry and

astrometry rely heavily on the validity of the correlator’soutput. Because of this reliance

1



on the output, the accuracy of the correlator is of great importance. [15]

1.3 Overview of the KAT Project

The KAT project currently requires a correlator for the new telescope they are building.

The correlator is a vital part of a radio astronomy telescopeas it helps convert other-

wise meaningless voltages received by the antennas into useful output which is used for

imaging, spectroscopy/polarimetry and astrometry.

At the beginning of this project the KAT team had already decided on the following re-

quirements of the correlator:

1.3.1 KAT Correlator Requirements

The 280 analogue inputs to the correlator are the signals received by the antennas. These

inputs will be sampled and digitised at the first stage of the correlator. The remaining

operations will be performed on these digital signals.

The correlator will need to be able to operate on a wide variety of incoming data. The

functions of the correlator will differ greatly depending on the input, therefore the corre-

lator needs to be versatile in order to adapt to variable types of inputs.

The correlator will first be designed and simulated in software, to ensure correct func-

tioning, then later ported to hardware for speed. Software is an ideal testing environment,

as it is easy to manipulate the design. The software simulation is vital as it serves as a

powerful tool to implement and test core concepts that will be used in the final hardware

design.

1.4 Objectives of this Project

The objective of this project was to investigate and implement a software correlator, keep-

ing in mind the requirements set by the KAT team. The softwarecorrelator performs the

same functions to the same degree of accuracy as the final hardware implementation, just

at a slower speed. This will allow the hardware correlator tobe tested against the software

correlator to ensure the hardware is functioning correctly.

Once the software implementation is complete one will have afunctional correlator. Since

hardware and software modules are interchangeable, as modules are implemented in hard-

ware they will replace the software modules, improving the performance of the correlator.

1.4.1 Provided Recourses

The following work and recourses had been provided to me:

2



• The skeleton of the correlator had been designed by Dr. Rudolph van der Merwe

and Dr. Richard Lord. (Fig 1.1 and Fig 3.8)

• Dr. Marc Welz had created the required application programming interface (API)

for the data to be passed between modules.

The API defines the structure of input and output data for eachstage of the correlator.

1.4.2 Methodology Followed

The following steps were followed throughout the development of the correlator:

• Review the mathematical description of the stages of the correlator.

• Run the mathematical operations in Python, an interpretiveprogramming language,

to ensure correctness.

• Update the API when necessary to perform additional functionality.

• Implement the correlator in ANSI C, using the provided API.

The modules were first implemented independently in Python,which is a higher level

language than ANSI C. This was done so that the focus was on thealgorithms, rather than

on the code and the integration of the separate modules.

1.4.3 Deliverables

The final deliverables of this project were:

• This report, explaining the related issues with designing and implementing a soft-

ware correlator to fulfill the KAT requirements.

• Python Simulations demonstrating some of the functions performed by the software

correlator. (Provided on accompanying CD)

• The working software correlator to the KAT requirements written in ANSI C with

the provided API. (Provided on accompanying CD)

1.4.4 Testing

The correctness and validity of the correlator is vital for the later hardware implementa-

tion. Several test cases will be created to test all facets ofeach stage of the correlator.

These test cases will be first introduced in the design section to validate the design of the

algorithms. These same tests are then run on the final software implementation.

3



1.5 Scope and Limitations

1.5.1 Project Scope

This project approaches the design problem of the correlator from a DSP perspective.

Digital Signal Processing (DSP) is an electrical engineering field that is concerned with

the digital representation of signals and the manipulationof these signals with digital

processors.

The project ran for a duration of 12 weeks. This time factor limited the depth of investi-

gation that could take place into the various sections.

1.6 Document Outline

Chapter 2 provides a more detailed explanation of radio astronomy and the DSP concepts

required to construct the software correlator. This chapter begins with a brief introduction

of the history and advantages of radio astronomy. It will explain the quest for angular

resolution which will lead into the need for interferometry. Interferometry is one of the

vital functions which the correlator performs to produce its output. The output is briefly

explained and its uses described. Once the reason for the correlator has been made clear,

the chapter briefly discusses two possible implementationsof a correlator, FX and XF.

The reason for KAT’s choice of an FX correlator is discussed.The chapter continues with

an overview of the DSP concepts required to design and implement a working FX cor-

relator. Basic FIR filter characteristics are reviewed which will lead into the idea behind

polyphase filter decomposition, a key concept which is used extensively in FX corre-

lators. Other concepts such as analytic signal representation and cross-correlation are

briefly touched on.

Chapter 3 presents each stage of the correlator and its operations. This chapter begins by

providing a more detailed review of the requirements and specification of the software

correlator. The flow of operations presented in figure 1.1 areeach addressed individually

and their operations are discussed in detail. The mathematical transformations are shown

from real time voltage signal at the input of the correlator through to the complex visi-

bilities at the output. These mathematical operations weresimulated in python and the

results presented. The python simulations not only aid in the understanding of the cor-

relators operations but also provide a useful reference to algorithms and results for later

chapters.

Chapter 4 discusses the implementation and integration of the functions discussed in chap-

ter 3 into the KAT ANSI C API. The desired behaviour of the finalsoftware correlator

is reviewed and the adaptation to the API to support this behaviour is investigated. The

4



problems with not having separate input streams for each channel, but rather interleaved

packetised data are addressed and possible solutions presented. The coded correlator

functions, which were presented in chapter 3, are briefly reviewed while concentrating on

the issues which arose with the final implementation.

Chapter 5 is involved with various sets of input data to test particular aspects of the soft-

ware correlator.

Chapter 6 discussed the results and draws conclusions.

5



Figure 1.1: Flow Diagram of the FX Correlator, by Dr. van der Merwe and Dr. Lord. [19]
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Chapter 2

Concept Review

This chapter provides a more detailed explanation of radio astronomy and the DSP con-

cepts required to construct the software correlator. This chapter begins with a brief intro-

duction, discussing the history and advantages of radio astronomy. This will explain the

quest for angular resolution, which is the reason interferometry is needed. Interferometry

is one of the vital functions which the correlator performs to produce its output. The out-

put is briefly explained and its uses described. Once the reason for the correlator has been

made clear the chapter will continue with an overview of the DSP concepts used to de-

sign and implement a working correlator. Basic digital filter concepts and characteristics

are reviewed and the ideas behind polyphase filter decomposition are introduced. Other

concepts such as analytic signal representation and cross-correlation are briefly touched

on.

2.1 Radio Astronomy Concepts

2.1.1 Electromagnetic Waves

The radiated energy emitted by warm objects can be classifiedas massless packets of

energy called photons or quanta. These photons are radiatedas transverse waves with a

frequency in proportion to the temperature of the radiatingsource. These waves exhibit

an electric and magnetic field and thus are called electromagnetic waves which can be

measured. [9] Observational astronomy is the study of the electromagnetic waves radiated

by celestial bodies.

2.1.2 Background to Radio Astronomy

For centuries astronomers have observed the night sky in search of objects emitting opti-

cal waves. However optical waves are only a small fraction ofthe electromagnetic spec-

trum produced by astronomical objects. All warm objects give off electromagnetic waves.

