
Design and Implementation of a Hand
Tracking Interface using the Nintendo

Wii Remote

Michal Piotr Wronski

A dissertation submitted to the Department of Electrical Engineering,

University of Cape Town, in partial fulfilment of the requirements

for the degree of Bachelor of Science in Computer and Electrical

Engineering.

Cape Town, October 2008



Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the
degree of Bachelor of Science in Computer and Electrical Engineering in the University
of Cape Town. It has not been submitted before for any degree or examination in any
other university.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cape Town

20 October 2008

i



Abstract

This project designs and implements a 3D hand tracking interface for aiding molecular
visualisation applications. It uses the infrared optical sensor in the Nintendo Wii remote
to track infrared LED light sources attached to a user’s hands.

A review of the Wiimote’s capabilities, sensors and interfaces is presented. Several con-
ceptual models are discussed, and the most appropriate solution is chosen and imple-
mented. A theory is presented that allows for very fast 3D tracking at a slight expense of
accuracy. A 6 degree of freedom hand tracking interface is built that is less computation-
ally intensive compared to proprietary tracking hardware, at a fraction of the cost.

It is concluded that 3D hand tracking is a novel, yet acceptable method of interfacing
with a computer. The implementation allows for easier and more intuitive visualisation
of complex molecules, and can easily be extended and adapted to other Computer Aided
Design (CAD) applications.

ii



Acknowledgements

I would like to acknowledge valuable advice and contributions from the following indi-
viduals:

• Professor Mike Inggs, for his supervision and assistance during the design and
write up of this thesis. His suggestions and oversight proved invaluable, and he
addressed my concerns quickly and professionally.

• Sebastian Wyngaard, for his insight and recommendations for the implementation
of the hand tracking interface, and for providing me with an excellent starting point
from which I could begin my research.

• My family, including Mirek Wronski, Sonja Wronski, Eva Wronski and Jan
Nel. Without your love and support over the years, I would never have accom-
plished what I have.

• Vladimir Mtei, for helping me formulate my ideas and for the numerous technical
discussions we shared that broadened our perspective and knowledge.

I would like to thank the Centre for High Performance Computing for providing me
with testing equipment and a computer for the duration of my thesis, and for allowing me
to use their facilities.

iii



Contents

Declaration i

Abstract ii

Acknowledgements iii

1 Introduction 2

1.1 Background to Investigation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives of the Investigation . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scope and Limitations of this Investigation . . . . . . . . . . . . . . . . . 4

1.4 Plan of Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5

2.1 Console and Peripherals Overview . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Nunchuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Wiimote Technical Specification . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Hardware Details . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Bluetooth Communication . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Software Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Wiimote API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Molecular Visualisation Software . . . . . . . . . . . . . . . . . 14

3 System Design 15

3.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Minimal Tracking with 2 DOF . . . . . . . . . . . . . . . . . . . 17

3.1.2 Basic 4 DOF Tracking . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Highly Accurate 3 DOF Tracking . . . . . . . . . . . . . . . . . 19

3.1.4 6 DOF Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



4 3D Stereoscopic Tracking 23

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 System Implementation 28

5.1 Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Software Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Underlying Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.2 Noise and External Interference . . . . . . . . . . . . . . . . . . 30

5.3.3 Insufficient IR Sources . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.4 Camera Orientation . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Time Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.2 Alternative Light Sources . . . . . . . . . . . . . . . . . . . . . 32

5.4.3 Camera Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.4 Lens Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.5 Camera sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.6 Algorithm Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.7 Accuracy of 3D Algorithm . . . . . . . . . . . . . . . . . . . . . 34

6 Results 35

6.1 Camera Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Camera Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.2 Camera Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.3 Blob Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.4 Pixel Variance Ray Trace . . . . . . . . . . . . . . . . . . . . . . 37

6.1.5 Time Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Analysis of 3D Algorithm and System . . . . . . . . . . . . . . . . . . . 38

6.2.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.2 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.3 IR Light System . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.4 Freedom of Movement . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.5 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



7 Conclusions 42

7.1 Fast 3D Tracking with Low Cost Hardware . . . . . . . . . . . . . . . . 42

7.2 Adequacy of Light System . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3 Improvement over Traditional Interfaces . . . . . . . . . . . . . . . . . . 43

7.4 Viability in Other Applications . . . . . . . . . . . . . . . . . . . . . . . 43

8 Future Work 45

8.1 Automatic Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . 45

8.1.1 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.1.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 45

8.2 Tracking Multiple IR Points . . . . . . . . . . . . . . . . . . . . . . . . 47

A Bluetooth Communications 49

B CD Contents 51

Bibliography 52

vi



List of Figures

1.1 Wii console with the Wiimote (left). . . . . . . . . . . . . . . . . . . . . 2

2.1 Wii Sensor Bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Nunchuk connected to Wiimote. . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Classic Controller connected to Wiimote. . . . . . . . . . . . . . . . . . 8

2.4 Wii Balance Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Wiimote viewed from different angles. . . . . . . . . . . . . . . . . . . . 10

3.1 Layered system development diagram. . . . . . . . . . . . . . . . . . . . 15

3.2 Spiral software methodology. . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Field of view symbols for the Wiimote’s camera. . . . . . . . . . . . . . 16

3.4 Tracking system with 2 degrees of freedom. . . . . . . . . . . . . . . . . 17

3.5 Tracking system with 4 degrees of freedom. . . . . . . . . . . . . . . . . 18

3.6 Camera model showing triangulation principle. . . . . . . . . . . . . . . 18

3.7 System showing implementation of accurate 3 DOF tracking. . . . . . . . 20

3.8 System showing two light sources for 6 DOF tracking. . . . . . . . . . . 20

3.9 Variables in the 6 DOF tracking model. . . . . . . . . . . . . . . . . . . 21

3.10 Two possible Wiimote system layouts. . . . . . . . . . . . . . . . . . . . 22

4.1 An example of mapping pixel coordinates to 3D rays. . . . . . . . . . . . 24

4.2 Ray constructions using two parallel Wiimotes. . . . . . . . . . . . . . . 25

5.1 Photo of the LED system mounted on an index finger. . . . . . . . . . . . 28

5.2 Circuit diagram of LED system. . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Relative IR data images for both Wiimotes. . . . . . . . . . . . . . . . . 31

6.1 Viewing ranges at given distances from the Wiimote. . . . . . . . . . . . 35

6.2 Meauring sensitivity at distances from Wiimote. . . . . . . . . . . . . . . 36

6.3 Pixe variance ray trace function. . . . . . . . . . . . . . . . . . . . . . . 37

6.4 Scatterplot of pixel coordinates. . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Diagram showing freedom of movement. . . . . . . . . . . . . . . . . . 40

vii



8.1 Automatic calibration using several generated planes. . . . . . . . . . . . 46

8.2 Distance differential mapping. . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Bluetooth layer stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1



Chapter 1

Introduction

1.1 Background to Investigation

The Nintendo Wii Remote (Wiimote) is an extremely versatile device that incorporates
both a high precision accelerometer that can capture motion with 3 degrees of freedom,
as well as an infrared (IR) camera that can detect sources of IR light. The Wiimote com-
municates with a host controller, such as the Wii console or a PC, via wireless Bluetooth
technology. Using this wireless connection, it can transmit accelerometer data and IR
camera pixel coordinates at frequencies of 100 Hz.

The components of the Wiimote allow it to be used in a variety of ways, but it is typically
used as the hardware interface for games played on the Wii console. The user holds the
Wiimote and moves it around, and the motion data is sent to the host controller. Connected
to the console is a sensor bar, which features a set of 5 IR Light Emitting Diodes (LEDs)
on each side. The console subsequently calculates the relative 3D location of the Wiimote
via triangulation, based on the relative positions of the IR LED sources detected by the
IR camera.

Figure 1.1: Wii console with the Wiimote (left).

The Wiimote need not only track the IR light being emitted from the sensor bar. It can
be utilised as a tracking device for practically any source of IR light, including candles,

2



IR pens and even natural daylight. Using this idea, the Wiimote can be mounted on a
stationary object, and any sources of IR light within the camera’s field of view will be
accurately tracked. In this particular setup, the accelerometer will not be used since the
Wiimote remains stationary.

Using the concept of tracking any source of IR light, a set of IR LEDs can be mounted
on a user’s hands and detected by one or more Wiimotes. This data can then be used to
reconstruct the approximate positions of the user’s hands in space, which can in turn be
used as the basis of a software interface of a Computer Aided Design (CAD) package or
for navigation in an arbitrary software program. The application in this project focuses
on the effective visualisation and transformation of molecules utilizing hand tracking.

1.2 Objectives of the Investigation

This project investigates the design, performance and accuracies of tracking one’s fingers
using the technique outlined. The objective is to successfully build and test a working
prototype for use in a molecular visualisation interface at the Centre for High Performance
Computing (CHPC) in Cape Town. Several conceptual models are outlayed, and the most
appropriate design is selected and implemented.

The potential of the Wiimote as a tracking device in an engineering context will be anal-
ysed, with emphasis on:

• The underlying hardware functionality and the communication with relevant soft-
ware Application Programming Interfaces (APIs);

• The stability of the system over an extended usage period and with different sources
of IR light;

• The dynamic range, sensitivities and sensing limits of the optical sensor;

• The performance characteristics of the IR camera, such as visible pixel range, field
of view and tracking distance;

The factors influencing the above list are examined and quantitavely analysed.

A hand tracking algorithm is constructed based on the selected design, and is analysed
with respect to its efficiency, viability and execution time. The algorithm is coded and
used in conjunction with a system of LEDs and Wiimotes to perform hand tracking. The
system is analysed for its speed, accuracy, cost and viability and conclusions from these
results are drawn.

An appropriate open source software Wiimote API is examined and modified as necessary
for use in this project. Performance modifications are programmed if possible, in order to
more efficiently interact with the software’s Graphical User Interface (GUI).

3



1.3 Scope and Limitations of this Investigation

This project only deals with the theory and application of hand tracking using the IR cam-
era on the Wiimote. Several available software APIs will be analysed and only the most
appropriate package will be chosen for the application. The application of the API will
be tested in a molecular visualisation package only, although it will be designed to easily
connect to any higher level software applications through a modularized, layered soft-
ware model. The limitation of the project design to only one application is primarily due
to the time constraints of an undergraduate thesis. However, useful insight is gained from
studying the implementation of the device in a high performance computing environment.

1.4 Plan of Development

The scope of the remainder of this document is outlined as follows:

• A detailed literature review is presented, providing details of the underlying hard-
ware of the Wiimote and its various hardware extensions, as well as an in depth
analysis of the software API that will be used

• An explanation of the environment in which the system operates is given, followed
by information regarding the layered approach to how the hardware, software driver
and software GUI communicate in the system.

• A list of the most viable conceptual models is presented, giving their advantages
and disadvantages.

• A hand tracking algorithm is created and described based on the selected model.

• A set of results is given describing the functionality and technical details of the
constructed system, as well as a description of its accuracies and limitations.

• Conclusions are drawn from these results, and recommendations for further use of
the finger tracking system are given.

4



Chapter 2

Literature Review

In this chapter, an overview of the Wii console and its peripherals is given. This provides
some details of the overall system hardware and software interfaces that are used with the
Wii system. Since the Wiimote is the only necessary device in the Wii system for this
project, a seperate section is given to providing an in-depth review of the Wiimote’s ca-
pabilities. An overview of the available software APIs is presented, as well as an analysis
of the library selected for this project.

2.1 Console and Peripherals Overview

The Wii is a video game console produced by Nintendo. Nintendo has attempted to keep
detailed hardware information concerning their console to a minimum. However, several
individuals have reverse engineered the Wii hardware and the technical details are fairly
well known already.1

The core Wii CPU is a PowerPC based processor codenamed “Broadway”, clocked at
729 Mhz. The graphics processor is a custom made GPU from ATI, running at 243
Mhz. It should be evident that these hardware specifications are geared towards the mid-
level market, since Nintendo games are typically not as computationally or graphically
intensive as their competitor’s products, such as the Microsoft XBox 360 and the Sony
Playstation 3.

The Wii has support for up to four Wii Remote controllers, connected via Bluetooth2.
This allows up to four players to connect simultaneously in order to play a game or access
the Wii console functionality. Connected to the Wii console is a sensor bar. The sensor
bar contains 10 IR LEDs, with 5 positioned on each side. The LEDs are angled outwards
in order to maximise the sensing range of the Wiimote’s IR camera. Despite its name,
the sensor bar does not perform any sensing functions. It is merely a set of LEDs that is
powered through a proprietary connector from the Wii console. No data is read from or
written to the sensor bar, and the light intensity is not modulated in any way.

1http://www.wiire.org/
2For an overview of the Bluetooth protocol, consult Appendix A.

5



Figure 2.1: Wii Sensor Bar.

More specific details regarding the console are tabulated below:

Name Description

Memory 24 MB onboard, 64 MB GDDR3, 3 MB GPU texture memory

Storage 512 MB flash memory

Ports SD memory card slot, AV multi-port, 2 USB ports, 4 Gamecube controller
ports, 2 Gamecube memory card ports

Video Up to 480p NTSC or PAL/SECAM

Audio Dolby Pro Logic II-capable

Other 802.11b/g Wi-Fi capability, bcm4318 compatible
The Wii console is roughly 2x as powerful as its predecessor, the Nintendo DS. However,
it is the least powerful mainstream consumer gaming console in its generation, competing
with far more powerful devices. However, it features several novel interfaces and exten-
sions that have made it exceedingly popular, with 3,629,361 consoles having been sold in
2007.3 At the time of writing, a single Wii console can be purchased for R3400 in South
Africa, and a single Wiimote costs R650.4

Several peripheral extensions for the Wii console have been manufactured, and are de-
scribed briefly.

2.1.1 Nunchuk

The Nunchuk controller is a peripheral that is connected to the Wiimote via a cable. It
contains a 3D accelerometer to detect acceleration with 3 degrees of freedom, as well as
an analogue stick and two buttons on the front end of the controller. Data is sent to and
received from the Nunchuk by writing to and reading from a certain address range on
the Wiimote’s flash memory. The Wiimote in turn relays the data to the host controller
via Bluetooth. The constant calibration data for the Nunchuk’s accelerometer, which is
used to determine the correct balance of forces during force measurements, is stored in its
internal flash memory. The calibration data is determined after manufacture and manually

3http://www.nintendo.com/whatsnew/detail/UQkQDsY6UcUbiHdjvIEXMrbwcYk2sbpx
4http://www.incredible.co.za

6



uploaded to the device. These values are added to the accelerometer readings on each axis,
in order to accurately compensate for the effect of gravity on the accelerometer and minor
manufacturing defects.

Figure 2.2: Nunchuk connected to Wiimote.

Classic Controller

This peripheral connects to the Wiimote in a similar fashion to the Nunchuk. It con-
tains two analogue sticks and several buttons for input, but unlike the Wiimote and the
Nunchuk, it contains no accelerometer. However, it has proprietary connecting slots on
its back side in order to directly hook onto a Wiimote, in order to take advantage of the
Wiimote motor rumble and accelerometer functions.

Anascape Ltd filed a lawsuit against Nintendo claiming that the Classic Controller and
other Nintendo devices violated Anascape’s "six degrees of freedom" interface device
patent. In July 2008 the verdict ruled in favor of Anascape and Nintendo was ordered to
stop selling the Classic Controller in the United States until further notice.5

Balance Board

The Balance Board is another peripheral available for the Wii and has a similar shape to a
body scale, featuring a flat rectangular design. The board contains four pressure sensors
situated at each corner. These are used to determine the user’s centre of balance and
body mass index. However, for fully accurate sensing, the board must be positioned on a
flat, hard surface. The board can be powered for up to 60 hours with four AA batteries,
and communicates via Bluetooth with the host controller. It is thus not dependant on the
Wiimote for communications, unlike the Nunchuk peripheral.

5http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aO_ucYxT3eNw

7



Figure 2.3: Classic Controller connected to Wiimote.

The board was closely developed with the Wii Fit game, which utilizes the technology.
Wii Fit contains several training programs where a user can select from yoga, strength
training, aerobics and balance games. The Wii Fit proved to be a huge success, selling
over 1,000,000 copies in its first week.6

In an interview conducted by gaming web site IGN, Shigeru Miyamoto stated that the
Balance Board’s ability to measure weight is probably more accurate than that of a typical
bathroom scale.7 The Balance Board can withstand a mass of up to 300 kg, although the
pressure sensors do not read any values above 136 kg in the Japanese version, and 160 kg
in the “Western” version.

Figure 2.4: Wii Balance Board.

6http://www.gamesindustry.biz/content_page.php?aid=31293
7http://uk.media.wii.ign.com/articles/804/804464/vids_1.html

8



2.2 Wiimote Technical Specification

2.2.1 Hardware Details

The Wiimote is a wireless communications device that transmits and receives data via a
Bluetooth link. It has an on-board Broadcom 2042 Bluetooth driver chip that facilitates
this purpose. The chip is a class 2 Bluetooth device that fully supports the Bluetooth
human interface device (HID) standard and comes complete with a Bluetooth stack, a 16
bit 8051 microprocessor and on-board RAM/ROM memory.8 The Wiimote does not use
any of the authentication or encryption features of the Bluetooth standard. Appendix A
gives an overview of Bluetooth communications technology.

The Wii Remote contains a 16 KB EEPROM chip from which a section of 6 kilobytes
can be freely read from and written to by the host controller. This allows for easy storage
and transportation of custom application data, given the wireless nature of the Wiimote.
Certain hardware and software calibration settings, as well as interface options, can be
stored in the Wiimote in this fashion and can be accessed anywhere by an appropriate
host.

Perhaps the most relevant hardware component of the Wiimote for this project is the IR
camera, located at the front end of the remote. On May 12th, 2006, PixArt announced
a strategic relationship with Nintendo to provide object tracking technology exclusively
for the Nintendo Wii Remote.9 The camera features a resolution of 1024x768 with built-
in hardware for IR “blob” tracking of up to 4 points at 100Hz. The camera contains
a Charge Coupled Device (CCD) with an IR filter attached that senses light within the
near-infrared spectrum, at wavelengths of greater than 800 nm. There are reports that the
camera operates at 128x96 resolution, and uses 8x8 sub-pixel analysis to create a virtual
resolution of 1024x768. This, however, is abstracted from the higher level user interface
and only a constant pixel resolution of 1024x768 is made available to software APIs.
Due to Bluetooth transmission bottlenecks, it would be highly inefficient to transmit all
pixel values of the camera at its operating frequency, and only information concerning
the detected IR blobs are transmitted. Blobs are essentially IR hot spots that the camera
senses, from which pixel coordinates and relative blob sizes are extracted and transmitted
across the wireless link. Any IR light source can be tracked to some degree, including
incandescent lamps, torches, candles and daylight. IR LEDs are available that can be
tracked accurately and efficiently, due to their specially matched IR wavelengths, high
luminescence and small active areas, making them ideal for use in applications using the
Wiimote’s optical sensor. According to recent reports, 940 nm IR sources are detected
with approximately twice the intensity of equivalent 850 nm sources, but are not resolved
as well at close distances. If the IR filter is removed from the camera, it can track any

8http://www.broadcom.com/collateral/pb/2042-PB03-R.pdf
9http://www.pixart.com.tw/investor.asp?sort=4&learname=level03

9



bright object.10

The motion of the remote is sensed by a 3-axis linear accelerometer located towards the
front of the remote. The integrated accelerometer circuit is the ADXL33011, manufac-
tured by Analog Devices. This device is physically rated to measure accelerations over
a range of at most +/- 3g with 10% sensitivity. Inside the chip is a mechanical structure
which is supported by springs built out of silicon. Differential capacitance measurements
allow the net displacement of the tiny mass to be converted to a voltage, which is then dig-
itized. The voltage reading is proportional to the acceleration of the tiny mass inside the
circuit. It should be noted that acceleration is not directly measured with this technique,
but the force that the mass exerts on the test springs attached to the capacitors is mea-
sured. The digitized values are added to the internally stored calibration constants, which
are used in a similar nature to those of the Nunchuk. When at rest, the Wiimote reports
a vertical force reading of 1 g (9.81 m/s2) due to gravitational pull on the internal mass.
When dropped, the Wiimote reports an acceleration of approximately 0. Manufacturing
and calibration defects do cause some intrinsic zero offsets, but the chip is self-calibrated
during manufacture to produce offset values for any measurement inaccuracies present.
These calibration values are stored near the start of the Wiimote’s flash RAM.