These waves are divided into sections depending on their wavelength, as shown in Figure

7



2.1. The radio wave section has the greatest wavelength so isless susceptible to interfer-

ence. The optical waves, traditionally observed, are more likely to be obscured by opaque

objects, such as dust clouds or planets. Often it is only the radio portion of the emitted

electromagnetic radiation that reaches Earth. Radio wavesare also produced by objects

that do not even radiate visible waves.[7]

Radio astronomy is the study of the radio band of the electromagnetic radiation emitted

by celestial bodies. Radio astronomy has opened an entirelynew field of astronomy and

is responsible for the discovery of several classes of objects, such as pulsars, quasars and

radio galaxies. [7]

Radio Microwave Infrared Visible Ultraviolet X-ray Gamma Ray

104 102 1 10-2 10-5 10-6 10-8 10-10 10-12

Wavelength in centimeters

Figure 2.1: Wavelength, adapted from [7]

2.1.3 Interferometry

Radio waves are tens of thousands to millions of times longerthan optical waves. Con-

sequently the angular resolution of single aperture radio telescopes is extremely poor in

relation to optical telescopes. To improve the angular resolution, radio telescopes incor-

porate many separate receivers. Each of these receivers areused to point at the same

source of interest.

However, with multiple receivers, the electromagnetic waves emitted by the object of

interest very rarely reach all receivers at the same time instance. This variation in time

results in a phase variation between the electromagnetic waves received by each antenna.

This is demonstrated in Figure 2.2.

To exploit the advantage of having multiple receivers, the incoming waves need to be

combined. Directly summing waves that are out of phase distorts the output. This means

that the waves must first be phase aligned and then summed. This process of combining

two or more waves is called interferometry. Interferometryis one of the key functions

performed by the software correlator. (Fig 2.3)

For a more in depth discussion on issues discussed below see [7] and [18]
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Figure 2.2: Phase Difference, adapted from [18].
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Figure 2.3: Adding out of phase signals
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2.1.4 Correlation

The correlation of two signals tell us how similar the signals are. It can be used to identify

the phase variation between two signals, among other things.

Suppose we have two sampled voltage signals,f(t) andg(t), the correlation function,

Rfg(τ) is defined as[17]:

Rfg(τ) = limT→∞

1

T

∫ T

0

f ∗(t)g(t + τ)dt, (2.1)

which can be written as,

Rfg(τ) = 〈f(t)∗g(t + τ)〉τ (2.2)

The magnitude of the correlation output ,|Rfg(τ)|, will depend on the two signals’ simi-

larity.

Two identical antennas pointing in the same direction will both receive the same signal,

however, they will receive it at different times. Thus the variation in the correlation output

is due to a phase difference between the signals. This phase differences can be identified

through the correlation of the two signals. This is needed toperform interferometry.

Correlation is a key operation used to compute complex visibilities, the final output of the

software correlator.

2.1.5 Analytic Signal Representation

All real time signals have a two sided frequency response which is symmetrical about the

origin. Since both sides of the frequency response are identical, all the spectral informa-

tion of the real time signal can be represented by one side. The analytical representation

of a signal is twice the positive side of its spectrum with thenegative frequency compo-

nents set to zero. Since we take twice the positive spectral components, the same power

in the signal is retained.[14]

If f(t) is a real time signal then the analytical representationE(t) can be constructed as

follows :

E(t) = f + jH{f(t)} (2.3)

where,

H{f(t)} =
1

π

∫ ∞

∞

f(τ)

t− τ
dτ (2.4)

H [f(t)] represents the Hilbert transform of signalf(t). The Hilbert transform effectively

rotates the negative frequency components of voltage signal f(t) by 90o and the positive

spectral components by−90o. Multiplying the Hilbert transform byj further rotates all

the phase components by90o. When summed with the original signal,f(t), results in the
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analytic signalE(t). The construction of an analytic signal using the Hilbert transform is

demonstrated in Figure 2.5.

The analytical signal, although a complex signal, only occupies the positive side of the

frequency domain, half the bandwidth of the original signal. This allows digitised ana-

lytic signals to be faithfully reproduced with half the number of samples as the real time

representation. A demonstrations of an analytic signal is shown in Figure 2.4.

The original signal can always be reconstructed since it is just the real part of the analytic

representation. The analytic representation makes phase rotation easier and is later used

to compute complex visibilities.
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Figure 2.4: Analytic Signal
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Figure 2.5: The following represent signals at a particulartime instance.
(a) Original Signal

(b) Hilbert transform of (a)
(c) Analytic Representation of (a)
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2.1.6 Complex Visibilities

The complex visibilities, the final output of the software correlator, are what astronomers

are really interested in. Complex visibilities are used to find the difference in intensity

between the fringes which are used for imaging, spectroscopy/polarimetry and astrometry

[4].

The complex visibility of two signals,f(t) andg(t) , can be defined as follows:

Vf g(τ) =< f(t)g(t + τ) > +j < H{f(t)} g(t + τ) > (2.5)

So in words, the complex visibility of two signals,f(t) andg(t), is the summation of the

correlation off(t) andg(t) and the Hilbert transform off(t) correlated withg(t).

The phase difference between the two signalsf(t)andg(t)can now be extracted from the

visibility:

φ = arctan

(

ℑ{Vfg(τ)}

ℜ {Vfg(τ)}

)

(2.6)

This phase information can then be fed back to the software correlator so that the neces-

sary interferometry can be performed. However, the complexvisibilities are used in later

operations to perform imaging, spectroscopy/polarimetryand astrometry. These all fall

out of the scope of this project, but for a more comprehensivediscussion on these topics

refer to [15].

2.1.7 Coherency vector and Stokes Visibilities

Electromagnetic waves are transverse in nature and have twoaxes of oscillation(polarisation),

usually represented byx andy, and one axis of propagation, usually represented by the

z axis. Because of this polarisation it is customary to represent a radio wave as a set of

stokes parameters. Stokes parameters are a set of values used to describe the polarisation

state of a electromagnetic wave [10].

A polarised wave is usually represented by vectore =

(

ex

ey

)

, whereex andey are com-

plex vectors of the polarisation state in the x and y axis respectively. With two polarised

vectors,eA andeB, received from antennaA andB respectively it is useful to represent a

coherency vector which can be defined from the two vectors as follows:

e+ =

〈













eAx
e∗Bx

eAx
e∗By

eAy
e∗Bx

eAy
e∗By













〉

(2.7)

From this coherence vector we can form the Stokes Visibilities,I Q U V , which are the

actual outputs of the software correlator and are created bythe following relationship:
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











I

Q

U

V













= Te+ (2.8)

where:

T =













1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0













The Stokes visibilities are then used in later operations toperform imaging, spectroscopy/polarimetry

and astrometry. The interpretation of the stokes parameters fall out of the scope of this

project but for a more comprehensive discussion on these topics refer to [15]. For a more

detailed discussion on radio polarimetry and the derivations presented above see the pub-

lished series [10].