Figure 2.5: Wiimote viewed from different angles.

There are 12 buttons on the Wiimote. Four of them are arranged into a directional pad as
shown above, and the rest are spread across the controller. The proprietary connector port
for the Nunchuk and classic controller is shown on the left of the above image. The IR
camera housing is shown on the right side of the image, which is the front of the Wiimote.
The bottom edge of the remote body contains 4 blue LEDs. These LEDs are used to
indicate that the Wiimote is in discoverable mode by blinking, and in normal game play
are used to show battery level. This functionality can be overridden via a Wiimote API
on a PC.

In order for a host to interface with the Wiimote, it must be put into discoverable mode by
pressing the 1 and 2 buttons simultaneously. Once in this mode, the 4 Wiimote LEDs will
flash on and off and a 20 second period will be allocated in order to connect to a Bluetooth

10http://wiibrew.org/wiki/Wiimote#IR_Camera
11http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf

10



HID driver on the host. If connection is not established within this period, the Wiimote
will automatically switch off. A Bluetooth dongle connected to a PC with an appropriate
Wiimote API installed is sufficient to establish a complete full duplex connection to the
Wiimote.

The Wiimote also contains a small low-quality speaker, used for short sound effects dur-
ing game play. The sound is streamed directly from the host, and the speaker has some
adjustable parameters. At the time of writing, the speaker functionality has not been com-
pletely reverse engineered yet and produces very low quality sound output with libraries
that support its functionality.

2.2.2 Bluetooth Communication

The Wiimote is recognized as an Human Interface Device (HID) class peripheral, and
the Bluetooth HID standard allows devices to be self-describing using an HID descriptor
block. This block includes an enumeration of reports that is transmitted to the host via the
wireless link at the beginning of communication. The HID descriptor lists report IDs and
payload sizes for the duplex communication link between the host and the controller.

The Service Discovery Protocol (SDP) is the basis for discovery of services on all Blue-
tooth devices. Using the SDP device information, services and the characteristics of the
services can be queried and, subsequently, a connection between two or more Bluetooth
devices may be established. Like all Bluetooth HID devices, the Wiimote reports its HID
descriptor block when queried using the SDP protocol.[3] When queried with the SDP,
the Wiimote reports the following information shown below. A simple query can be made
in Linux using the sdptool command.

Attribute Data

Name Nintendo RVL-CNT-01

Vendor ID 0x057e

Product ID 0x0306
The values in the above table are unique to the Wiimote and identify it among the range
of all registered Bluetooth devices. All Wiimotes also have a built in mac address inside
of the Broadcom communications chip that allow for unique hardware referencing during
Bluetooth communication. The following table shows the HID descriptor block for all
communication originating from the host:

11



Report ID Payload Size Known functions

0x11 1 Player LEDs

0x12 2 Force Feedback

0x13 1 IR Sensor Enable

0x14 1 Enable speaker

0x15 1 Controller status

0x16 31 Write data

0x17 6 Read data

0x18 21 Speaker data

0x19 1 Mute speaker

0x1a 1 IR Sensor Enable 2
All Wiimote APIs use the above information to transmit data using the Bluetooth link.
For example, in order to enable the Wiimote’s IR camera, a packet needs to be sent from
the host containing the hexadecimal ID 0x13 and a positive integer in the 1 byte payload
field.

2.2.3 Limitations

Unfortunately much information about the Wiimote has been garnered from reverse en-
gineering of the PCB and hardware integrated circuits, since Nintendo has been rather
secretive with releasing detailed technical information for the Wii and its peripherals.
Several details of the design are not yet fully understood, and access to certain functions
are still restricted. At the time of writing, the following details of the Wiimote’s design
have not yet been successfully reverse engineered:12

• Enabling the classic controller connected to the Wiimote, and reading events from
it such as button presses and joystick movements;

• Accessing the Wiimote’s power button functionality;

• Successfully playing sound on the speaker without distortion;

• The format of half rate IR reports from the camera;

• Gaining complete control of the Wiimote’s expansion port;

• Executing arbitrary code on the 8051 processor;

• A full map of all the available registers is not yet known.

12http://www.wiili.org/index.php/Wiimote_Reverse_Engineering

12



2.3 Software Selection

2.3.1 Operating System

An Ubuntu Linux system was chosen for the basis of this project, due to its vast array of
development tools and easy access to the source code of all relevant libraries. Thus, only
Wiimote interface libraries for Linux are considered.

The BlueZ library for Linux facilitates Bluetooth communications. All of the considered
Linux Wii libraries interface with BlueZ for access to the underlying Bluetooth protocol.
It provides a complete modular implementation of the Bluetooth stack and functional-
ity. It also supports multithreaded data processing and symmetric multiprocessing, while
allowing access to multiple Bluetooth devices simultaneously.13

2.3.2 Wiimote API

At the time of writing, there is a vast array of different Application Programming Inter-
faces (APIs) for Linux that interface with the Wiimote. The selection for this project is
based on the library that provides the following characteristic features:

• Clean, simple and efficient codebase that can easily be extended.

• Appropriate documentation of the library’s functionality and internal workings.

• Access to most, if not all, of the Wiimote’s functionality.

• Access to multiple Wiimotes simultaneously.

Six packages were analysed for their appropriateness and conformity to the above re-
quirements, and the library that matched the specifications of this project most optimally
was cwiid14, a lightweight event based API. This library has been written in C for faster
processing and easier access to underlying hardware mechanisms.

Message packets are read from the Wiimote via a callback function that is registered
once connection to the Wiimote has been established. All received packets are decoded
and then further processed in the customized callback function. Each received message
contains the following information:

• A message type, which indicates the context of the message data. This is used to
distinguish between the available input readings, including accelerometer data, IR
tracking data, button presses and battery level.

13http://www.bluez.org/about/
14http://abstrakraft.org/cwiid/

13



• A timestamp, which indicates the exact time of message generation. This is useful
in time based processing, although typically a first-come-first-served approach is
used when processing packets.

• Message payload, which contains the specific data values relating to the message
type.

Various functions of the Wiimote, such as IR tracking, LED control and motion capture
can be selectively enabled and disabled by toggling bits in a binary sequence, known as
a report mode. The bit sequence, which is represented by an unsigned character type in
C, allows 8 bits to be independently changed simultaneously. The updated report mode is
passed to a library function which updates the corresponding parameters on the Wiimote.

Accelerometer readings and button presses of a connected Nunchuk are also processed by
the library and sent through to the callback function for further processing. Much of the
underlying implementation, such as low level hardware communications and packet pro-
cessing, is abstracted from the front end application. This enables easy rapid development
with simple, but almost fully complete, access to the Wiimote’s functionality.

2.3.3 Molecular Visualisation Software

There are several packages that facilitate 3D visualisation of molecules in Linux. Avo-
gadro15 was selected for this project. It is a stable cross-platform, open source package
that has been in development since late 2006.

Avogadro is an application that has been developed with the idea of extensibility in mind.
Plugins are easily created and installed in Avogadro, providing full access to its underly-
ing functions and interfaces. It includes interactive tools, such as an embedded Python
interpreter, to run commands and Python scripts in real time that access various widgets
in Avogadro. It can quickly process and display complex molecules using OpenGL.

This project aims to create an intuitive hand tracking interface to visualize complex
molecules in Avogadro. The molecular viewport, where the molecules are rendered in
Avogadro, is accessed using its internal camera widget. This allows for easy perspective
transformations that are directly available to plugins, such as scaling, rotation and trans-
lation of molecules. A plugin can be compiled with the Avogadro package, and is later
accessed via Avogadro’s main menu. Thereafter, a plugin can register a “redraw” func-
tion which is called per frame update of the molecular viewport. Once the frame rate is
measured, it is possible to extract frame timing information in order to standardize the
transformations of molecules at constant velocities, independent of frame rate.

An in-depth analysis of conceptual models for the hand tracking application is presented
in Chapter 3.

15http://avogadro.openmolecules.net/wiki/Main_Page

14



Chapter 3

System Design

3.1 System Layout

A modular approach is taken when designing the system. The overall system layout
is fairly complex, and the author has chosen to take a layered approach to providing an
adequate solution to the given problem. The overall system layout is presented as follows:

IR light sources

Wiimotes

Hardare layout

Wii interface librry (cwiid)
IR raw pixel data, button presses

3D Stereoscopic calibration
Zoom, pan, rotate value generation

Mapping pixel data to perspective transformations

Wiitrack coordinate interpreter

Zoom, pan and rotate moleculsing camera widget
Maps given perspective transformation commands

Input mapper

High Level Software (Avogadro)
Render molecules

Figure 3.1: Layered system development diagram.

15



The above system is developed using a spiral methodology. The spiral methodology re-
flects the relationship of tasks with rapid prototyping, increased parallelism, and concur-
rency in design and build activities. The spiral method should still be planned methodi-
cally, with tasks and deliverables identified for each step in the spiral.1

Figure 3.2: Spiral software methodology.

In order to implement the following proposed algorithms effectively, certain intrinsic vari-
ables of the camera need to be known, including the fields of view in both the horizontal
and vertical directions. The perspective distortion of the lens is not taken into considera-
tion in the proposed algorithms, due to the assumption that the camera represents a linear
homogeneous system in this project.

Figure 3.3: Field of view symbols for the Wiimote’s camera.

One or more IR LEDs are connected to the periphery of a user’s hands, and sensed by
one or more Wiimote cameras. These LEDs are in turn sensed as IR hotspots by the
Wiimote system. Regardless of the design selected, the molecular viewport updates are
performed on a per-frame basis. After each successive frame, the differences in the Wi-
imote camera’s recorded IR blob positions between the current frame and the previous
frame, measured in pixels, are calculated. These differences are multiplied by the time

1http://www.hyperthot.com/pm_sdm.htm

16



elapsed between the successive frames in order to create a time-relative velocity vector,
thus standardizing the transformation rates and make the molecule’s motion independent
of frame rate. The values are also multiplied by pre-determined constants to allow for
smooth molecular transformations, according to what is intuitively the optimal transfor-
mation rate of the molecule. After the values required for translation, rotation and scaling
have been established, Avogadro’s camera widget is accessed in order to apply the per-
spective transformations.

Several design concepts are presented in this chapter. The most appropriate design is
selected and built, as well as tested according to the testing methodology given afterwards.
The conceptual designs are presented in increasing orders of complexity, implementation
and execution cost, and degrees of freedom (DOF).

3.1.1 Minimal Tracking with 2 DOF

A fairly basic, albeit crude, design can be constructed with a single LED light source
attached to one hand, and a single Wiimote as shown.

Figure 3.4: Tracking system with 2 degrees of freedom.

The Wiimote detects the single IR light source, and reports its (x,y) position to the host.
The host uses the rate of change of x and y coordinates as the basis for tracking a hand
with 2 degrees of freedom as the subject is able to pan vertically and horizontally. It is
important to note that the camera’s measured x coordinates need to be reversed, since the
camera reports its values from its own reference point. Thus if the the user moves left, the
camera reports the LED light source as moving to the right, and vice-versa.

This design is very simple, understandable and fast to implement. No computationally in-
tensive post processing is required on the data. However, since there is no depth tracking,
the sensitivity of the camera changes as the subject moves closer and further away. Thus,
if the subject is further away he will need to move his hand in greater steps of distance to
compensate for the camera’s larger viewing range at that point. More complex molecular
transformations, such as rotation and zooming, are not available with this technique.

17



3.1.2 Basic 4 DOF Tracking

Basic 4 DOF Tracking, as demonstrated in a head tracking video made by Johnny Chung
Lee2, can be implemented to track a person’s hand. This design involves using two
sources of IR light of a fixed known distance apart, and a single Wiimote. A user’s
distance from the camera can be calculated by using the distance between the two mea-
sured light sources from the camera. If the camera reports two IR sources (x1,y1) and
(x2,y2), a relative z coordinate can be calculated by using the inverse of the Pythagorean
distance measured between the two points. The further the subject is from the camera, the
closer the two points become due to the camera’s perspective. The relationship between
the subject’s distance from the camera and the pixel distance between the points is linear,
but due to non-linear perspective distortion of the camera’s lens, the greatest change in
measured pixel distance occurs when the subject is closest to the camera.

Figure 3.5: Tracking system with 4 degrees of freedom.

If the camera’s horizontal field of view is represented as the symbol σ , where x is the
fixed distance between the two points, and d is the subject’s distance from the camera, the
basic camera model may be represented as shown.

Figure 3.6: Camera model showing triangulation principle.

2http://www.cs.cmu.edu/~johnny/projects/wii/

18



The width of the horizontal viewing range at a distance d from the camera can be shown
as follows.

w = (2tan(σ)).d

If the two sources of light are not rotated in any way, and are kept horizontally parallel
to the ground, then an algorithm can be constructed based on the ratio of the measured
pixel distance between the light sources r, compared to the overall horizontal viewport
pixels. The ratio between r and its maximum value of 1024 can be equated to the ratio
between the physical distance between the LEDs, x, and the horizontal viewing range w

at a distance d from the camera. The concepts are mathematically formulated as follows.
x
w .1024 = r

x
[2tan(σ)].d .1024 = r

The above equation shows linearity between distance from the camera d and the cor-
responding horizontal pixel distance r. If the subject moves away from the camera, a
constant proportional amount of measured pixel distance will be decreased. The symbols
x and σ are system parameter constants.

This design is fast and simple, and is similar to the method used in the Wii console to
measure the player’s relative location. However, LEDs must face directly ahead and may
not be arbitrarily rotated, and lens distortion does have an impact at excessively large
and small distances from the camera. It is a simple technique of implementing 3 DOF
tracking. Since the LEDs can be rotated along the z axis without distorting the measured
pixel distance between them, the measured angle between the pixels allows for another
degree of freedom. The system thus essentially tracks an object with 4 DOF, including
the 3 translational degrees of freedom as well as the angular roll of the object. Pitch and
yaw are not tracked using this system.

3.1.3 Highly Accurate 3 DOF Tracking

The concept presented previously may be modified somewhat to allow for more accurate
tracking of a subject. The model presented requires two Wiimotes, but only one point
source of light.

The two Wiimotes are placed parallel to each other and at a fixed distance apart. The
respective 2D pixel coordinates of the same light source in both cameras are stereoscop-
ically resolved into a 3D coordinate, which represents the IR Light source’s true position
in 3D space. The basic system layout is shown as follows:

Overall, this system is both financially and computationally more expensive than the pre-
viously presented models. It does not contain any rotational degrees of freedom since the
rotation of a single point source of light cannot be measured. However, with an additional
light source being added to the system, a full 6 DOF can be established by analysing the
angular and positional differences between the two light sources in 3D.

19



Figure 3.7: System showing implementation of accurate 3 DOF tracking.

Chapter 5 provides an explanation of the underlying details of implementation using this
method. It will be shown that this technique is effective, powerful and of adequate accu-
racy for this project’s implementation.

3.1.4 6 DOF Tracking

In order to implement complete tracking of a subject with a full six degrees of freedom
- that is, movement along all 3 axes with independent rotation along each axis, an extra
point source of light needs to be added to the previously presented conceptual model. This
is illustrated below.

Figure 3.8: System showing two light sources for 6 DOF tracking.

All six degrees of freedom can be effectively independently resolved using 3D tracking
with 2 points sources of light. The respective angles and distances used in the tracking
algorithm are shown below:

In this project, the vertical angle α between the two points in 3D is mapped to the angular
roll of the rendered molecule on the screen. The horizontal angle β determines the yaw
of the molecule. The distance d between the light sources is mapped proportionally to

20



Figure 3.9: Variables in the 6 DOF tracking model.

the zoom of the molecule. The central position between the two light sources gives an
indication as to where the average location of the LEDs are in 3D space. The respective x
and y values of this central coordinate are used for horizontal and vertical panning of the
molecule. The z coordinate, that is the subject’s distance from the camera, is mapped to
the pitch of the molecule. All of this information is further explained in Chapter 5.

This system is more complex and computationally costly compared to the previous algo-
rithms, but can effectively track a subject with all of its mechanical degrees of freedom.
However, the LEDs must always remain in the cameras’ viewing ranges and need to face
the cameras at all times in order for the 3D tracking algorithm to be effective. Thus there
are two important restrictions that are considered:

• The subject needs to move within both the cameras’ fields of view simultaneously
in order for proper system functioning.

• Both cameras need to capture all point sources of light continuously and thus the
lights need to face the cameras at all times.

The best approach to improve the restrictions given above would be to move the cameras
further apart and point them inwards slightly, resulting in improved area of the resulting
combined viewport. This is illustrated as follows:

In the figure, the rotated Wiimote layout shown on the right has less overall viewing
area compared to the parallel Wiimote orientation. However, as the arrows indicate, the
shape of the combined area is more intuitive in allowing for more natural movement
without crossing the boundaries of the camera’s viewports, as may be the case in the initial
implementation. It also allows for more flexible rotation of the actual LEDs, which require
having a line of sight to the cameras. This would be the ideal setup in a Computer Aided
Design (CAD) implementation of this technology, where the user would not move his/her
hands too far away from their resting positions, and it would allow for more accurate
tracking. In this project’s implementation however, the camera’s are stationed parallel for
improved measuring accuracy.

21



Figure 3.10: Two possible Wiimote system layouts.

The 6 DOF tracking presented in this section is selected as the design for this project. The
author’s 3D stereoscopic tracking algorithm is explained in chapter 4, and implementation
details are presented in Chapter 5.

22



Chapter 4

3D Stereoscopic Tracking

4.1 Overview

The human visual system operates with a complex neural feedback mechanism that re-
solves each image captured by the eyes into a 3D landscape. Effectively, two or more
cameras can be used to track 3D motion of an object. This project involves the tracking
of point sources of light, and so the burden in calibrating the cameras and extracting im-
portant pixel data is much reduced because only individual points of known coordinates
need to be tracked. However, the fundamental concepts remain the same.

In order to track an object in 3D space with 2 cameras, the intrinsic parameters of each
camera need to be known.[7] These intrinsic parameters are typically stored as a matrix,
and include data such as the focal length, image center and size of the image sensor of
the CCD. Typically a distortion skew matrix is also used to account for lens distortion
that exists in all lens cameras. However, in this project the Wiimote camera is assumed
to be a linear homogeneous system and only two important properties of the camera are
needed for internal intrinsic calibration. These values are the horizontal and vertical fields
of view of the camera.

In order for both cameras to be referenced using the same coordinate system, the extrinsic
parameters of the camera system need to be resolved.[8] These include the translation and
rotation vectors of one camera in relation to the other. In the constructed model, the cam-
eras are pointed parallel outward and are located a fixed distance apart from each other,
resulting in zero effective rotation and a simple translation in one axis. This is a proof of
concept project and the model can easily be extended to incorporate more advanced trans-
formations. The left-most Wiimote, from the reference point of the cameras, is identified
and selected as the origin. All vector geometry is constructed with reference to the left-
most Wiimote’s position as the origin. The right-most Wiimote lies along the x-axis at a
known distance from the origin, as manually measured when the system is constructed.

23



4.2 Implementation

Once the camera system’s intrinsic and extrinsic parameters are known, it is fairly quick
to resolve a point source of light into a 3D coordinate.[4] The method presented here is a
technique using vector geometry and is taylor made for use in the Wiimote system.

It is important to note that every pixel in the camera can be mapped to a unique ray
in 3D space, which propagates outward from the pinhole camera’s own origin.[5] As
an example, if a recorded pixel of light from the Wiimote camera has the coordinates
(0,0), then a ray may be constructed that propagates along the bottom left boundary of
the camera’s viewport and extends outwards. The exact direction of the ray depends
on the camera’s intrinsic parameters, namely the horizontal and vertical fields of view.
This concept is illustrated in figure 4.1, with Ray 0 being the ray mapped to the pixel
coordinates (0,0), and a ray (x,y,z) being constructed from an arbitrary coordinate from
a detected IR light source. The values of σ and θ are the camera’s horizontal and vertical
fields of view, respectively.

Figure 4.1: An example of mapping pixel coordinates to 3D rays.