2.2 Spectral Line Correlators

Spectral line correlators are used to divide a signal into multiple frequency channels so

that calibration, spectroscopy, wide-field imaging and other astronomical operations can

be done.[15] There are two main implementations of spectralline correlators, the FX and

XF correlators.

2.2.1 FX and XF Correlators

The difference between FX and XF correlators is the order in which operations are per-

formed. FX correlators first channelise the signal and then do the correlation. In contrast,

XF correlators compute the correlation and then channelisethis result.

2.2.1.1 Computational Comparison

The computational efficiency of the two implementations depends on the number of base-

lines and channels required. It is shown in [6] that FX correlators are significantly more

efficient than XF correlators when the number if baseline pairs and channels are large.

Since KAT will have 280×279
2

baseline pairs and will need to support up to65000 chan-

nels, an FX correlator was the chosen implementation.

Traditionally FX correlators channelise the input signal using an Fast Fourier Transform

(FFT). However, this causes the data rate to increase in proportion to the number of de-

sired output channels. If a polyphase filter precedes the FFT, the input and output data

rate can be kept constant. Without the polyphase filter keeping the data rate constant, the

FX correlator would not be a feasible solution.
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For a more in depth review of the performance issues relatingto FX correlators see [6],

by John Bunton, or one of his many other published articles.

2.3 DSP Concepts

A channeliser is needed for the software correlator to breakup the received radio waves

into various frequency channels. Once channelised, the individual components can be

analyzed and correlated. However, a conventional channeliser offers poor performance.

This section will briefly review the conventional channeliser, introduce the ideas behind

polyphase decomposition and explain why a polyphase channeliser architecture was used

for the software correlator.

2.3.1 Conventional DSP Concepts

2.3.1.1 Finite Impulse Response (FIR) Filters

A filter is a system used to remove a range of unwanted frequency components from a

signal, while preserving other frequencies. Filters are characterised by their magnitude

response and phase response.

Digital FIR filters are linear time-invariant (LTI) systemswhich are represented by a finite

length sequence,h[n]. Given the sequence,x[n], an input to an LTI system, the output,

y[n] can be computed by convolving the input withh[n]:

y[n] =

N−1
∑

r=0

x[r]h[n− r] (2.9)

Equation 2.9 can be represented by the following block diagram:

Figure 2.6: FIR Filter Block Diagram

2.3.1.2 Channelising

A channeliser is a system that decomposes an input signal into its various frequency com-

ponents.

Channelisers traditionally make use of FIR filters, in combination with decimators and

complex oscillators, to extract the desired bandwidth out of a signal. A typical channeliser

has the form[11]:
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Figure 2.7: Channeliser

The channeliser in Figure 2.7 breaks the input signal intoM individual channels, where

the filterh[n] has a cutoff frequency ofπ
M

. The local oscillators,e−jθkn , are used to mix the

filter to its desired spectral position. Since each of the output channels now only occupy

a bandwidth ofπ
M

, the channel can be decimated by a factor ofM without aliasing.

2.3.2 Polyphase Filtering Concept

Polyphase filtering is an efficient computational method which only computes useful out-

put. Polyphase filtering is derived from the idea that a chainof operations can be rear-

ranged to improve the efficiency of the system. Because of thehigh performance demands

on the KAT correlator, an efficient design is essential.

2.3.2.1 Polyphase Decomposition

Polyphase decomposition allows us to decompose a prototypefilter into smaller filters.

This polyphase representation allows a signal to be filteredin parallel. [1]

A filter,h[n] of lengthN can be decomposed into theM-component polyphase form:[12]

H(z) =
M−1
∑

r=0

z−rHr(z
M), (2.10)

where,

Hr(z
M ) =

(N/M)−1
∑

n=0

h[nM + r]z−nM (2.11)

For example, suppose we had a prototype filter of lengthN :

H(z) =
N−1
∑

n=0

h[n]z−n
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Traditionally we would compute the output of LTI systemh[n] as shown in Figure 2.6.

However, if we were to decompose the prototype filter into twotermsH0(z
2) andH1(z

2),

we could compute the same prototype filter by:

H(z) = H0(z
2) + z−1H1(z

2)

and represent the same transfer function as in Figure 2.6 by the figure below.

Figure 2.8: Two-branch polyphase decomposition

In the above diagram, for every execution period, two coefficients can be calculated. This

idea can be extended to multi-branch decomposition, usually with 2n branches1.

2.3.2.2 Polyphase Filtering with Re-sampling

Computing the output of LTI systems involves a large number of multiplication and addi-

tion operations. However when a FIR filter is superseded by a decimator,M − 1 of every

M of these results are discarded as shown in Figure 2.9. It is inefficient to calculate all

these results when only a small proportion is kept.

Figure 2.9: FIR Filter with decimator

However if the filter is represented inM-component polyphase form, as shown in Figure

2.10, the decimation can be performed before the filtering while still achieving the same

result [11]2. In this polyphase equivalent form, the input data rate is1
M

th of what is was

in Figure 2.9. This greatly reduces the workload of a filter, increasing the efficiency.

2.3.2.3 Polyphase Filter as a Channeliser

Each channel of a traditional channeliser is composed of a complex mixer, a low pass

filter and a decimator. However, because of theequivalency theoremit can be shown that

1The reason for the2n restriction is due to the fact that the polyphase filter is often used in conjunction
with an FFT

2For a detailed derivation of the decimator rearrangement see [11] chapter 2
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Figure 2.10: Polyphase Filter Decimation

this can be equivalently represented as a complex mixer succeeding a band pass filter and

a decimator [11]3.

This is important as we can now represent channelk of the channeliser presented in Figure

2.7 as :

Figure 2.11: Channelk with polyphase representation andequivalency theorem

These complex mixers are in fact the same complex mixers usedin an IFFT (Inverse

FFT) to produce one of the outputs. Therefore, if we use anM-point IFFT, we can in fact

reproduce the output of a channeliser withM decimated channels.

An IFFT performs a lot more efficiently when its length is a power of two. Since the

number of output channels will be the length of the IFFT, it isa lot more efficient to

produce2n output channels, wheren is an integer.

It should be noted that each output of the polyphase channeliser is aliased back to base-

band due to the decimation. This makes the polyphase channeliser useful as a spectral

analyser.

3See [11] Chapter 6 for a detailed derivation of the equivalency theorem
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Figure 2.12: Polyphase Filter Bank

2.4 Concept Review Conclusion

The above concepts lay the foundation of the design and implementation to follow. These

concepts are vital to the development and testing of the system. Once these concepts are

understood, a clear picture of the outcomes of the software correlator can be created.
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Chapter 3

Design

Chapter 3 presents each stage of the correlator and its operations. This chapter begins by

providing a more detailed requirements review of the software correlator. Each operation

presented in Figure 1.1 is addressed individually and discussed in detail. The sequential

mathematical transformations are shown from real time voltage signal input, through to

the complex visibilities output. These mathematical operations were simulated in python

and the results presented. The python simulations not only aid in the understanding of

the correlator’s operations but also provide a useful reference for algorithms and results

discussed in later chapters.