As shown in figure 4.1, any sensed light source has a pixel value associated with it, and
will lie on any point in the constructed ray. The mathematical approach taken in this
project involves calculating the normalized pixel values (x̂, ŷ) such that they lie within the
range [−1;1], scaled from the normal pixel range of [0;1024] and [0;768]. The normaliz-
ing equation is given below.

x̂ = 2 x
1024 −1

ŷ = 2 y
768 −1

As explained, any pixel with coordinates (x,y) can be mapped to a ray originating from
the origin with parameters x′ y′ z′

T
. The Wiimote is assumed to point in the direction

(0,0,−1), straight down the z axis, in its own coordinate system.

x′

y′

z′
=

x̂.tan(σ/2)
ŷ.tan(θ/2)

1

24



With a single camera’s measured values, a ray is the greatest amount of information one
can extract from the 3D location of the light source. If another camera is added to the
system that senses the same light source, the setup appears as follows:

Figure 4.2: Ray constructions using two parallel Wiimotes.

As shown, with two cameras two separate rays are constructed. Since the orientation
of one camera to another is known, a plane is formed between the locations of the two
pinhole cameras and the 3D point. The 3D point is resolved by the intersection of the two
known rays r1 =(x1,y1,z1) originating from the origin, and r2 = (x2,y2,z2) originating at
the point (D,0,0). The units of D determine the units of the final 3D calculated coordinate,
and in this project all real world units are measured in centimetres.

If the cameras are pointed inwards for a more efficient viewing angle as shown in figure
3.10, the only underlying difference is the rotation of both constructed rays (x1,y1,z1)
and (x2,y2,z2) around their y axes by the angles they are rotated from their normal rest
orientation. If the angle between the Wiimotes is γ , and they are assumed to be rotated
by the same angle from their origins, the left Wiimote needs to have its constructed rays
rotated by γ

2 around the y axis, and the right Wiimote needs its rays rotated by − γ

2 . This
optional addition to the system can be implemented using the following yaw rotation
matrix, where λ is the angle of rotation about the y axis:

M(λ ) =
cos(λ ) 0 −sin(λ )

0 1 0
sin(λ ) 0 cos(λ )

The new left Wiimote ray is constructed with the product M( γ

2).r1 and the right ray, by
symmetry, is constructed with the product M(− γ

2).r2.

Algorithms for the intersection of two rays1 are well documented, and the final solution
is presented here.

1http://www.realtimerendering.com/intersections.html

25



With two parallel Wiimotes, the two constructed rays from the two pinhole cameras to the
sensed IR light position may be parametrized as follows:

R1 = o1 +d1.t1

R2 = o2 +d2.t2

where

o1 =
0
0
0

o2 =
D

0
0

d1 =
x1

y1

z1

d2 =
x2

y2

z2

t1, t2 ∈ R > 0

The values of t1 and t2 that provide the points of intersection of the rays R1and R2 are as
follows:

t̂1 =
det( o2−o1 d2 d1xd2 )

|d1xd2|2

t̂2 =
det( o2−o1 d1 d1xd2 )

|d1xd2|2

Due to the camera setup being a physical system, there will be measuring inaccuracies and
errors. The two Wiimotes will never be perfectly parallel and the two rays will realistically
almost never cross perfectly, but the values of t̂1and t̂2 give the points on each ray that are
the closest to each other, irrespective of whether the rays actually intersect. The final 3D
coordinate x is calculated as the average of the two calculated 3D points as follows:

x = o1+d1.t̂1+o2+d2.t̂2
2

The presented algorithm can be extended with additional Wiimotes. If the extrinsic vari-
ables of all n cameras in the system are accurately measured, a 3D point xican be created
from each unique pairing of two Wiimotes. With 3 Wiimotes (namely W1,W2,W3) in the
system, the algorithm is executed 3 times. The 3D location of the same point source can
be calculated using the constructed rays between W1 and W2, W2 and W3, and W1 and W3.
The points are aggregated and averaged to form an accurate representation of the 3D light
source. The only requirement is that the light source remains in all of the cameras’ fields
of view at all times. The averaging equation simply calculates the mean coordinate of all
calculated 3D points:

x = ∑xi
n

26



4.3 Extensions

Much research is being conducted into automatic calibration of the intrinsic and extrin-
sic parameters of camera systems for use in 3D vision. In this project, all parameters
are measured manually beforehand, and are used as constants in the programming code.
However, potential problems with this system may include:

• Unusual changes in the system that may change the Wiimotes’ orientation or view-
ing angles, such as bumping one of the Wiimotes out of place.

• Restriction of only 2 Wiimotes in the system, leading to less measurement accuracy.

• No consideration of lens distortion or skewing.

Due to the time constraints of an undergraduate thesis project, the above problems could
not be suitably addressed in the model. However, research into possible solutions has
been conducted and is made available in the final chapter on future work.

27



Chapter 5

System Implementation

5.1 Hardware Interface

Two Wiimotes are used to reconstruct the 3D coordinates of 2 respective IR LEDs in
space. A single IR LED is attached to the tip of each index finger, along with a small
Lithium coin cell, resistor and connecting wires. The circuit is small enough to be attached
to the tip of the index finger of a glove which can be easily equipped on the user’s hand.

Figure 5.1: Photo of the LED system mounted on an index finger.

The two Wiimotes are placed parallel to one another, 20 cm apart. Both Wiimotes sense
IR light data from both of the LEDs at the same time, which is in turn sent to the host
computer and, subsequently, the software interface. In order to distinguish between the
2 LEDs detected, an algorithm is used which assumes the user’s hands do not cross one
another when navigating through the interface. Thus, it is guaranteed that the left most IR
light as measured by both Wiimotes corresponds to the user’s right hand, and vice versa.

5.2 Software Interface

Avogadro is a molecular visualisation package. It has been designed to be easily ex-
tendible with an efficient plugin architecture that has direct access to underlying func-
tionality. A plugin is constructed for this project that receives IR tracking data from two

28



pre-calibrated Wiimotes, and modifies the molecular viewport accordingly using transla-
tion and rotation functions. The Avogadro package includes direct access to its internal
camera widget, which plugins can use to access functions for transforming the viewport.

In the hand tracking system, two 3D points are constructed using the formulas presented
in the previous chapter. The 3D points are constructed once per rendered frame of the
molecular viewport, and not with every camera update. The cameras update information
at 100 Hz but the rendering frame rate may be significantly lower than this. Inter-frame
updates are largely irrelevant in this application and are thus discarded. If the time elapsed
between each rendered frame is measured and previous 3D coordinates of the light sources
are stored, accurate velocity and even acceleration vectors can be constructed to record
the exact motion of both hands. Although acceleration isn’t explicitly used in this project,
velocity vectors of the user’s hands form the basis of the interface. If the time between
rendered frames is δt , and the 3D coordinates of a single light source in two successive
rendered frames are stored as xnewand xold, an example of how a single velocity vector δx

δ t

is constructed is shown below:
δx
δ t = xnew−xold

δt

The interface incorporates 6 degrees of freedom, and the hand-transform mappings are
presented as follows:

Hand Movement Viewport Transformation

Moving hands closer together Zooming into molecule

Moving both hands up,down,left or right
simultaneously

Panning horizontally and vertically

Moving left hand down and right hand up,
or vice-versa

Rotating molecule along z axis (roll)

Moving left hand forward and right hand
backward, or vice-versa

Rotating molecule along y axis (yaw)

Moving both hands forward or backward
simultaneously

Rotating molecule along x axis
(pitch)

Velocity vectors are used to construct a model of the hand movement in all of the cases
shown above.

5.3 Underlying Details

The 3D point reconstruction system is developed using the theory outlined earlier. How-
ever, there are certain nuances relating specifically to this application that are considered.

5.3.1 Components

Aside from the two Wiimote cameras used for sensing IR Light, the constructed LED
system is made as simple as possible in order to maximise usability, battery life and

29



aesthetics.

Figure 5.2: Circuit diagram of LED system.

Each circuit is attached to the tip of the index finger of a glove which can be worn by the
user. The resistor limits the current and its value is chosen such that the IR LED emits
light at its maximum rated current and power when switched on. The LED selected for
the final design is the Siemens SFH484 IR LED1, but several alternate light sources are
considered, as described in section 5.4.2.

5.3.2 Noise and External Interference

Daylight, incandescent lighting and similar light sources can be needlessly detected by the
Wiimote. The Wiimote senses these sources of noise as random IR points that may flicker
and move around the camera’s field of view sporadically. There are several methods for
filtering noise out, and an effective noise reduction algorithm is used in this project that is
described as follows.

The Wiimotes are designed to sense up to 4 sources of IR light. With this project only 2
IR LEDs are used, leaving up to 2 additional IR sources to be sensed. If there are more
than 2 measured sources of light, the two most likely positions of where the IR LEDs are
selected based on the last successful data capture of the Wiimote. Given the relatively
slow nature of one’s movements when compared to a 100 Hz camera, the new measured
positions of the IR LEDs will be very close to the old values. With these nearest values
being selected as the LED positions, all other IR sources are assumed to be noise and are
discarded.

5.3.3 Insufficient IR Sources

It sometimes occurs that one or more LEDs are blocked from view temporarily. This could
be as a result of the user rotating or moving the LEDs outside of either of the cameras’
fields of view. With the absence of noise, this results in fewer than the 2 required IR
sources captured by the Wiimote. In this situation, the plugin ignores the Wiimote’s data
capture for that frame, effectively rendering it non-existent. Once the IR LEDs come back
into view again, data processing continues normally. Thus, when there are insufficient IR
sources, the sensor data is ignored and the molecular viewport is not modified.

1http://harrier.itc.if.ua/doc/opto/irda/siemens/sfh484.pdf

30



5.3.4 Camera Orientation

The plugin establishes Bluetooth links with 2 Wiimotes during initialization, but initially
has no information regarding where each remote is located in the system. In order for the
presented algorithm to be effective, it needs to differentiate between the left camera and
the right camera in space, because the left camera is mapped to the origin of the global
coordinate system used. This problem is easily solved by capturing a sequence of IR light
locations from both cameras. If the cameras track the same sources of light as in this
project, it logically follows that the left-most Wiimote will capture light data towards its
right hand side, and the right-most Wiimote will correspondingly capture IR blobs to the
left of the same measured light sources in the left-most Wiimote. The leftmost Wiimote
is selected as the one with the largest sum of all captured x coordinates of all measured
light sources. This concept is illustrated as follows:

Figure 5.3: Relative IR data images for both Wiimotes.

5.4 System Testing

The Wiimote is extensively tested in this project, and accurate quantitative attributes are
measured. Once sensing boundaries, accuracies and sensitivities of a single Wiimote are
established, the stereoscopic hand tracking system is assembled and extensively tested.
Details of all tests conducted are presented here.