3.1 Software Correlator Requirements Review

3.1.1 KAT Correlator Requirements

A total of 280 incoming streams of data will be sampled at 1.2GHz with 8 bits per sample.

This is a total of almost 2.7 Terabits that need to be processed every second. Each of these

280 input streams will need to be channelised into65000 different channels.

Each of these 280 incoming channels need to have a number of operations performed on

their data. These operations are outlined in Figures 1.1 and3.8.

The correlator will need to be able to operate on a wide variety of incoming data. The

functions of the correlator will differ greatly depending on the input, therefore the oper-

ations the correlator performs need to be versatile in orderto adapt to variable types of

inputs.

Because of these demanding requirements, the KAT team decided to implement the cor-

relator in hardware. Each input to the correlator is largelyindependent of other inputs and

each input has the same operations performed on it. These repetitive independent tasks al-

low the correlator to be constructed in a highly paralisablemanner. These attributes make

the correlator ideally suited to being implemented in hardware. Each of the operations

shown in Figure 1.1 is independent of other operations and can be treated as a separate

system.
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On the downside, hardware development is a slow and difficult. It would be difficult

to test a hardware implementation until it is fully completed. The development time of

hardware can be greatly reduced if there is a system against which to test its output.

The objective of this project was to investigate each of the operations in the correlator

chain and implement them in software. Software is an ideal testing environment, as it

is easy to manipulate. A software simulation is vital as it serves as a powerful tool to

implement and test core concepts that will be used in the finalhardware design. The

software implementation developed in this project was designed to be modular so that

each operation could be interchanged with the hardware equivalent. As future hardware

development is completed, the correlator will become a hybrid of software and hardware

components and eventually purely hardware.

Since the software is interchangeable with hardware components, the software followed

much of the constraints set on the hardware. More detail on the implementation of the

correlator is discussed in Chapter 4.

This chapter will continue by describing the correlator operations provided by Dr. Rudolph

van der Merwe and Dr. Richard Lord and running simulations ofthem.

The objectives of this project can be summarised as:

• Investigate the operations of the correlator in detail and provide an architectural

design.

• Build onto the API provided by Dr. Marc Welz to support the operations the corre-

lator needs to perform.

• Implement the correlator in ANSI C, using the modified API.

• Ensure flexibility in design.

3.2 Correlator Design

The electromagnetic waves detected by the antennas have various modifications per-

formed on them by the radio frequency(RF) front end. These modified electromagnetic

waves are the input to the correlator. The correlator performs various computations on

this input to produce the output, the complex visibilities.

Since the correlator is operating at a tremendously high data rate, signals are down-

sampled and unwanted channels are discarded whenever not needed.

The correlator is very modular in design, allowing each of the computations to be im-

plemented and tested independently. The basic design of thecorrelator is divided into

stages, with each one feeding its output into the next module. Each of these stages will be

discussed in the order it appears in Figure 1.1.

21



3.2.1 The Analogue to Digital Converter (ADC)

The ADC is responsible for converting the voltage time series signal into a digitalized

sampled signal. The ADC has a sampling rate of 1.2GHz ,(Fs), with 8bits per sample

and a 550MHz input bandwidth.1 The input,vi,j,p(t), (wherei is the voltage of the dish,

j the beam andp the polarity) is sampled at time periodT to produce the sampled signal

v̂i,j,p[k] of lengthM .

v̂i,j,p[k] = vi,j,p(t)

M−1
∑

k=0

δ(t− kT ) (3.1)

=
M−1
∑

k=0

vi,j,p(kT ).δ(t− kT ) (3.2)

3.2.2 The Time Delay Compensation

Each time signal will be received at different time instances by different antennas, re-

sulting in a phase difference. These signals need to be phasealigned to perform inter-

ferometry. See Interferometry Section 2.1.3.The phase alignment of the input waves will

take place in two sections, the time delay compensation and then the phase correction

operation.

The delay compensation is used for coarse alignment of out ofphase signals. The input

to the delay compensatorv̂i,j,p[k], is delayed by an integer,n, of the sampling period,T ,

to produce the output,ui,j,p[k]. Where:

ui,j,p[k] = v̂i,j,p[k − n] (3.3)

v̂i,j,p[k] z←→V̂i,j,p(z)

v̂i,j,p[k − nT ] z←→z−nV̂i,j,p(z)

The time delay,τg, experienced by the incoming signal can only perfectly align by the

time delay compensation stage if the time delay,τg = Tn for some integer value ofn.

This is often not the case as in Figure 3.1:

The remaining phase difference needs to be adjusted in the phase correction operation.

The finer phase correction is discussed in Section 3.2.5.

1This1.2GHz band will not be taken from baseband so aliasing will take place. This was not considered
during this project but must be considered in the final implementation.
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Figure 3.1: Delay compensator operation, whereτg 6= Tn.

3.2.3 Digital Down Conversion (DDC) with Fringe Stopping

This stage performs three separate operations; analytic signal representation, digital down

conversion and fringe stopping.

3.2.3.1 Fringe Stopping

The delay compensation in the previous section is calculated as a function of the baseline

distance and direction vector of the source, assuming stationary receivers. Since the Earth

is rotating, the effective time taken for a signal to reach a receiver is either increased or

decreased depending on the position of the receiver. This causes a Doppler shift, which

will effect both the phase and frequency of the signal, and ifnot corrected will produce an

incorrect correlation value. Little investigation has been done in Fringe Stopping for this

report, but the usual solution is to correct the error by adjusting the phase and frequency

in the local oscillator used to create the analytic signal representation.[3]

3.2.3.2 Analytic Signal Construction2

An analytic signal, as discussed in Section 2.1.5, can be constructed from any real signal

by preserving only the positive side of the spectrum and nulling the negative side. This

2See Appendix D for more detailed derivation.
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representation is useful as it simplifies phase correction and is also used in computing the

complex visibilities.

Since the input signal,ui,j,p[k], is real, the spectral components will be symmetrical and

therefore can be represented as an analytical signal. In this implementation a baseband

representation of the analytic signals is constructed by using oscillators to mix the signal

to be centered at eitherπrad/sec or0rad/sec. The last statement may sound contradictory but

since a decimation factor of23 is used, the signal mixed toπ will alias back to baseband as

shown in Figure 3.3. We define the analytical baseband representation of the input signal

ui,j,p[k] as:

u[k]a = u,I [k] + j.uQ[k] (3.4)

where:

uI [k] = [2u[k]. cos(2πf0t)]LPF (3.5)

uQ[k] = [2u[k]. sin(2πf0t)]LPF (3.6)

and:

uQ[k] = H{uI [k]} = [2u[k]. cos(2πf0t−
π

2
)]LPF

An example of input and output to the analytic signal construction stage is shown below

in Figure3.2.
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Figure 3.2: Input and output of analytic signal construction stage

3.2.3.3 Down Conversion

The analytical signal, although now a complex signal, only occupies the positive side of

the frequency domain, half the length of the original signal. The analytical signal can now

3Decimator will also work for all even decimation factors
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be down sampled to reduce the sample rate fromFs to Fs
2

. This is done by taking every

2nd sample fromu[k]a, an example of this is shown in Figure 3.3. Thus we can define the

output of the DDC section as,̃u[k], where:

˜u[k] = u[2k]
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Figure 3.3: Down Sampled signal alias back to baseband

3.2.4 Channelisation

Channelisation separates incoming signals into a number offrequency channels. It is

an important part of the correlator as it allows individual components to be analysed

and correlated. Because this is an FX correlator, the channelisation takes place before

the correlation. If the channeliser can decompose the inputsignal into channels with a

small enough bandwidth, the output from each channel can be treated as a monochromatic

signal. This is important as it allows the correlator to effectively phase adjust and analyse

each frequency component of the input signal separately.