5.4.1 Time Dynamics

A Wiimote is left unchanging over an extended period of time in order to establish whether
the passage of time has any effect whatsoever on the measurement accuracies or stability
of the system. The effect of extended usage on battery life is analysed in order to deter-
mine the system’s maximum operational time between battery changes. This includes the
maximum power-on time and discharge rates of both Wiimotes, and of the LED system
attached to the user.

31



5.4.2 Alternative Light Sources

An analysis of several IR light sources is conducted, including the following:

1. Siemens SFH484 IR LED2

2. Siemens SFH487 IR LED3

3. NTE3027 IR LED4

4. Candle light

5. Mini Maglight® incandescent bulb

These light sources are tested for their viability for use in 3D tracking.

5.4.3 Camera Limitations

The camera reports IR blobs at a 1024x768 resolution. However, distance and angle mea-
surement limitations during IR blob tracking are unknown. These include any minimum
or maximum measurement distances for effective camera operation, and any non-linear
changes in the field of view as the user moves further away from the camera. These
changes may or may not be significant, and are attributed to the focal distortion of the
lens. The tests are outlined below.

1. Minimum effective sensing distance from camera with several light sources.

2. Maximum sensing range for different IR lights.

3. Horizontal and vertical fields of view at measured distances from the camera.

5.4.4 Lens Distortion

Overview

Camera lens distortion is measured using a custom method the author names a pixel vari-
ance ray trace. In this technique, a different measure of lens distortion is created by
analysing how the Wiimote senses an IR light source’s position as it is back-projected
along a ray extending from the camera’s location outwards. For an ideal IR camera with
no distortion, the measured pixel value should not change as the light source moves along
the ray. A graph is plotted showing the variation from the mean pixel value with distance.
It is appropriate to use this kind of measure in this application, because it is necessary

2http://harrier.itc.if.ua/doc/opto/irda/siemens/sfh484.pdf
3http://harrier.itc.if.ua/doc/opto/irda/siemens/sfh487.pdf
4http://www.mantech.co.za/Datasheets/Products/NTE3027.pdf

32



to analyse how one’s hand is sensed as it moves back and forth directly in line with one
Wiimote.

In order to implement this method, a string is attached to the bottom base of the camera,
essentially forming the camera’s origin. The other end of the string is attached at an
arbitrary angle and distance away from the camera and is pulled taut so as to implement a
“ray” from the camera’s origin outwards. An IR LED is connected next to the string, and
moved from the base of the camera outwards to the opposite end of the string. All pixel
coordinates of the IR LED as measured by the Wiimote are stored as it moves along the
string outwards.

The pixel variance at a distance d from the camera’s origin is the Euclidean pixel distance
between the average pixel coordinate for the entire series, and the camera’s coordinate
sensed at the given distance. The exact direction of the ray is not needed because it is
assumed that distortion is constant along all rays originating from the camera. However,
the ray direction can easily be parametrized by its horizontal and vertical angles to a
constant reference ray if needed.

Theory

A set of n measured pixel coordinates are stored as follows:

p0(x,y,d) . . . pn(x,y,d)

where x and y are the camera’s measured coordinates of the IR Light at a distance d from
the origin. For every distance value d, there is an associated pixel coordinate which is
referenced as pd(x,y) for convenience. The mean value is calculated as the mathematical
average of all pixel coordinates:

p̄ = ∑
pi
n

The pixel variance V (d) at a distance d determined the distance between the measured
pixel at d and the mean pixel value p̄.

V (d) =
√

(pdx− px)2 +(pdy− py)2

The 1D pixel variance function is then plotted as a function of distance. If details con-
cerning the ray’s exact parameters are required, the pixel variance function can be given
asV (d,α,β ) where α and β are horizontal and vertical deviation angles from a constant
reference ray, respectively. The reference ray can be selected as the ray parallel to the
camera, extending along the z axis. However, it is assumed in this project that lens distor-
tion is approximately uniform, independent of the selected ray parameters α and β .

5.4.5 Camera sensitivity

Tests are performed with respect to the measuring accuracies of the Wiimote camera.
These tests include:

33



1. Camera pixels changed per centimetre that the subject moves horizontally at a dis-
tance from the camera;

2. Change in IR blob size with distance for various light sources;

3. Sensitivity to noise from other sources of IR light, such as natural daylight and
indoor lighting.

5.4.6 Algorithm Efficiency

The 3D point reconstruction algorithm used for the hand tracking interface will be anal-
ysed for efficiency in terms of its execution time and big-O notation. This provides insight
into possible future implementations for embedded applications.

5.4.7 Accuracy of 3D Algorithm

In order to test the accuracy of the presented algorithm, the best approach is to compare
the calculated 3D coordinates of IR light sources to their actual 3D positions in space. A
measuring tape is used to measure the (x,y,z) coordinates of arbitrary locations of IR light
sources in the cameras’ field of view. These measured values are then compared with the
coordinates calculated by the algorithm.

34



Chapter 6

Results

6.1 Camera Details

6.1.1 Camera Range

The horizontal and vertical sensing ranges of the camera were measured at various dis-
tances from the camera. These ranges are attributed to the camera’s field of view at those
distances. An ideal camera has no distortion of its field of view. The Wiimote’s camera
range plot shows an almost linear curve, as shown below:

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Distance from camera [m]

V
ie

w
in

g 
ra

ng
e 

[m
]

Camera Viewing Ranges

 

 
Horizontal range
Vertical range

Figure 6.1: Viewing ranges at given distances from the Wiimote.

With the above information, an average field of view is calculated. From this data, the
Wiimote’s average field of view is calculated as 41° horizontally and 31° vertically.

It is established that any light sources closer than 10 cm to the camera’s lens are not
accurately tracked. This is most likely due to blurring of the IR light data stored in the

35



CCD, resulting in difficulties in resolving the central pixel location of the light.

The camera’s maximum sensing range depends largely on the size, luminescence, and
output direction of the IR light source. Experiments were conducted with several light
sources, and incandescent bulbs in torches are accurately sensed up to 10 m away. IR
LEDs, however, are not reliably sensed further than 3 m. IR LEDs have significantly less
power output per steradian than a focused incandescent light beam has, in addition to a
smaller dimension of the active illuminated area. IR LEDs in general have very small
output half-angles, typically ranging from ±18° to ±30°. Essentially, if the LEDs are
rotated more than their half-angle value, the camera is ineffective at sensing the emitted
IR light.

6.1.2 Camera Sensitivity

The sensitivity of the camera was determined, with respect to the number of unique pixels
measured per centimetre moved horizontally at a given distance from the camera. These
values were measured in 10 cm increments perpendicular to the camera, and subsequently
averaged. The results are summarised in the following figure:

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

Camera Sensitivity

Distance from camera [m]

M
ea

su
re

m
en

t S
en

si
tiv

ity
 [p

ix
el

s/
cm

]

Figure 6.2: Meauring sensitivity at distances from Wiimote.

The camera sensitivity function can be modeled as a hyperbolic curve of the nature xy = k

where x is the distance from the camera, in metres, and y is the number of unique pixels
per centimetre. Calculation of the mean k value for the above graph results in a sensitivity
function of xy = 13.0533.

36



6.1.3 Blob Sizes

Several experiments were conducted to ascertain the variation of measured blob size with
distance. Unfortunately, in all experiments the readings proved to be widely varying and
sporadic. The measured size of an IR blob is highly dependant of the light sources’ angles
of inclination to the camera.

Incandescent bulbs and candles proved to have the most sporadic size readings, randomly
fluctuating between 1 and 4 pixels at any given distance. IR LEDs had more stable read-
ings, but no results were scientifically usable. IR LED blob sizes typically ranged between
1 and 2 pixels at distances greater than 1 m, and fluctuated greatly at closer distances.

The only way in which blob sizes could be reliably used for any engineering application
is to construct an array of LEDs connected next to each other, and mounted in such a
way that they constantly face the camera directly. Using this technique, it is possible to
construct a crude algorithm for approximating the light source’s distance to the camera.
More information is provided in the final chapter regarding future work.

6.1.4 Pixel Variance Ray Trace

The pixel variance ray trace, as described in the previous chapter in some detail, shows the
variances between measured pixel coordinates and the mean pixel coordinate as a single
light source moves along a ray from the camera outwards.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

Distance from camera [m]

D
is

ta
nc

e 
va

ria
nc

e 
fr

om
 m

ea
n 

[p
ix

el
s]

Pixel Variance Ray Trace

Figure 6.3: Pixe variance ray trace function.

All of the coordinates captured along the ray can be shown as a single scatter plot with no
distance information:

Essentially what these graphs indicate is that there is some distortion in measurements
along a ray from the camera. The distortion decreases somewhat further away from the

37



340 350 360 370 380 390 400
460

470

480

490

500

510

520

Mean pixel value: (364, 480)

Pixel X coordinate

P
ix

el
 Y

 c
oo

rd
in

at
e

Scatterplot of all pixels

Figure 6.4: Scatterplot of pixel coordinates.

camera, due to lower sensitivity values at these distances. In general, the pixel variance
is smaller than 15 pixels from the mean along the ray. This is certainly an acceptable
figure for the given application, resulting in relative distortions of less than 1.46% along
the x axis with 1024 pixels, and less than 1.95% along the y axis with 768 pixels with a
distortion of 15 pixels.

6.1.5 Time Dynamics

A single Wiimote was connected to a PC and allowed to continuously capture IR blob
sources. Over a 1 hour period, the batteries flattened by 8% as measured by the Wiimote’s
battery status report. This translates to approximately 12.5 hours of usage time with a new
pair of AA batteries. During this time period, there was no fluctuation or change in the
location readings of the IR light sources, indicating that the system is time invariant.

6.2 Analysis of 3D Algorithm and System

6.2.1 Accuracy

The 3D tracking algorithm was tested by measuring coordinates of several arbitrary loca-
tions from the camera system’s origin, and comparing it to calculated values. The results
are presented in the table below, and all values are given in cm:

38



Actual Location Calculated Location Absolute Error Distance Error

(15,3,100) (15.7,2.4,83.4) (0.7,0.6,16.6) 16.62

(0,10,80) (0.1,7.4,67.3) (0.1,2.6,12.7) 12.96

(10,3,50) (7.65,4.09,49.9) (2.35,1.09,0.1) 2.59

(-25,20,140) (-21.4,16.5,117) (3.6,3.5,23) 23.54
The x and y coordinate values are adequately accurate for all of the locations. However,
there is significant error in the z coordinate at larger distances from the camera system.
The nature of the algorithm requires the Wiimotes to be exactly parallel in order to accu-
rately sense the z coordinate. The Wiimotes were placed as parallel as practically possible,
but it was discovered that a rotation of one Wiimote by a mere 5° created errors in the z
coordinate calculation of up to 40 cm at 2 metres away.