Channelising is performed in three separate stages; coarsechannelisation, bandwidth re-

duction and fine channelisation. Both coarse and fine channelisation are done by polyphase

channelisers. This dual stage filterisation offers a computational advantage, as discussed

below.

3.2.4.1 Coarse Channelisation

The first polyphase channeliser is used to divide the input signal band into coarse chan-

nels. This is done so that channels not containing useful spectral information can be

discarded before more processing takes place.

The number of output channels of the polyphase channeliser is the same length as the

input to the IFFT used in the polyphase channeliser. The number of computations of a

standardN point FFT isN log2N , whereN is the number of output channels,M. Since
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a number of these channels will be discarded in the BandwidthReduction stage 3.2.4.2,

it would be computationally wasteful to decompose the entire input bandwidth into fine

channels before bandwidth reduction.

The input analytical signal̃ui,j,p[k] will pass through the polyphase filter to produceNc1

separate channels of centre frequencyvc1
m . The output̃ui,j,p,vc1′

m
will then be passed to the

bandwidth reduction stage.

Continuing with the previous example, Figure 3.4 shows the input divided into five coarse

channels. Each channel will have an independent output and will be aliased back to

baseband.
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Figure 3.4: Coarse channelisation demonstration

3.2.4.2 Bandwidth Reduction

The bandwidth reduction stage will discard channels created by the coarse channeliser,

that are not required. The bandwidth preserved needs to be specified as it will vary de-

pending on the astronomical process.

The number of channels will be reduced fromNc1to N ′
c1whereN ′

c1≤Nc1.

Continuing from the example presented in Figure 3.4, if it isknown that channel 0 was the

only band of interest in a hypothetical astronomical operation, then the other 4 channels

could be discarded, reducing the data rate by a factor of 5. The remaining channel is

decimated by a factor of five as consequence of the polyphase filtering. This causes

aliasing back to baseband and a reduction in amplitude, as shown in Figure 3.5.

3.2.4.3 Fine Channelisation

The fine channeliser is responsible for the further decomposition of the remaining chan-

nels, using a polyphase filter bank.

It is now important to note the following. As the number of output channels of the

polyphase channeliser tends to infinity, each channel tendstowards zero bandwidth and
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Figure 3.5: Bandwidth Reduction demonstration
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is aliased to baseband, creating a DC signal. Each channel output can be represented by

|vωijpC
|ejφωijpC , whereφ is the phase and|v| the magnitude of the spectral component of

the input to the correlator, atωc . The output no longer has any frequency component and

therefore is represented by a constant DC value. It is usefulto view the polyphase chan-

neliser with infinite output channels as the Fourier transform, since it effectively gives the

magnitude and phase response for each spectral component,ωc [11].

It is impossible to have infinite output channels, thereforewe decompose the input to the

fine channeliser into up to65000 separate channels. This decreases the spectral resolution

to a point where each output channel can be assumed to have almost zero bandwidth. The

phase of the individual components can now be aligned with the corresponding channel

of other antennas. This is done in the next section, Phase Correction.

The input,̃ui,j,p,vc1′
m

will pass through the polyphase filter to produceNc2 separate channels

of centre frequencyvc2
m . The output,̃ui,j,p,vc2′

m
will then be passed to the phase correction

stage.

Continuing with the example, the expected output of the fine channeliser is presented

in Figure 3.6. The channel in the example is only decomposed into 40 separate output

channels. However, the KAT FX software correlator can decompose the input channel

into up to65000 separate channels.
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Figure 3.6: Fine channelisation demonstration

3.2.5 Phase Correction

In the phase correction stage we continue the phase alignment of signals from each an-

tenna that began in the delay compensation stage. Since the input to the correlator,̂vi,j,p[k]

, has bandwidth, the phase shift experienced will not be uniform across the band and will

depend on each frequency component. The phase correction stage does the fine align-

ments not able to be performed in the delay compensation stage and is used to complete

the phase alignment used for interferometry.

The input received from the channeliser have effectively nobandwidth, allowing the phase
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correction stage to treat each channel as a monochromatic baseband signal4. The corre-

sponding channels from each antenna are phase aligned by a complex multiplier.

The phase correction stage performs corrections needing a change of less than one sam-

pling periodT . The inputũi,j,p,vc2′
m

will be multiplied bye
−jφ

i,j,p,vc2′
m , whereφ is the fre-

quency value that the input will be adjusted by.

ṽi,j,p,vc2′
m

= ũi,j,p,vc2′
m
× e

−jφ
i,j,p,vc2′

m (3.7)

The previous example is continued, showing the phase alignment between two channels,

ũi andũj. This is shown in Figure 3.7.

Figure 3.7: Phase Correction

3.2.6 Correlation

In this final stage of the correlator the separate signals from the various antennas are

combined. This process is performed in two subsections, first correlation is performed

and then the Stokes Visibilities are computed.5

3.2.6.1 Correlation Functions

Each channel is multiplied by each polarity of the corresponding channels of each of the

20 antennas, including its own antenna (See Fig 3.8). This is represented by the following

correlation function[19]:

cxy∗ ,v(n) = ˜vx,p(n)ṽ∗
y,p(n) (correlation) (3.8)

4In reality the channels will have small bandwidth
5The interpretation of these results fall outside the scope of this project.
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Because the input channels are not purely DC signals and contain some frequency com-

ponent, time averaging is used to smooth out this variation in phase. This produces the

power spectral density,Sxy∗,v(k). This function is shown below:

Sxy∗,v(k) =
1

N

k
∑

n=k−N

cxy∗ ,v(n) (time average) (3.9)

When a particular polarity of a particular channel is correlated with itself, the correlation

is referred to as auto-correlation. This is one of the outputs of the correlator that is used

in the succeeding astronomical processes.

When correlated with anything else, this cross correlationproduces coherency vectors.

These coherency vectors are used to compute the Stokes Visibilities and determine the

phase variation between two signals.