6.2.2 Execution Time

The 3D tracking algorithm’s execution time was measured over 100000 iterations and
averaged. The stereoscopic resolution code executed in an average of 4.5 µs on an AMD
2.4 GHz 3800+ CPU. This results in approximately 10800 instructions, mainly due to
the usage of an external vector and matrix algebra library, namely Eigen. This value
can be reduced with the implementation of custom algebra routines optimized for this
application. The execution time, however, is almost negligible when compared to the 10
ms refresh time of the Wiimote’s camera, at 100 Hz.

The algorithm’s execution time remains constant irrespective of the position of an IR light
source, and thus has a Big-O rating of O(1).

6.2.3 IR Light System

The LED system was designed with priorities given to simplicity and size metrics. As
such, the usage time of the LED system is significantly less than the camera system’s
usage time. The 3V CR2032 Lithium coin cell used to power the LEDs provides 229mAH
of current usage. The high power SFH484 IR LED chosen for the final model is driven
with 100 mA of continuous forward current, resulting in an operation time of slightly
over 2 hours. It is important to note that a slightly larger Lithium cell can be purchased
which provides significantly more energy. An alternative is the CR2450 Lithium coin
cell, providing 600 mAH of current usage.

Incandescent lamps and candles have a further sensing range from the camera due to their
higher power output. Due to the flickering of candles, the IR camera randomly loses
the IR signal. The incandescent lamp provides a good IR tracking source, but due to
its concentratated reflector design, should point to the camera system for full effect. In-
candescent lamps and torches are also larger than necessary for engineering applications,
where is it most effective to use an IR LED.

39



The SFH484 and SFH487 LEDs both have the same current rating and power output, but
the SFS484 provides a higher half-angle output than its counterpart, and was selected for
that reason. The NTE3027 IR LED was also tested, and because of its extremely high
current sink of 150 mA and forward voltage drop of 1.7 V, its power usage is undesirably
high for use in this application, despite its favourable half-angle output beam.

The system works fairly accurately and allows easy visualisation of a molecule at any
angle and position with minimal effort. However, a problem experienced with the light
system is that the half angles of most IR LEDs are fairly small. This results in a user
needing to concentrate on pointing the IR LEDs directly at the camera system at all times,
which can be fairly frustrating. As one moves their hands around to effectively transform
the molecule in the viewport, it may be difficult at times making sure that both light
sources are pointed at the camera system.

6.2.4 Freedom of Movement

An important factor considered in this project’s application is the exact amount of freedom
a user has to move around. It was measured that the selected IR LEDs are not reliably
sensed further than 2 m away from the camera. With two parallel Wiimotes of a known
distance apart, this allows one to construct a freedom of movement equation which gives
the maximum leeway available to a user in the horizontal and vertical directions. The
freedom of movement for the horizontal plane at 2 m away is illustrated below:

Figure 6.5: Diagram showing freedom of movement.

The result is summarised with the following equation, where all variables are given in
metres:

2 tan(σ

2 ).2−D = x

The result is that two Wiimotes 25 cm apart allows the user’s hands 124 cm of movement
in the horizontal direction, at 2 m away from the camera system. If the horizontal field of

40



view angle σ is replaced with the vertical field of view angle θ , it is calculated that a user
has 86 cm of space to move in the vertical direction.

6.2.5 Cost

The system proved to be remarkably cost efficient for tracking 3D positions of objects in
real time. The cost breakdown of the core system components are given below:

Component Cost

Wiimote x2 R1300

Bluetooth dongle R250

SFH484 IR LED system R25

Total R1575
The cost of the PC used to execute the code was not taken into account, as any Bluetooth-
linked processor can be used to execute the 3D tracking code at varying speeds of com-
putation. However, a basic PC system costing approximately R2000 can be used for this
setup, bringing the total system cost to R3575.

41



Chapter 7

Conclusions

Several tracking design concepts were presented, and the most appropriate design was
selected and implemented as the basis for this project. The system proved to have nu-
merous advantages over traditional interfaces as well as proprietary 3D tracking systems,
essentially combining the best of both worlds to create a novel, intuitive and easy way to
interface with virtually any sort of CAD-like environment on the PC.

7.1 Fast 3D Tracking with Low Cost Hardware

The Wii Remote camera is a remarkably cheap and accurate solution for sensing and
tracking objects emitting infrared light. With the camera update frequency of 100 Hz,
the system can successfully track most slower moving objects, such as a person’s hands.
A set of two or more Wiimotes can be used to construct a true 3D coordinate of an IR
light source from its pixel positions sensed by the camera system. More Wiimotes can be
added into the system easily, linearly enhancing the calculation accuracy. The 3D tracking
algorithm uses vector geometry, and executes very quickly since some techniques relating
to normal stereoscopic algorithms can be bypassed, due to the key pixel locations being
already extracted from the image.

The 3D tracking algorithm as presented is not accurate enough to track the exact 3D po-
sitions of light sources due to the difficulty in practically calibrating the system manually.
However, this is not the aim of this application because the relative positions of a user’s
hands are successfully tracked and implemented into a molecular visualisation interface.
An automated calibration solution is given in the following chapter which counteracts the
accuracy problem, allowing the system to perform accurate, fast and cost effective 3D
tracking that rivals similar systems that are several times more expensive.

The approximate system price of R3575 is a very cost effective and easily implementable
solution to what is a newly emerging and financially expensive field of research.

42



7.2 Adequacy of Light System

The SFH484 LED system constructed is adequate for the given application. Despite the
relatively low half-angle power output of this light source, the LEDs are almost always
pointed towards the camera system, allowing for continuous sensing of all light sources.
The LEDs are attached to the end of the user’s index fingers, which naturally point forward
towards the camera lenses when interfacing with the computer.

There are IR LEDs available with significantly greater half angles who’s luminescence
is captured by the camera system at more extreme angles of rotation, resulting in greater
flexibility. One such IR LED is the KM-4457F3C Side Look LED1, featuring 3 mW/steradian
output power with a 150° viewing angle. This would be ideal for an object that rotates
sufficiently far for the camera to have problems sensing normal IR LEDs.

7.3 Improvement over Traditional Interfaces

The traditional interfaces for molecular visualisation use a combination of the keyboard
and mouse to facilitate molecular transformations. These systems typically do not sup-
port multiple simultaneous transformations, resulting in difficulties in moving around and
zooming into complex molecules efficiently and quickly. In Avogadro, the mouse can be
used in conjunction with its buttons to implement all 6 degrees of freedom for transform-
ing a molecule in the viewport. However, only one transformation can be performed at a
time, resulting in slower, bulkier HCI interaction.

With the Wiimote plugin in use, one can use both of their hands to independently trans-
late, rotate and scale the molecule. These transformations can be performed at the same
time, and are mentally intuitive to the application. This results in virtually no time taken
to learn the novel interface, and much faster and less frustrating navigation around the
molecule. This results in a superior interface design to traditional interfaces. The only
real disadvantage to this system is the cost of purchasing new components and the time
taken to implement and configure the system. These cost factors are performed once
only, and are trivial when compared to the budgets of larger institutions and corporations.
The 3D tracking using the presented algorithm is not ideal for all engineering tracking
purposes, but it is very adequate for the given hand tracking application.

7.4 Viability in Other Applications

The concept of 3D tracking has widespread application possibilities. Using the techniques
presented in this thesis, it is possible to track any object with an attached IR light source,
provided that the object remains within the fields of view of at least two cameras in the

1http://www.datasheetcatalog.org/datasheets2/82/82962_1.pdf

43



system at all times. With additional cameras being added to the system, a more accurate
3D re-composition is possible.

It is possible to execute the algorithm on a Bluetooth enabled microprocessor for 3D
tracking in embedded applications. The possibilities here are virtually endless, ranging
from robotic vision and collision detection, to environment mapping and 3D shape re-
construction. Several changes and enhancements would need to be made to enable such
functionality, but it is certainly possible. The extensible nature of the system and tracking
algorithm provides an important stepping stone to future applications utilizing this tech-
nology. Given the 10 ms refresh times of the cameras, even a modest processing time
of 1 ms for an algorithm constituting 10800 instructions results in a minimum required
processor speed of 10.8 MHz.

The hand tracking concept need not only apply to molecular visualisation, since any CAD
related work can be enhanced by using hand tracking. This would aid in the navigation
and construction of complex 3D objects in fields ranging from 3D graphical design, ar-
chitecture and even gaming.

A novel operating system interface can be created by extending the concept to involve full
finger tracking. However, the restriction of 4 tracked IR hot spots by the Wiimote does
impede the possibilities here. It is important to note that a typical CCD with an IR filter
and hot spot detection code can effectively mimic the Wiimote’s functionality without the
restriction of only 4 IR light sources. With a full finger tracking interface, each finger will
have its own unique degree of freedom, allowing for a virtual keyboard interface to the
PC. If used in conjunction with a reference picture of a keyboard, it is possible to move
one’s fingers over the reference picture’s keys in order to detect which keys have been
“pressed” by sensing the positions of the IR sources located on each finger.

44



Chapter 8

Future Work

8.1 Automatic Camera Calibration

8.1.1 Research

Zhengyou Zhang has presented a method that involves presenting a checkered pattern
such as a chessboard in several orientations to both cameras[7]. The technique only re-
quires the camera to observe a planar pattern from a few (at least two) different orienta-
tions, and correspondingly generates the intrinsic system matrices. The algorithm uses
maximum likelihood estimation to generate the most accurate system parameters, both
intrinsic and extrinsic, in a closed form solution.[8] The algorithm takes into account
radial lens distortion in order to accurately resolve 3D objects. The application of this
algorithm for the Wiimote has been implemented by the Digital Technology Group at
Cambridge University[2]. This method presents a board with 4 IR LEDs at each corner to
both Wiimotes, and the Camera Calibration Toolbox for Matlab1 is used to construct 3D
coordinates.