3.2.6.2 The Complex Stokes Visibilities

The four coherency vectors for each channel pair are used to calculate the Stokes Visibili-

ties as shown in Equation 3.10. These Stokes Visibilities are used to describe the complex

visibility in terms of the polarisation state. This is the other output of the correlator that

is be used in the succeeding astronomical processes[19].
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(3.10)

3.3 Design Conclusion

The python simulations used to generate the above diagrams,helped in understand the

FX correlator operations. These simulations supplied the coded algorithms that formed

the basis of the final software correlator implementation. With these foundations covered

in this design chapter, the issues relating to the final correlator implementation can be

addressed.
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Figure 3.8: Correlation in Detail, by Dr. van der Merwe and Dr. Lord.[19]
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Chapter 4

Implementation

The python simulations mentioned in Chapter 3 were developed to test the mathematical

operations that needed to be performed. These simulations were all run on a finite set of

input data, from only one source. There were no invalid inputs and the operations were

not distributed over different computational devices. However, the environment in which

the actual correlator operates receives a continuous stream of input data, from multiple

sources (antennas). There could be invalid inputs and the operations will be distributed

over different computational devices. This chapter discusses the problems created by

less ideal input that the correlator receives in reality andthe actions taken to produce the

desired output as presented in Chapter 3.

This chapter begins by reviewing the design of the KAT API provided for the software

correlator. This chapter continues to describe the modifications to the KAT API to fully

support the specifications of the input data stream. The channel abstraction from the KAT

data frame is presented and its purpose described.

4.1 Software Correlator Infrastructure

The final hardware will be implemented over a distributed system and will use a 10 gigabit

Ethernet architecture as the connection infrastructure. Since the software is interchange-

able with hardware components, this same distributed specification applies to the software

correlator.1

4.2 Adaptation to Support Realistic Input

The changes needed to support realistic data flow between thestages in the software

correlator are discussed below and shown in Table 4.1.
1The other possibility for the networking architecture was InfiniBand
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Ideal Input Realistic Input
Finite Input Streaming Input

No Distributed System Distributed System
No Invalid Input Invalid Input
One Input Source Multiple Input Sources

Table 4.1: Ideal vs. Realistic data input.

4.2.1 The KAT API

The KAT API provides a description of the methods and messagestructure used to com-

municate between the correlator stages. Dr. Marc Welz, a member of KAT team, provided

the following design outline in the following subsections,which was a very useful starting

point and aided the software correlator implementation. The implementation was done in

the ANSI C programming language, as this is an efficient programming language and

simpler to port to hardware.

4.2.1.1 Packetising input stream

The output from the ADC, the input to the section of the correlator focused on in the

project, is an endless stream of data. This needs to be packetised so that it can be passed

to the next stage of the correlator. These packets need headers to describe the data, the

payload of the packet, so that the stream can be reconstructed at each reception point.

This message structure will be referred to as a KAT data frameand the original structure

is presented in Figure 4.1. Output data from each correlatoroperation is first packetised

into a KAT data frame before being passed down the network protocol stack. The protocol

stack for the software correlator is described in Figure 4.2. The KAT API holds one input

frame and one output frame at any particular instant. Any buffering must be done by the

correlator operations.

Figure 4.1: Original header for the KAT data frame [20]

4.2.1.2 Dealing with bad input

The ADC will produce9.6Gbps data for each antenna input, which is near the maximum

operating rate of 10 gigabit Ethernet (10Gbps). Therefore, using transport protocols to

retransmit KAT packets dropped by the network architecturewould not be a reasonable

33



Figure 4.2: KAT network protocol stack

solution, as it would be unable to cope with a data rate increase. This would cause un-

wanted delays to the output and possible buffer overflows.

If a KAT data frame is dropped or corrupted, the correlator will instead create dummy

samples to retain the constant data rate flow. This constant data rate helps to maintain

predictability of the system.

The invalid data needs to be flagged so that the next stage of the correlator can identify it

as invalid and can handle it correctly. It was decided that out of band signalling would be

used to describe this invalid input. Out of band signaling has the advantage that it does

not effect the word size of the sampled data (eg in the case of using a dirty bit). However,

this means there will be more overhead to describe the KAT data frame.

It is not reasonable to describe to the validity of every input, as this will cause extensive

overhead. The bad samples of the payload are rather described by a range, byf_bad_first

andf_bad_sizeas shown in Figure 4.1.

This allows the state of the payload to be described by only two integers, however there is

a tradeoff with poor bad input identification resolution. This range describes only the first

and last bad sample, treating any valid samples in between asinvalid. Fortunately, bad

data should not be a regular occurrence and usually occur in clusters, so this is appropriate.

4.2.2 Additions to API

The section documents the evolution of the KAT API during this project.2

4.2.2.1 Dealing with multiple input channels

The software correlator will have many independent inputs that need to be transported

across the network infrastructure. The number of independent inputs increase dramati-

cally after the polyphase channelisation stage. See chapter 3.2.4. Therefore, often many

independent inputs will need to be serviced by only one router or switching device.

These inputs need to remain differentiable from each other and is a responsibility that falls

on the KAT API. Interleaving the input samples into a KAT dataframe was the chosen

2The adaptations were made with consulting Dr. Marc Welz.
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Figure 4.3: Effect of bad input and low resolution identification

method to deal with multiple input streams. Interleaving gives equal preference to each

input stream and does not require buffering. Figure 4.4 demonstrates this operation, as

performed by the software correlator.

The original KAT data frame only had one range describing theinvalid inputs. With this

limitation, if one input stream was producing invalid input, the whole KAT data frame

would be marked as invalid input. This means that valid data from other channels in-

terleaved with invalid data, will be included in the invaliddata range. With up to65000

channels contained in a KAT data frame, this could upset the entire correlator output as

shown in Figure 4.5. Therefore, to retain independence of channels, the KAT data frame

has anf_bad_firstandf_bad_sizevalue per channel. With this addition, the range of bad

input for each channel can be described . For further effectsof bad input see Chapter 5,

Testing.

Figure 4.6 shows the final KAT data frame header that was used in the software correlator.

Note that thef_time_stamppointer was not used during the project. The time stamping

format had not been formalised at the time of development andit was uncertain whether

the time information will be contained in the KAT data frame and to what degree the

VSI-E time stamping would be used3.

3VSI-E is a network protocol, commonly used in radio astronomy for time-stamping [5].
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Figure 4.4: Interleaved Channels

Figure 4.5: Interleaved channels with only one bad input range
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Figure 4.6: Final Modified KAT data frame

4.2.2.2 Dealing with variable sample size

Being a experimental platform, one of the main requirementsof the KAT API is flexibility.

The KAT correlator is a multi-rate system and accepts variable bit size data samples.

However, ANSI C uses32 bit integer as the data type, and so the correlator operations use

32 bit integers. Bit-masking is used to allow variable sample size, making it possible to

include samples of2n bits, where5 ≥ n ≥ 1, in the fixed ANSI C32 bit integer.

4.2.2.3 KAT Date Frame Size

In the original design of the KAT API, the KAT data frame was the same size as a Ethernet

packet. This is either 1500 bytes, standard Ethernet packet, or 9000 bytes, jumbo gigabit

Ethernet packet. Keeping these sizes helps add transparency to the KAT API.

However, the original KAT data frame only catered for one input channel and therefore

could assume constant header size. With multiple input channels the size of the KAT

data frame will depend on the number of channel inputs. With up to 65000 channels,

the header size required to describe the payload becomes much larger than the largest

Ethernet packet. Therefore it would be impossible to use standard Ethernet packet sizes.

Since the size of the final KAT data frame is not yet finalised, data frame size is an input

parameter to the software correlator.

4.2.2.4 Channel Abstraction

The network infrastructure sends KAT data frames between stages. However, the cor-

relator stages perform operations on channels, not packets. To retrieve the data for the

particular channel, the interleaved KAT data frame payloadneeds to be reassembled.

This tedious task of extraction and re-assembly of each KAT data frame was hidden

from the software correlator’s processing operations by a channel abstraction function,

as shown in Figure 4.7. This allows the correlator operations to perform functions on a

specific channel stream, hiding all detail of KAT data frame assembly, extraction, trans-

mission and receiving. This greatly simplified the complexity of coding the correlator
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Figure 4.7: Channel Abstraction

operations. We can see this channel abstraction as another layer on the protocol stack as

shown in Figure 4.8.

Figure 4.8: KAT protocol stack with added channel abstraction

4.2.2.5 Final KAT API

The final KAT API provided the additional support of buffering of frames. This allowed

the correlator operations to request a large set of data which spans across multiple frames.

The final design of the KAT API infrastructure that was used inthe implementation of the

software correlator is presented in Figure 4.9.
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Frame
"The packet(a struct) that is passed in
the network, containing some header

variables and the payload"

Channel
’An abstraction of a channel from the

KAT data frame’

FX Correlator Operation
’Performs correlator operations on

channels’

       Main         
’The controlling function’

Frame Buffer
’Gets/Sets channel sample from KAT data

frame buffer’

Get/Set sample

Get/Set sample

[Return control]

Send/Recieve Frame

Network Achitechture

Get/Send Frame

Figure 4.9: Simplified overview of the software correlator infrastructure

4.3 Complex Input

Support for complex data was not implemented into the KAT API. Therefore two samples

were used to represent a complex sample.

4.4 Convolution

Equation 2.9 shows the time domain convolution ofx[n] andh[n]. Input, x[n], passes

through a LTI system,h[n], with output,y[n], as a result. The architecture of the convo-

lution function is shown below.

Figure 4.10: FIR architecture

Convolution is heavily used in the correlator, as it is used to do filtering. Convolution is a

computationally expensive operation, as it requires that asample input,x[n], be multiplied

by every filter coefficient ofh[n], and these results be added together. Ifh[n] has length
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N , thenN multiplications andN − 1 additions need to be performed per output sample,

y[n].

However, equation 2.9 has an equivalent z-domain representation, which is the multipli-

cationX(z) andH(z), whereX(z) ⇋ x[n] andH(z) ⇌ h[n]:

Y (z) = H(z)X(z) (4.1)

This requires only one multiplication operation per out. However, this requires both an

FFT and an inverse FFT to be performed.

It can be shown, as in [16], that if the filter has more than 64 coefficients, then it is faster

to perform FFT multiplication than time domain correlation.

Since the polyphase filter, used in convolution, has the effect of decomposing a proto-

type filter into smaller kernels, it is not viable to perform FFT multiplications. However,

the filtering when calculating the analytic signal representation is not restricted to using

polyphase filtering. There is a section of this filtering which could possibly utilise FFT

multiplication, but for this project all convolution was performed in the time domain.

4.5 Implementation Conclusion

With the implementation completed, the final stage of the project is to test and visually

represent the results.
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Chapter 5

Testing

This chapter is involved with various sets of input data to test particular aspects of the

software correlator.

5.1 Testing Methods

A network infrastructure was not used for testing. The network was simulated with the

use of text streams.

5.2 Testing Tools

The following tools will not be used in the final software correlator, but were created to

emulate components outside the scope of the project and to aid in the development.

5.2.1 Simulated Input (Signal Generator)

In reality, the input stream to the correlator will originate from the ADC. During testing, a

simulated ADC was created with the ability to create a numberof different input signals.

The flow diagram of the signal generator is shown in Figure 5.1.
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Begin Signal_creator

Get Input Arguments

Create output signal of
raw data from the the 

Arguments specification
 

Send off Frame via
Network

Usage: ./sig_gen [options]...

Signal generator

        -h      Display this help.

        -c      Set of channels

        -f      Set the signals inverse frequency 2pi/[f]

        -d      DC offset

        -a      Amplitude of signal. Note if too small the

                quantisation noise will be large

        -s      Signal generated

                [0] sinusoidal      [1] delayed sinusoidal [2] strange

                [3] two sinusoidals [4] three sinusoidals  [5] counter

                [6] amplified noise [7] chirp signal

Current Function: Output the signal of choice

Figure 5.1: Flow Diagram of Signal Generator

5.2.2 Creating Visualisation Tool (Probe)

The raw data output of each stage is difficult to interpret. Therefore a visualization tool

was used to help with debugging and development of the software correlator.

5.2.3 Framing Tool

The input stream data created by the signal generator has no KAT data frame structure.

The Correlator Executable is a generic programme that operates on KAT data frames.

Therefore, the framing tool is used to create this KAT data frame. The flow diagram of

the framing tool is shown in Figure 5.2.
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Begin frame_creator

Get Input Arguments

Create input frame from raw input data
from network

Send off Frame via
Network

Raw stream sampled input data from network
                       (signal_generation)

Usage: ./create_frame [options]...

        -h      Display this help.

        -f      Set the frame size

        -s      Set the sample size

        -c      Set of channels

        -o      Set the output mode.

                  0:the output displayed as is.

                  1:the output grouped in channels.

Figure 5.2: Flow Diagram of the Framing Tool .

5.3 Correlator Executable (Simulator)

The correlator exucutable is a programme that performs the FX correlator operations on

a KAT data frame. This has various methods that implement thecorrelator stages. The

flow diagram of the correlator executable is shown in Figure 5.3.
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Begin Simulator

Get Input Arguments

Create input frame from raw input data
from network

Send off Frame via
Network

Perform Simulation
Operation

Input Frame from previous operation

Usage: ./test-simulator [options]...

        -h      Display this help.

        -p      Specify input parameters [number parameters] [parameters]

        -c      Number of channels [input] [output]

        -f      Specify Output frame size. [output size]

        -t      Specify the type of operation.  1-8

                  [1]:delay             [2]:analytic signal

                  [3]:polyphase filter  [4]:bandwidth reduction

                  [5]:phase correction  [6]:correlation

                  [7]:test              [8]:FIR filter

                  [9]:DDC

        -d      Specify the DC_offset of the incomming signal.

        -x      Set input mode to hex.

        -o      Set the output mode.

                  0:the output displayed as is.

                  1:the output grouped in channels.

                  2:Header and output printed

Function: Runs operations on kat data frames

Figure 5.3: Flow Diagram of the Correlator Executable

5.4 Tests

The testing of the correlator was done in two stages: testingthe KAT API and testing the

various modules’ output against that of the Python simulations.