8.1.2 Proposed Algorithm

An automatic camera calibration algorithm is proposed that automatically resolves the
extrinsic parameters of the camera system, given a priori knowledge of the Wiimote’s
intrinsic horizontal and vertical fields of view.

The dual Wiimote system is presented in figure 8.1. If an arbitrary Wiimote is chosen
as the reference point, at (0,0,0,0), then the second Wiimote’s location and orientation
is parametrized as (x,0,z,α). Only 3 variables are required, due to the assumption that
both Wiimotes lie on the same horizontal plane (such as a table top), and the only rotation
is the yaw of the Wiimotes along their y-axes. Maximum possible values xmax and zmax

are pre-selected for x and z, given the nature of the application. If it is certain that the

1http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

45



Figure 8.1: Automatic calibration using several generated planes.

Wiimotes are placed within 2 metres of each other, xmax and zmaxare assigned the values
of 200 cm. Since α is an angle, its maximum value of αmax is 360°.

A single LED light source is added to the system and tracked by both Wiimotes simulta-
neously. Each recorded pixel value is stored and resolved into a 3D ray originating from
the Wiimote’s reference point, as explained in previous chapters. The LED is allowed to
move around, with several different rays being calculated for each set of pixel values over
time.

It is described in section 4.2 that the resolved 3D coordinates along each ray, parametrized
by t̂1and t̂2, give the points along the rays closest to each other. Given these two points, the
distance between them can be used as a gauge for the error in resolving the 3D position.
A 3 dimensional binary search[1] is thus conducted for x,z and α that rapidly converges to
the best-fitting values of these variables. Every stored ray pair from the Wiimotes is used
to create two 3D coordinates using the algorithm described previously, with the variables
of x,z and α in the current loop. The distance error between the two points is used to
determine the accuracy of the variables within the current loop. This distance error is
calculated, squared and aggregated over all stored rays, giving an absolute error value
ε for the currently selected values of x,z and α . The binary search continues until the
error becomes less than a predetermined amount εmin, whereby the search stops and the
values of x,z and α corresponding to the smallest distance error are selected and used in
the Wiimote system for future 3D tracking.

Although this algorithm is computationally intensive, it is performed during system ini-
tialization only, and need not be used again until a system parameter changes. For exam-
ple, if xmax = 200 and the algorithm is assumed to stop when the values are within 1 cm
of their real values, the required number of binary iterations for each variable is shown:

46



log 1
200

log 1
2
≈ 8

With 3 variables being analysed, 83 iterations are required to converge all values accord-
ingly. If the LED is allowed to be tracked for 5 seconds at 100 Hz, 500 pairs of rays
will be calculated. Given 83 iterations for each pair of rays and an execution time of
4.5 µs for each iteration as timed in this project, the processing time in this algorithm is
approximately:

t = 83. 4.5
10−6 .500 = 1.15

The algorithm executes in 1.15 seconds, automatically and accurately resolving the ex-
trinsic parameters (x,0,z,α) of this system. With additional degrees of freedom in the
translation and rotation of the Wiimotes, a higher level binary search can be performed,
but greatly degrades algorithmic performance.

8.2 Tracking Multiple IR Points

The Wiimote is capable of tracking up to 4 IR point sources of light. This project tracks
two points in 3D with a simple algorithm for differentiating between the 2 light sources
as discussed. The algorithm would need to be extended if the light sources were allowed
to cross over each other in the cameras’ viewports, or if more point sources were to be
added to the system.

Once the camera calibration is complete and a single point can be tracked in 3D, up
to 4 points can be tracked as long as the system keeps track of which pixel points are
associated with which IR LEDs in space. Several methods are presented to keep track of
this information.

Distance Differentials

The IR camera creates pixel frame reports at 100 Hz. Under the assumption that the mo-
tion of the LEDs is acceptably slow, such as in hand movements, each LED can be tracked
using the distance it moved from the camera’s previous frame. Each LED’s correspond-
ing pixel position will be very near to its position in the previous frame. If each pixel is
connected to its nearest neighbour in the previous frame, the mapping is accurate.

As an example, if a pair of IR point light sources are in motion 1 metre away from the
camera system, the measuring accuracy at this range is 13 px/cm, as presented in the
results. If the LEDs are guaranteed to remain further than 1 cm away from each other,
this corresponds to a minimum range of 13 pixels between the LEDs. The LEDs would
need to be moving faster than half of this distance between the frames, that is 13

2 px/frame,
in order for the algorithm to map to the wrong point sources, as shown in the diagram.

It is important to note that at the speed of 13
2 px/frame, the LED’s actual movement speed

is:

47



Figure 8.2: Distance differential mapping.

13
2

pixels
f rame .

100
1

f rames
sec . 1

13
cm

pixel = 50 cm
sec

Thus for the algorithm to remain effective, the LEDs located 1m away and a minimum of
1 cm apart need to travel faster than 50 cm/sec. With a higher minimum distance between
the LEDs, the maximum movement speed increases linearly.

Light Size Differentials

The Wiimote is capable of measuring the relative sizes of IR light sources. An approach
can be considered where the size of the light sources are used to differentiate between the
various measured points. Sets of LEDs with different sizes may be used which will in
turn register different IR blob size readings by the camera. Alternatively, a tightly packed
array of several LEDs can be used as this will be sensed as one large IR blob by the
camera.

In this approach, the distance of all light sources from the camera need to remain fairly
constant. This is because the further away the light source moves, the less accurate the
measurement of size is which can result in algorithm inaccuracies.

LED Light Modulation

In an LED system, each LED can be selectively modulated at a unique frequency or pulse
width. If a sufficient number of sequential pixel frames captured by each Wiimote are
saved and analysed, it is possible to identify each IR point with its corresponding LED. An
algorithm may examine each successive frame and examine the modulation frequencies
of each sensed light source, and match them to the actual modulation frequencies of the
corresponding IR LEDs.

This technique is augmented with the distance differential algorithm for a more robust
tracking method that is less prone to errors.

48



Appendix A

Bluetooth Communications

Bluetooth is a short range wireless communications technology that utilises frequencies in
the 2.4 GHz radio frequency (RF) band. Class 2 Bluetooth devices, such as the Wiimote’s
internal Broadcom 2042 chip, emit a maximum power of 2.5 mW (4 dBm). This translates
to an approximate maximum range of 10 metres. The Nintendo Wii typically acts as the
host for Bluetooth communications from the Wiimote, but in this project a Bluetooth
enabled PC is used as the host. In this project, Bluetooth packets sent to and received
from the controller are processed by the BlueZ Bluetooth library in Linux.

Figure A.1: Bluetooth layer stack.

The figure provides an overview of the lower software layers. The HCI firmware imple-
ments the HCI Commands for the Bluetooth hardware by accessing baseband commands,
link manager commands, hardware status registers, control registers and event registers.

49



Several layers may exist between the HCI driver on the host system and the HCI firmware
in the Bluetooth hardware. These intermediate layers, the Host Controller Transport
Layer, provide the ability to transfer data without intimate knowledge of the data.

The HCI driver on the Host exchanges data and commands with the HCI firmware on the
Bluetooth hardware. The Host Control Transport Layer (i.e. physical bus) driver provides
both HCI layers with the ability to exchange information with each other.

The Host will receive asynchronous notifications of HCI events independent of which
Host Controller Transport Layer is used. HCI events are used for notifying the Host when
something occurs. When the Host discovers that an event has occurred it will then parse
the received event packet to determine which event occurred.1

The Bluetooth HID profile defines the protocols, procedures and features to be used by
Bluetooth HID such as keyboards, pointing devices, gaming devices and remote moni-
toring devices.The HID defines two roles, that of a Human Interface Device (HID) and a
Host:

• Human Interface Device (HID) – The device providing the service of human data
input and output to and from the host.

• Host – The device using or requesting the services of a Human Interface Device.

The HID profile uses the universal serial bus (USB) definition of a HID device in order to
leverage the existing class drivers for USB HID devices. The HID profile describes how
to use the USB HID protocol to discover a HID class device’s feature set and how a Blue-
tooth enabled device can support HID services using the L2CAP layer. The HID profile is
designed to enable initialization and control self-describing devices as well as provide a
low latency link with low power requirements.2 The outputs of the HID descriptor block
facilitating full duplex communication in the Wiimote is presented in section 2.2.2. This
is used to differentiate between the types of data that can be read from and written to the
Wiimote, contained in the sent and received Bluetooth packets.

1http://www.bluetooth.com
2http://www.bluetooth.com/Bluetooth/Technology/Works/HID.htm

50



Appendix B

CD Contents

A CD is accompanied with this thesis, containing the following data:

1. readme.txt - provides a guide to installing Avogadro, cwiid and the Wiimote plugin
on a Linux PC, as well as information regarding system setup.

2. cwiid-0.6.00.tar.gz - the latest version of the cwiid library at the time of writing.

3. avogadro-0.8.1-wii.tar.gz - the latest version of the Avogadro molecular editing
software, with the Wiimote plugin included to automatically compile and install
with the package.

4. wrnmic002_ug_thesis.tar.gz - Lyx files, images and references used in the creation
of this document.

5. wrnmic002_ug_thesis.pdf - electronic version of this document.

51



Bibliography

[1] R. O. Eyal Kushilevitz and Y. Rabani. Efficient search for approximate nearest neigh-
bor in high dimensional spaces. Technical report, Annual ACM Symposium on The-
ory of Computing, 1998.

[2] S. H. Joseph Newman, Robert Harle. Optical tracking using commodity hardware.
Technical report, Digital Technology Group, Computer Laboratory, University of
Cambridge, 2008.

[3] S. Rathi. Blue tooth protocol architecture. Technical report, Microwave Systems,
1999.

[4] C. Sun. A fast stereo matching method. Technical report, CSIRO Mathematical and
Information Science, 1997.

[5] C. Sun. Uncalibrated three-view image rectification. Technical report, CSIRO Math-
ematical and Information Science, 2003.

[6] R. Y. Tsai. A versatile camera calibration techniaue for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses. Technical report, IEEE
Journal of Robotics and Automation, 1997.

[7] Z. Zhang. A flexible new technique for camera calibration. Technical report, Mi-
crosoft Corporation, 1998.

[8] Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations.
Technical report, Microsoft Corporation, 1999.

52