5.4.1 KAT API

5.4.1.1 Channel separation

In Figure 5.4 20 identical channels streams are produced andran for a period of time.

This is to ensure that the timing and independence of each channel in maintained.

5.4.1.2 Coping with large number of channels

The correlated needs to be able to support a large number of inputs. To test this, 1 million

inputs were transported across the KAT API infrastructure.It is unreasonable to use the

visualisation to plot each of these outputs, therefore the terminal output is shown in Figure

5.5.
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Figure 5.4: 20 Channels separated

Figure 5.5: 1 000 000 channels tested

Another test was run with 20 million channels. This failed torun, due to lack of memory

on executing computer.
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5.4.1.3 Invalid Input Propagation Through System

The effect of having low resolution to the bad inputs is demonstrated below in Figure 5.6.

Invalid input can be dealt with in various ways, depending onuser specification. In this

instance, invalid inputs were set to zero. The frame size here was set to 20 samples.

Figure 5.6: The Effect of Invalid Input with Poor Resolution.
(Top) Input data containing invalid inputs
(Bottom) The output showing lost sectors

5.4.1.4 Effect of Word Size

The effect of word size of the output of the correlator is demonstrated in Figure 5.7. In

this case, 4 bit sampling was used. We can see two of the effects of using a word size that

is too small to represent the data, the jagged edges caused byquanitisation noise and the

distortion of the spectral peaks. The distortion is due to the magnitude being too large for

the word size.
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Figure 5.7: Quantization Noise and Magnitude Out of Range

5.4.2 Software Correlator Testing

In this stage the correlator operations are tested. Due to the time limitations, a correctly

functioning version of the polyphase filtering stage could not be implemented in the KAT

API. However, all other stages presented here were implemented in the KAT API.
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Figure 5.8: The time variation in the input to the correlatorare corrected by the delay
compensator. (KAT API)
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Figure 5.9: Filter test with noise. (KAT API)
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Figure 5.10: Analytic Signal Construction and Down Sampling (KAT API)
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Figure 5.11: Polyphase Filter (python simulation)

51



Figure 5.12: Polyphase Filtering Results compared with Channeliser Results (python sim-
ulation)
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Chapter 6

Conclusions/Results

The requirements of this project as originally stated in chapter 3, are listed below:

• Investigate the operations of the correlator in detail and provide an architectural

design.

• Build onto the API provided by Dr. Marc Welz to support the operations the corre-

lator needs to perform.

• Implement the correlator in ANSI C, using the modified API.

• Ensure flexibility in design.

The software correlator has been investigated in detail. The API provided by Dr. Marc

Welz was modified to support of the desired operations of the FX software correlator.

Although the entire implementation was not completed, the stages that have been com-

pleted, demonstrate that the KAT API developed and the Python simulations investigated,

perform to the desired standard. The KAT API has much flexibility in its design and will

be well suited to be used to continue the development and complete the remaining stages

of the correlator.
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Appendix A: Open Source Tools

The following definitions all came from Wikipedia, http://www.wikipedia.com

Ipython

“An enhanced Python shell designed for efficient interactive work. It includes many en-

hancements over the default Python shell, including the ability for controlling interac-

tively all major GUI toolkits in a non-blocking manner.”

Numarray

Numarray is a mathematical Python Library.

Matplotlib

“Matplotlib is a plotting library for Python which uses syntax similar to MATLAB. “

Mplot3D

This is an extension of Mplotlib, created by John Porter, to support 3D modelling.

GCC

“The GNU Compiler Collection (usually shortened to GCC) is aset of programming

language compilers produced by the GNU Project.” Was used tocompile ANSI C code.

Make

“Make is a utility for automatically building large applications. ”

Octave

“GNU Octave, in computing, a program for performing numerical analysis, similar to

MATLAB”

DIA

“Dia is an free software/open-source general-purpose diagramming software, developed

as part of the GNOME project.”

FFTW3 library

“FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in

one or more dimensions, of arbitrary input size, and of both real and complex data .”

LYX

“LYX is a document processor in which the user only has to care about the structure

and content of the text, while the formatting is done by LATEX, an advanced typesetting

system.“
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Appendix B: Source Code

Source Code is on accomponing CD
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Appendix C: Additional Acknowledgements

David George’s undergrad thesis for an exellent reference[8].

Marc Welz for providing a very useful programme demonstrating his KAT API [20].
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Appendix D: Additional Diagrams and Definitions
Analytic Signal (Another look)

Analytic signals provide one with the very useful ability ofrepresenting a real time signal

as a complex phaser. The classical example is representing asignalcos(ωt) in its analytic

form, E(t), see Figure 6.1.

E(t) = cos(ωt) + jH{cos(ωt)}

E(t) = cos(ωt) + j cos(ωt−
π

2
)

E(t) = cos(ωt) + j sin(ωt)

E(t) = ejωt (Eurler′s formula)

Figure 6.1: Analytic Representation ofcos(ωt)

Constructing an Analytical Signal (in more detail)

Any real time signal can be represented in its analytical form. The analytical form of a

signal is just the positive side of its spectrum.[14] Let,x(t)be a real time signal where

x(t) ⇋ X(F ) then the analytical signalv(t)can be constructed as follows :
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v(t) = I(t) + jQ(t) (6.1)

where,

f0 = desiredPosition− centerF

I(t) = [2x(t). cos(2πf0t)]LPF ⇋

I(F ) = [2X(F )⊗ [
δ(F − f0) + δ(F + f0)

2
]LPF

I(F ) = [X(F − f0) + X(F + f0)]LPF (6.2)

= X+(F + f0) + X−(F − f0)

X+(F ) = {
X(F ) F≥0
0 F≤0 , X−(F ) = { 0 F≥0

F0 F≤0

and,

Q(t) = [2x(t). sin(2πf0t)]LPF ⇋

Q(F ) = [2X(F )⊗ [
−jδ(F − f0) + jδ(F + f0)

2
]LPF

Q(F ) = −jX+(F + f0) + jX−(F − f0) (6.3)

Therefore,

v(t) = I(t) + jQ(t) ⇋ V (F ) = 2X+(F + f0) (6.4)

Over-lap Add Convolution

In this project, the finite length filter,h[n], needs to be convolved with the infinitely long

input signal,x[n]. It is impossible to have an infinite length buffer, and therefore the input

signal was truncated into a number of equal lengthed blocks with lengthL. The inputx[n]

can be decomposed as follows[14]:

x[n] =

∞
∑

r=0

xr[n− rL] (6.5)

where,
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xr[n] =

{

x[n + rL] 0 ≤ n ≤ L− 1

0 otherwise

Figure 6.2: Example of block convolution

To avoid the consequences of circular convolution, each block,xr[n], is zero padded with

P zeros, whereP is the length of filterh[n]. Each of these blocks are convolved indepen-

dently and summed to reconstruct a signal which is equivilant to the linear convolution of

x[n] as shown in Equation 2.9. This process is known as over-lap add convolution.
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